
CS 134:
Operating Systems

Definitions, Abstractions, Taxonomies, Early History

1 / 36

CS 134:
Operating Systems

Definitions, Abstractions, Taxonomies, Early History

20
12

-1
2-

06

CS34

Overview

What Is an OS?

History

Hardware

2 / 36

Overview

What Is an OS?

History

Hardware

20
12

-1
2-

06

CS34

Overview

What Is an OS?

What is an Operating System Anyway?

Class Exercise: Devise three separate definitions. Discuss.

3 / 36

What is an Operating System Anyway?

Class Exercise: Devise three separate definitions. Discuss.

20
12

-1
2-

06

CS34
What Is an OS?

What is an Operating System Anyway?

Several slides follow that aren’t on
handout.

What Is an OS?

It’s A Programmer’s Toolkit

Provide useful functionality to programs:
I Prevent duplicated work
I Promote reuse

4 / 36

It’s A Programmer’s Toolkit

Provide useful functionality to programs:
I Prevent duplicated work
I Promote reuse

20
12

-1
2-

06

CS34
What Is an OS?

It’s A Programmer’s Toolkit

What Is an OS?

It’s a Control Program

Provide the rules for the how the machine will operate:
I Control the operation of the I/O devices
I Ensure smooth running of the machine

5 / 36

It’s a Control Program

Provide the rules for the how the machine will operate:
I Control the operation of the I/O devices
I Ensure smooth running of the machine

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Control Program

What Is an OS?

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

6 / 36

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

20
12

-1
2-

06

CS34
What Is an OS?

It’s an Abstraction Layer

What Is an OS?

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

The Core Services and Application Services layers and the Carbon and Cocoa application
environments are packaged in umbrella frameworks (described in the chapter “Umbrella
Frameworks” (page 97)). Many public APIs of the kernel environment are exported through
headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents the architecture
of Mac OS X as layers of system software. Following this static perspective of Mac OS X is a more
dynamic view that traces the progress of a user event through the system. A typical event in Mac
OS X originates when the user manipulates an input device such as a mouse or a keyboard. The
device driver associated with that device, through the I/O Kit, creates a low-level event, puts it
in the window server’s event queue, and notifies the window server. The window server
dispatches the event to the appropriate run-loop port of the target process. There the event is
picked up by the Carbon Event Manager and forwarded to the event-handling mechanism
appropriate to the application environment. Events can also be asynchronous, such as a network
packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software into “layers.”
Visually depicted, one layer sits on top of another, with the most fundamental layer on the bottom.
This kind of diagram suggests the general interfaces and dependencies between the layers of
software. The higher layers of software, which are the closest to actual application code, depend
on the layer immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 (page 40) illustrates the general structure
of Mac OS X system software as interdependent layers of libraries, frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Although this diagram does help clarify the overall architecture, there are dangers in the
necessarily over-simplified view it presents. The Mac OS X services and subsystems that one
application uses—and how it uses them—can be very different from those used by another
application, even one of a similar type. Dependencies and interfaces at the different levels can
vary from program to program depending on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this diagram.

40 A Layered Perspective
© Apple Computer, Inc. 2003

C H A P T E R 3

System Architecture

6 / 36

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

The Core Services and Application Services layers and the Carbon and Cocoa application
environments are packaged in umbrella frameworks (described in the chapter “Umbrella
Frameworks” (page 97)). Many public APIs of the kernel environment are exported through
headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents the architecture
of Mac OS X as layers of system software. Following this static perspective of Mac OS X is a more
dynamic view that traces the progress of a user event through the system. A typical event in Mac
OS X originates when the user manipulates an input device such as a mouse or a keyboard. The
device driver associated with that device, through the I/O Kit, creates a low-level event, puts it
in the window server’s event queue, and notifies the window server. The window server
dispatches the event to the appropriate run-loop port of the target process. There the event is
picked up by the Carbon Event Manager and forwarded to the event-handling mechanism
appropriate to the application environment. Events can also be asynchronous, such as a network
packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software into “layers.”
Visually depicted, one layer sits on top of another, with the most fundamental layer on the bottom.
This kind of diagram suggests the general interfaces and dependencies between the layers of
software. The higher layers of software, which are the closest to actual application code, depend
on the layer immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 (page 40) illustrates the general structure
of Mac OS X system software as interdependent layers of libraries, frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Although this diagram does help clarify the overall architecture, there are dangers in the
necessarily over-simplified view it presents. The Mac OS X services and subsystems that one
application uses—and how it uses them—can be very different from those used by another
application, even one of a similar type. Dependencies and interfaces at the different levels can
vary from program to program depending on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this diagram.

40 A Layered Perspective
© Apple Computer, Inc. 2003

C H A P T E R 3

System Architecture

20
12

-1
2-

06

CS34
What Is an OS?

It’s an Abstraction Layer

What Is an OS?

It’s a Virtual Machine

OS provides an environment
This environment can be seen as a “new machine”. . .

Hardware —Physical machine
+ Core OS —Virtual machine

+ OS Libraries —Virtual machine
+ OS Utilities —Virtual machine

+ Application —Virtual machine

7 / 36

It’s a Virtual Machine

OS provides an environment
This environment can be seen as a “new machine”. . .

Hardware —Physical machine
+ Core OS —Virtual machine

+ OS Libraries —Virtual machine
+ OS Utilities —Virtual machine

+ Application —Virtual machine

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Virtual Machine

What Is an OS?

It’s a Protection Layer

Make the machine more robust—less scope for a bug to have
devastating consequences

I OS does everything programs can’t be trusted to do
I OS makes programs play nice with others

8 / 36

It’s a Protection Layer

Make the machine more robust—less scope for a bug to have
devastating consequences

I OS does everything programs can’t be trusted to do
I OS makes programs play nice with others

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Protection Layer

What Is an OS?

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

9 / 36

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Policy Enforcer

What Is an OS?

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

9 / 36

It’s a Policy Enforcer

OS provides the mechanisms to enforce various policies

Class Exercise: Examples?

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Policy Enforcer

What Is an OS?

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc. . .

10 / 36

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc. . .

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Resource Manager

What Is an OS?

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

11 / 36

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Resource Manager (cont’d.)

What Is an OS?

It’s a Product

Many operating systems are sold by commercial companies
I Market vs. technical considerations
I The operating system is what comes in the box marked

“operating system”

12 / 36

It’s a Product

Many operating systems are sold by commercial companies
I Market vs. technical considerations
I The operating system is what comes in the box marked

“operating system”

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Product

What Is an OS?

Fundamental Abstractions

What are the (user-level) abstractions we’d expect to find in a
modern OS?

13 / 36

Fundamental Abstractions

What are the (user-level) abstractions we’d expect to find in a
modern OS?

20
12

-1
2-

06

CS34
What Is an OS?

Fundamental Abstractions

What Is an OS?

Fundamental Abstractions

Include. . .

I System calls
I Processes

I Threads
I Address spaces

I Files
I Files
I Directories
I Filesystems

I Events
I Asynchronous
I Synchronous

I IPC Mechanisms
I Semaphores
I Mutexes
I Condition Variables

I Communications channels
I Pipelines
I Network connections

I Users
I (Remote) Hosts

14 / 36

Fundamental Abstractions

Include. . .

I System calls
I Processes

I Threads
I Address spaces

I Files
I Files
I Directories
I Filesystems

I Events
I Asynchronous
I Synchronous

I IPC Mechanisms
I Semaphores
I Mutexes
I Condition Variables

I Communications channels
I Pipelines
I Network connections

I Users
I (Remote) Hosts

20
12

-1
2-

06

CS34
What Is an OS?

Fundamental Abstractions

What Is an OS?

It’s a Resource Manager

What are the “resources” that an operating system manages?

15 / 36

It’s a Resource Manager

What are the “resources” that an operating system manages?

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Resource Manager

What Is an OS?

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc.. . .

16 / 36

It’s a Resource Manager

The operating system manages physical resources:
I Processor
I Memory
I Storage devices
I Network devices

etc.. . .

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Resource Manager

What Is an OS?

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

17 / 36

It’s a Resource Manager (cont’d.)

The operating system manages virtual resources:
I Processes
I Files
I Users
I Network connections
I Windows

etc.. . .

20
12

-1
2-

06

CS34
What Is an OS?

It’s a Resource Manager (cont’d.)

What Is an OS?

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

18 / 36

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

20
12

-1
2-

06

CS34
What Is an OS?

Taxonomy of Computer Systems

What Is an OS?

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

18 / 36

Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary

20
12

-1
2-

06

CS34
What Is an OS?

Taxonomy of Computer Systems

What Is an OS?

Partial Taxonomy of Computer Systems

Different computer systems ask different things from their OS:

Special-purpose ↔ General-purpose
Single-user ↔ Multi-user

Non–Resource-sharing ↔ Resource sharing
Single processor ↔ Multiprocessor

Stand alone ↔ Networked
Centralized ↔ Distributed

Batch ↔ Interactive
Deadline-free ↔ Real-time

Insecure ↔ Secure
Symmetric ↔ Asymmetric

Simple ↔ Complex
Small ↔ Large

Inexpensive ↔ Expensive
etc.

19 / 36

Partial Taxonomy of Computer Systems

Different computer systems ask different things from their OS:

Special-purpose ↔ General-purpose
Single-user ↔ Multi-user

Non–Resource-sharing ↔ Resource sharing
Single processor ↔ Multiprocessor

Stand alone ↔ Networked
Centralized ↔ Distributed

Batch ↔ Interactive
Deadline-free ↔ Real-time

Insecure ↔ Secure
Symmetric ↔ Asymmetric

Simple ↔ Complex
Small ↔ Large

Inexpensive ↔ Expensive
etc.

20
12

-1
2-

06

CS34
What Is an OS?

Partial Taxonomy of Computer Systems

History

Early Computers

1950s—large complex machines
I Operated directly from a console
I Used interactively by a single user
I Ran one program at a time (uniprogramming)
I Read data from paper tape, punched cards, or toggle

switches
OS? Maybe a library containing code to work the I/O devices was
useful.

20 / 36

Early Computers

1950s—large complex machines
I Operated directly from a console
I Used interactively by a single user
I Ran one program at a time (uniprogramming)
I Read data from paper tape, punched cards, or toggle

switches
OS? Maybe a library containing code to work the I/O devices was
useful.

20
12

-1
2-

06

CS34
History

Early Computers

History

Simple Batch Systems

Provide better use of resources:
I Users access computer indirectly
I Programs and input (jobs) taken from a batch queue
I Computer has a human operator to feed it jobs

1401 7094 1401

Card
reader

Tape
drive Input

tape
Output
tape

System
tape

Printer

Need to:
I Manage the jobs:
I Protect the next program from the previous program

21 / 36

Simple Batch Systems

Provide better use of resources:
I Users access computer indirectly
I Programs and input (jobs) taken from a batch queue
I Computer has a human operator to feed it jobs

1401 7094 1401

Card
reader

Tape
drive Input

tape
Output
tape

System
tape

Printer

Need to:
I Manage the jobs:
I Protect the next program from the previous program

20
12

-1
2-

06

CS34
History

Simple Batch Systems

History

SPOOLing Batch Systems

Provide better use of resources—buffer input and output
I Read-ahead input from disk/tape
I Write-behind output to disk/tape

Class Exercise: Why does buffering improve performance?
Does buffering always improve performance?

(What assumptions are we making?)

22 / 36

SPOOLing Batch Systems

Provide better use of resources—buffer input and output
I Read-ahead input from disk/tape
I Write-behind output to disk/tape

Class Exercise: Why does buffering improve performance?
Does buffering always improve performance?

(What assumptions are we making?)

20
12

-1
2-

06

CS34
History

SPOOLing Batch Systems

History

SPOOLing Batch Systems

Provide better use of resources—buffer input and output
I Read-ahead input from disk/tape
I Write-behind output to disk/tape

Class Exercise: Why does buffering improve performance?
Does buffering always improve performance?

(What assumptions are we making?)

22 / 36

SPOOLing Batch Systems

Provide better use of resources—buffer input and output
I Read-ahead input from disk/tape
I Write-behind output to disk/tape

Class Exercise: Why does buffering improve performance?
Does buffering always improve performance?

(What assumptions are we making?)

20
12

-1
2-

06

CS34
History

SPOOLing Batch Systems

History

Multiprogrammed Batch Systems

Provide better use of resources—multiplex the processor:
I Run multiple independent programs at once
I Switch to another program when running program waits for

I/O
More work for OS. More complex management of

I I/O
I Memory
I Processor

23 / 36

Multiprogrammed Batch Systems

Provide better use of resources—multiplex the processor:
I Run multiple independent programs at once
I Switch to another program when running program waits for

I/O
More work for OS. More complex management of

I I/O
I Memory
I Processor

20
12

-1
2-

06

CS34
History

Multiprogrammed Batch Systems

History

Time-Sharing Systems

Provide better environment for users—multiplex the processor
between users:

I Run multiple independent programs at once
I Switch between users rapidly

I Illusion of having the machine’s full attention

Yet more complexity for OS:

24 / 36

Time-Sharing Systems

Provide better environment for users—multiplex the processor
between users:

I Run multiple independent programs at once
I Switch between users rapidly

I Illusion of having the machine’s full attention

Yet more complexity for OS:

20
12

-1
2-

06

CS34
History

Time-Sharing Systems

History

History Repeats Itself

As new, “smaller” hardware appears, it tends to repeat this
evolution

I Mini computers
I Personal computers
I PDAs
I Embedded systems

I Cell phones
I MP3 Players
I Cameras, etc.

25 / 36

History Repeats Itself

As new, “smaller” hardware appears, it tends to repeat this
evolution

I Mini computers
I Personal computers
I PDAs
I Embedded systems

I Cell phones
I MP3 Players
I Cameras, etc.

20
12

-1
2-

06

CS34
History

History Repeats Itself

Hardware

Computer Hardware

tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

26 / 36

Computer Hardware

tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

20
12

-1
2-

06

CS34
Hardware

Computer Hardware

Hardware

Computer Hardware—CPU & Memory

Need to perform computation!

Fetch
Instruction

Execute
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers

27 / 36

Computer Hardware—CPU & Memory

Need to perform computation!

Fetch
Instruction

Execute
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers20

12
-1

2-
06

CS34
Hardware

Computer Hardware—CPU & Memory

Hardware

Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer

I I/O is from the device to local buffer of controller
tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

28 / 36

Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer

I I/O is from the device to local buffer of controller
tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

20
12

-1
2-

06

CS34
Hardware

Computer Hardware—I/O Devices

Hardware

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing

29 / 36

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing

20
12

-1
2-

06

CS34
Hardware

Programmed I/O

Hardware

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?

30 / 36

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?

20
12

-1
2-

06

CS34
Hardware

Polled I/O

Hardware

Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification

31 / 36

Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification

20
12

-1
2-

06

CS34
Hardware

Interrupt-Driven I/O

Hardware

I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?

32 / 36

I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?

20
12

-1
2-

06

CS34
Hardware

I/O in User-Level Code

Hardware

Computer Hardware—CPU with Interrupts

CPU needs another feature. . .

Fetch
Instruction

Execute
InstructionStart

Interrupts
Enabled?

No

Yes

Interrupt?No

Yes

Save StateJump to
Handler

33 / 36

Computer Hardware—CPU with Interrupts

CPU needs another feature. . .

Fetch
Instruction

Execute
InstructionStart

Interrupts
Enabled?

No

Yes

Interrupt?No

Yes

Save StateJump to
Handler

20
12

-1
2-

06

CS34
Hardware

Computer Hardware—CPU with Interrupts

Hardware

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts

34 / 36

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts

20
12

-1
2-

06

CS34
Hardware

Handling an Interrupt

Hardware

Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven

35 / 36

Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven

20
12

-1
2-

06

CS34
Hardware

Types of Interrupts

Hardware

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.

36 / 36

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.

20
12

-1
2-

06

CS34
Hardware

Other Hardware Features

	What Is an OS?
	History
	Hardware

