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Class Exercise: Devise three separate definitions. Discuss.
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It’s A Programmer’s Toolkit

Provide useful functionality to programs:
I Prevent duplicated work
I Promote reuse
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I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

6 / 36

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

20
12

-1
2-

06

CS34
What Is an OS?

It’s an Abstraction Layer



What Is an OS?

It’s an Abstraction Layer

Make the machine “nicer”, easier to program, higher level. . .
I Hide some of the idiosyncrasies of the machine
I Provide functionality the underlying machine doesn’t have

Hardware

Operating System

Application

User

The Core Services and Application Services layers and the Carbon and Cocoa application
environments are packaged in umbrella frameworks (described in the chapter “Umbrella
Frameworks” (page 97)). Many public APIs of the kernel environment are exported through
headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents the architecture
of Mac OS X as layers of system software. Following this static perspective of Mac OS X is a more
dynamic view that traces the progress of a user event through the system. A typical event in Mac
OS X originates when the user manipulates an input device such as a mouse or a keyboard. The
device driver associated with that device, through the I/O Kit, creates a low-level event, puts it
in the window server’s event queue, and notifies the window server. The window server
dispatches the event to the appropriate run-loop port of the target process. There the event is
picked up by the Carbon Event Manager and forwarded to the event-handling mechanism
appropriate to the application environment. Events can also be asynchronous, such as a network
packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software into “layers.”
Visually depicted, one layer sits on top of another, with the most fundamental layer on the bottom.
This kind of diagram suggests the general interfaces and dependencies between the layers of
software. The higher layers of software, which are the closest to actual application code, depend
on the layer immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 (page 40) illustrates the general structure
of Mac OS X system software as interdependent layers of libraries, frameworks, and services.

Figure 3-1 Mac OS X as layers of system software

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

Although this diagram does help clarify the overall architecture, there are dangers in the
necessarily over-simplified view it presents. The Mac OS X services and subsystems that one
application uses—and how it uses them—can be very different from those used by another
application, even one of a similar type. Dependencies and interfaces at the different levels can
vary from program to program depending on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this diagram.

40 A Layered Perspective
© Apple Computer, Inc. 2003

C H A P T E R  3

System Architecture
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What Is an OS?

It’s a Virtual Machine

OS provides an environment
This environment can be seen as a “new machine”. . .

Hardware —Physical machine
+ Core OS —Virtual machine

+ OS Libraries —Virtual machine
+ OS Utilities —Virtual machine

+ Application —Virtual machine
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Make the machine more robust—less scope for a bug to have
devastating consequences

I OS does everything programs can’t be trusted to do
I OS makes programs play nice with others
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The operating system manages virtual resources:
I Processes
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It’s a Product

Many operating systems are sold by commercial companies
I Market vs. technical considerations
I The operating system is what comes in the box marked

“operating system”
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Fundamental Abstractions

What are the (user-level) abstractions we’d expect to find in a
modern OS?
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Include. . .
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I Directories
I Filesystems
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I IPC Mechanisms
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I Pipelines
I Network connections

I Users
I (Remote) Hosts
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What are the “resources” that an operating system manages?
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Taxonomy of Computer Systems

Different computer systems ask different things from their OS

Class Exercise: Give some dimensions across which computer
systems vary
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What Is an OS?

Partial Taxonomy of Computer Systems

Different computer systems ask different things from their OS:

Special-purpose ↔ General-purpose
Single-user ↔ Multi-user

Non–Resource-sharing ↔ Resource sharing
Single processor ↔ Multiprocessor

Stand alone ↔ Networked
Centralized ↔ Distributed

Batch ↔ Interactive
Deadline-free ↔ Real-time

Insecure ↔ Secure
Symmetric ↔ Asymmetric

Simple ↔ Complex
Small ↔ Large

Inexpensive ↔ Expensive
etc.
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Early Computers

1950s—large complex machines
I Operated directly from a console
I Used interactively by a single user
I Ran one program at a time (uniprogramming)
I Read data from paper tape, punched cards, or toggle

switches
OS? Maybe a library containing code to work the I/O devices was
useful.
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Simple Batch Systems

Provide better use of resources:
I Users access computer indirectly
I Programs and input (jobs) taken from a batch queue
I Computer has a human operator to feed it jobs
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Multiprogrammed Batch Systems

Provide better use of resources—multiplex the processor:
I Run multiple independent programs at once
I Switch to another program when running program waits for

I/O
More work for OS. More complex management of

I I/O
I Memory
I Processor
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Time-Sharing Systems

Provide better environment for users—multiplex the processor
between users:

I Run multiple independent programs at once
I Switch between users rapidly

I Illusion of having the machine’s full attention
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History Repeats Itself

As new, “smaller” hardware appears, it tends to repeat this
evolution

I Mini computers
I Personal computers
I PDAs
I Embedded systems

I Cell phones
I MP3 Players
I Cameras, etc.
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Computer Hardware
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Computer Hardware—CPU & Memory

Need to perform computation!

Fetch 
Instruction

Execute 
InstructionStart

I Memory contains program instructions and program data
I Processor registers maintain processor state. Registers

include:
I General purpose (address & data) registers
I Instruction pointer (aka program counter)
I Stack pointer(s)
I Control and status registers
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Computer Hardware—I/O Devices

Need to communicate with the world!
I I/O devices and CPU execute concurrently
I Devices have hardware controllers

I Handles devices of a particular device type
I Some level of autonomy
I Local buffer
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Hardware

Programmed I/O

After I/O starts, control returns to user program only on I/O
completion

I CPU waits until I/O completes.
I At most one I/O request is outstanding at a time

I No simultaneous I/O processing
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Hardware

Polled I/O

Polling == Querying the I/O device
Separate I/O into two parts:

I Initiation
I Polling

Advantages?
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Interrupt-Driven I/O

Separate I/O into two parts:
I Initiation
I Asynchronous notification
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I/O in User-Level Code

User-level code almost always uses “programmed I/O”
(e.g. read and write on a file)

Why?
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Computer Hardware—CPU with Interrupts

CPU needs another feature. . .
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Hardware

Handling an Interrupt

What needs to happen:
I Save state

I All registers
I Switch stacks?

I Find out what interrupt was. . .
I Polling
I Vectored interrupts
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Types of Interrupts

Various types
I Software exception (also called a trap)
I Timer
I I/O
I Hardware failure

A modern operating system is interrupt driven
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Hardware

Other Hardware Features

We’ve covered interrupts, but hardware has other cool features,
including:

I Caches
I Memory management
I Protection

We’ll come back to hardware as we address these topics.
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