
CS 134:
Operating Systems

Threads

1 / 23

CS 134:
Operating Systems

Threads

20
12

-1
2-

06

CS34

Overview

Wiki Answers
Thread Questions
Scheduler Questions
Synchronization Questions

Threads
Concepts
Uses
Models
Design

2 / 23

Overview

Wiki Answers
Thread Questions
Scheduler Questions
Synchronization Questions

Threads
Concepts
Uses
Models
Design20

12
-1

2-
06

CS34

Overview

Wiki Answers Thread Questions

Thread Questions (1)

What happens to a thread when it exits (i.e., calls thread_exit())?
What about when it sleeps?

When a thread exits, it ensures the stack isn’t mangled, removes
its virtual memory space and destroys it, decrements the counter
of whatever vnode it may be poitning at, puts itself into a zombie
state, S_ZOMB, and preps itself to panic if it ever runs again
before it dies. When it sleeps, it makes sure it’s not in an interrupt
handler, yields control to the next thread, enters the S_SLEEP
state, and only starts taking control once more when wakeup() is
called on its address.

3 / 23

Thread Questions (1)

What happens to a thread when it exits (i.e., calls thread_exit())?
What about when it sleeps?

When a thread exits, it ensures the stack isn’t mangled, removes
its virtual memory space and destroys it, decrements the counter
of whatever vnode it may be poitning at, puts itself into a zombie
state, S_ZOMB, and preps itself to panic if it ever runs again
before it dies. When it sleeps, it makes sure it’s not in an interrupt
handler, yields control to the next thread, enters the S_SLEEP
state, and only starts taking control once more when wakeup() is
called on its address.20

12
-1

2-
06

CS34
Wiki Answers

Thread Questions
Thread Questions (1)

Wiki Answers Thread Questions

Thread Questions (2)

What function(s) handle(s) a context switch?

There are two functions that handle a context switch: mi_switch,
which is the high level, machine-independent context switch
function, and md_switch, which is the machine-independent code
that actually does the context switch. mi_switch is in thread.c, and
md_switch is in pcb.c

4 / 23

Thread Questions (2)

What function(s) handle(s) a context switch?

There are two functions that handle a context switch: mi_switch,
which is the high level, machine-independent context switch
function, and md_switch, which is the machine-independent code
that actually does the context switch. mi_switch is in thread.c, and
md_switch is in pcb.c

20
12

-1
2-

06

CS34
Wiki Answers

Thread Questions
Thread Questions (2)

Wiki Answers Thread Questions

Thread Questions (3)

How many thread states are there? What are they?

There are four thread states - S_RUN, S_READY, S_SLEEP, and
S_ZOMB. These states are defined in kern/thread/thread.c. They
express whether the thread is running, ready to run, sleeping, or a
zombie.

5 / 23

Thread Questions (3)

How many thread states are there? What are they?

There are four thread states - S_RUN, S_READY, S_SLEEP, and
S_ZOMB. These states are defined in kern/thread/thread.c. They
express whether the thread is running, ready to run, sleeping, or a
zombie.

20
12

-1
2-

06

CS34
Wiki Answers

Thread Questions
Thread Questions (3)

Wiki Answers Thread Questions

Thread Questions (4)

What does it mean to turn interrupts off? How is this
accomplished? Why is it important to turn off interrupts in the
thread subsystem code?

If interrupts are turned off, then even if an interrupt is signaled the
handler is not called until interrupts are turned back on. Interrupts
are turned off using the function splhigh (set priority level high)
and back on again using spl0 (set priority level zero). The priority
level can also be set to intermediate levels (or at least, it could if
OS/161 supported them) using the splx function. Turning off
interrupts for thread operations is necessary to ensure that these
operations complete successfully and aren’t broken
mid-execution. For example, things could go pretty badly if the
scheduler interrupted us in the middle of a context switch and tried
to start executing a thread that wasn’t finished setting up its stack.
And it would be really awful if someone interrupted us in the
middle of forking! 6 / 23

Thread Questions (4)

What does it mean to turn interrupts off? How is this
accomplished? Why is it important to turn off interrupts in the
thread subsystem code?

If interrupts are turned off, then even if an interrupt is signaled the
handler is not called until interrupts are turned back on. Interrupts
are turned off using the function splhigh (set priority level high)
and back on again using spl0 (set priority level zero). The priority
level can also be set to intermediate levels (or at least, it could if
OS/161 supported them) using the splx function. Turning off
interrupts for thread operations is necessary to ensure that these
operations complete successfully and aren’t broken
mid-execution. For example, things could go pretty badly if the
scheduler interrupted us in the middle of a context switch and tried
to start executing a thread that wasn’t finished setting up its stack.
And it would be really awful if someone interrupted us in the
middle of forking!

20
12

-1
2-

06

CS34
Wiki Answers

Thread Questions
Thread Questions (4)

Wiki Answers Thread Questions

Thread Questions (5)

What happens when a thread wakes up another thread? How
does a sleeping thread get to run again?

It removes the sleeping thread from the queue, and calls
make_runnable on the thread, which currently adds it to the end of
the runqueue. The thread gets to run again when an mi_switch is
called, and that thread is returned by the scheduler.

7 / 23

Thread Questions (5)

What happens when a thread wakes up another thread? How
does a sleeping thread get to run again?

It removes the sleeping thread from the queue, and calls
make_runnable on the thread, which currently adds it to the end of
the runqueue. The thread gets to run again when an mi_switch is
called, and that thread is returned by the scheduler.

20
12

-1
2-

06

CS34
Wiki Answers

Thread Questions
Thread Questions (5)

Wiki Answers Scheduler Questions

Scheduler Questions (6)

What function is responsible for choosing the next thread to run?
How does that function pick the next thread?

struct thread * scheduler(void); it uses a round-robin run queue
that schedules each thread in the queue in equal time-slice
without priorities.

8 / 23

Scheduler Questions (6)

What function is responsible for choosing the next thread to run?
How does that function pick the next thread?

struct thread * scheduler(void); it uses a round-robin run queue
that schedules each thread in the queue in equal time-slice
without priorities.

20
12

-1
2-

06

CS34
Wiki Answers

Scheduler Questions
Scheduler Questions (6)

Wiki Answers Scheduler Questions

Scheduler Questions (7)

What role does the hardware timer play in scheduling? What
hardware independent function is called on a timer interrupt?

The interrupt handler for the hardware timer calls hardclock,
defined in src/kern/thread/hardclock.c. The method hardclock
finishes by calling thread_yield every time it is run, forcing a
context switch.

9 / 23

Scheduler Questions (7)

What role does the hardware timer play in scheduling? What
hardware independent function is called on a timer interrupt?

The interrupt handler for the hardware timer calls hardclock,
defined in src/kern/thread/hardclock.c. The method hardclock
finishes by calling thread_yield every time it is run, forcing a
context switch.

20
12

-1
2-

06

CS34
Wiki Answers

Scheduler Questions
Scheduler Questions (7)

Wiki Answers Synchronization Questions

Synchronization Questions (8)

Describe how thread_sleep() and thread_wakeup() are used to
implement semaphores. What is the purpose of the argument
passed to thread_sleep()?

thread_sleep is used in the P function of the semaphore. This
function suspends the current thread until the semaphore count is
greater than zero.
thread_wakeup() is used in the V function of the semaphore. This
function wakes up all the suspended threads waiting on the
current semaphore.
The addr argument that is passed in is the address of the object
(in this case, semaphore) the sleeping thread is associated with.
This is required so that when thread_wakeup is called on the
same semaphore, it can selectively wake up only the threads
associated with that particular semaphore.

10 / 23

Synchronization Questions (8)

Describe how thread_sleep() and thread_wakeup() are used to
implement semaphores. What is the purpose of the argument
passed to thread_sleep()?

thread_sleep is used in the P function of the semaphore. This
function suspends the current thread until the semaphore count is
greater than zero.
thread_wakeup() is used in the V function of the semaphore. This
function wakes up all the suspended threads waiting on the
current semaphore.
The addr argument that is passed in is the address of the object
(in this case, semaphore) the sleeping thread is associated with.
This is required so that when thread_wakeup is called on the
same semaphore, it can selectively wake up only the threads
associated with that particular semaphore.

20
12

-1
2-

06

CS34
Wiki Answers

Synchronization Questions

Synchronization Questions (8)

Wiki Answers Synchronization Questions

Why does the lock API in OS/161 provide lock_do_i_hold(), but
not lock_get_holder()?

???

11 / 23

Why does the lock API in OS/161 provide lock_do_i_hold(), but
not lock_get_holder()?

???

20
12

-1
2-

06

CS34
Wiki Answers

Synchronization Questions

Wiki Answers Synchronization Questions

The thread subsystem in OS/161 uses a queue structure to
manage some of its state. This queue structure does not contain
any synchronization primitives. Why not? Under what
circumstances should you use a synchronized queue structure?

The runqueue queue used by the scheduler in the thread
subsystem is only accessed by a single scheduler thread, so does
not need any synchronization primitives to prevent other
(non-existent) threads from messing up the queue. You should
use a synchronized queue structure for any queue that multiple
threads could access simultaneously.

12 / 23

The thread subsystem in OS/161 uses a queue structure to
manage some of its state. This queue structure does not contain
any synchronization primitives. Why not? Under what
circumstances should you use a synchronized queue structure?

The runqueue queue used by the scheduler in the thread
subsystem is only accessed by a single scheduler thread, so does
not need any synchronization primitives to prevent other
(non-existent) threads from messing up the queue. You should
use a synchronized queue structure for any queue that multiple
threads could access simultaneously.

20
12

-1
2-

06

CS34
Wiki Answers

Synchronization Questions

Threads Concepts

Generalizing Processes

Simple view of process is
Address space

+ Thread of execution

Does the mapping need to be one-to-one?

13 / 23

Generalizing Processes

Simple view of process is
Address space

+ Thread of execution

Does the mapping need to be one-to-one?

20
12

-1
2-

06

CS34
Threads

Concepts

Generalizing Processes

Threads Concepts

Possible Mappings

one process�
one thread�

�

one process�
multiple threads�

�

multiple processes�
one thread per process�

�

multiple processes�
multiple threads per process�

�

14 / 23

Possible Mappings

one process�
one thread�

�

one process�
multiple threads�

�

multiple processes�
one thread per process�

�

multiple processes�
multiple threads per process�

�

20
12

-1
2-

06

CS34
Threads

Concepts

Possible Mappings

Threads Concepts

Threads

Motivation:
I Traditional processes: Virtual uniprocessor machine
I Multithreaded processes: Virtual multiprocessor machine

15 / 23

Threads

Motivation:
I Traditional processes: Virtual uniprocessor machine
I Multithreaded processes: Virtual multiprocessor machine

20
12

-1
2-

06

CS34
Threads

Concepts

Threads

Threads Uses

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

16 / 23

Uses of Threads

Various reasons why people use threads
I Performing foreground and background work
I Supporting asynchronous processing
I Speeding execution
I Organizing programs

20
12

-1
2-

06

CS34
Threads

Uses
Uses of Threads

Threads Uses

Uses of Threads—Example

Dispatcher thread

Worker thread

Web page cache

Kernel

Network�
connection

Web server process

User�
space

Kernel�
space

/* Dispatcher Thread */
for (; ;) {
url = get_next_request();
handoff_work(url);

}

/* Worker Thread */ \\
for (; ;) {
url = wait_for_work();
page = look_in_cache(url);
if (page == NULL)
page = generate_page(url);

send_page(page);
}

17 / 23

Uses of Threads—Example

Dispatcher thread

Worker thread

Web page cache

Kernel

Network�
connection

Web server process

User�
space

Kernel�
space

/* Dispatcher Thread */
for (; ;) {
url = get_next_request();
handoff_work(url);

}

/* Worker Thread */ \\
for (; ;) {

url = wait_for_work();
page = look_in_cache(url);
if (page == NULL)
page = generate_page(url);

send_page(page);
}

20
12

-1
2-

06

CS34
Threads

Uses
Uses of Threads—Example

Threads Uses

Class Exercise

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?

18 / 23

Class Exercise

Can an application implement threads without built-in thread
support in the OS?

If so, what does it need from the from the OS to support threads?

20
12

-1
2-

06

CS34
Threads

Uses
Class Exercise

Threads Models

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

19 / 23

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
12

-1
2-

06

CS34
Threads

Models
Model for User Threads

So, maybe we should put the threads in the kernel?

Threads Models

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

+ No kernel overhead for thread library calls
+ Own scheduler = Application-specific scheduling policy?
− I/O issues
− Can’t (easily) take advantage of multiprocessing

19 / 23

Model for User Threads

P�
�

User�
Space�

�

Threads�
Library�

�
Kernel
Space�

�

Pure user-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

+ No kernel overhead for thread library calls
+ Own scheduler = Application-specific scheduling policy?
− I/O issues
− Can’t (easily) take advantage of multiprocessing

20
12

-1
2-

06

CS34
Threads

Models
Model for User Threads

So, maybe we should put the threads in the kernel?

Threads Models

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20 / 23

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
12

-1
2-

06

CS34
Threads

Models
Model for Kernel-Level Threads

Threads Models

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Now we have kernel overheads:
I Kernel data structures
I Mode switch to kernel

20 / 23

Model for Kernel-Level Threads

P�
�

User�
Space�

�
Kernel
Space�

�

Pure kernel-level�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Now we have kernel overheads:
I Kernel data structures
I Mode switch to kernel

20
12

-1
2-

06

CS34
Threads

Models
Model for Kernel-Level Threads

Threads Models

Hybrid Thread Schemes

P�
�

P�
�

User�
Space�
�

Threads�
Library�

�
Kernel
Space�
�

Combined�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

21 / 23

Hybrid Thread Schemes

P�
�

P�
�

User�
Space�
�

Threads�
Library�

�
Kernel
Space�
�

Combined�
�

Key:

P�
�

User-level thread�
�
Kernel-level thread
�
Process�
�

Class Exercise
What are the pros and cons of this approach?

20
12

-1
2-

06

CS34
Threads

Models
Hybrid Thread Schemes

Threads Models

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

22 / 23

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

20
12

-1
2-

06

CS34
Threads

Models
Traditional vs. Multithreaded Processes

Threads Models

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

22 / 23

Traditional vs. Multithreaded Processes

Single-Threaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

Multithreaded�
Process Model�

�

Process�
Control�
Block�

�

User�
Address�
Space�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

User�
Stack�

�

Kernel�
Stack�

�

Thread�
Control�
Block�

�

Thread�
�

Thread�
�

Thread�
�Thread�

Control�
Block�

�

Thread�
Control�
Block�

�

Class Question
But what’s per-process and what’s per-thread?

20
12

-1
2-

06

CS34
Threads

Models
Traditional vs. Multithreaded Processes

Threads Design

Per-Process vs. Per-Thread—You Decide. . .

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

23 / 23

Per-Process vs. Per-Thread—You Decide. . .

I Execution state
I Registers
I Program counter
I Program status word
I Stack pointer

I Scheduling information
I Process state
I Priority
I Class, etc.

I Memory
I Text area
I Data area
I Stack area

I Security/Authentication Info
I User ID
I Group ID

I I/O State
I File descriptors
I Working directory
I Root directory

I Event Notifications
I Signals waiting
I Signal mask
I Time of next alarm

I Other
I Process ID
I Parent process
I Process group
I Controlling terminal
I Start time
I CPU time
I Children’s CPU time

20
12

-1
2-

06

CS34
Threads

Design

Per-Process vs. Per-Thread—You Decide. . .

	Wiki Answers
	Thread Questions
	Scheduler Questions
	Synchronization Questions

	Threads
	Concepts
	Uses
	Models
	Design

