
CS 134:
Operating Systems

Process Execution

1 / 34

CS 134:
Operating Systems

Process Execution

20
13

-0
5-

19

CS34

Overview

Patch Peer Review

Programs, Memory, & Address Space
Running a Program
Filling Memory
Selecting Space
Memory Sharing

2 / 34

Overview

Patch Peer Review

Programs, Memory, & Address Space
Running a Program
Filling Memory
Selecting Space
Memory Sharing

20
13

-0
5-

19

CS34

Overview

Patch Peer Review

Numeric Evaluations

Group Clarity Concise Fit Correct Docs Total
fax 4.22 4.78 4.56 4.11 4.67 22.34
ewes 3.67 4.67 4.67 3.67 4.33 21.01
biker 4.33 4.67 4.00 3.33 4.67 21.00
nigh 4.33 4.67 5.00 3.33 3.67 21.00
loan 3.67 4.33 4.33 3.67 4.33 20.33
eat 5.00 4.33 3.67 2.00 4.67 19.67
fakes 3.67 3.67 4.00 3.33 5.00 19.67
gates 4.33 3.33 4.00 2.33 5.00 18.99
loop 4.67 3.67 4.67 2.67 2.67 18.35
halos 3.67 3.67 3.00 4.00 4.00 18.34

3 / 34

Numeric Evaluations

Group Clarity Concise Fit Correct Docs Total
fax 4.22 4.78 4.56 4.11 4.67 22.34
ewes 3.67 4.67 4.67 3.67 4.33 21.01
biker 4.33 4.67 4.00 3.33 4.67 21.00
nigh 4.33 4.67 5.00 3.33 3.67 21.00
loan 3.67 4.33 4.33 3.67 4.33 20.33
eat 5.00 4.33 3.67 2.00 4.67 19.67
fakes 3.67 3.67 4.00 3.33 5.00 19.67
gates 4.33 3.33 4.00 2.33 5.00 18.99
loop 4.67 3.67 4.67 2.67 2.67 18.35
halos 3.67 3.67 3.00 4.00 4.00 18.3420

13
-0

5-
19

CS34
Patch Peer Review

Numeric Evaluations

Patch Peer Review

Ranking

Rank Group
1.50 loan
1.67 fax
2.25 fakes
2.33 ewes
2.33 nigh
3.00 biker
3.00 halos
3.33 eat
3.50 gates
3.50 loop

4 / 34

Ranking

Rank Group
1.50 loan
1.67 fax
2.25 fakes
2.33 ewes
2.33 nigh
3.00 biker
3.00 halos
3.33 eat
3.50 gates
3.50 loop20

13
-0

5-
19

CS34
Patch Peer Review

Ranking

Programs, Memory, & Address Space Running a Program

Background—How Processes Get into Memory

Class Exercise:

What transformations does the C source below need go through
to become a running process?

int main()
{

write(1, "Hello, world\n", 13);
return 0;

}

5 / 34

Background—How Processes Get into Memory

Class Exercise:

What transformations does the C source below need go through
to become a running process?

int main()
{

write(1, "Hello, world\n", 13);
return 0;

}

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Running a Program

Background—How Processes Get into Memory

Programs, Memory, & Address Space Running a Program

Assembly code—helloworld.s

.rdata
LC0:
.ascii "Hello World\n\000"

.text
main:
addiu sp,sp,-24 # Set up stack frame for main
la a1,LC0 # Params for write: a0 = 1, a1 = address
li a0,1 # of "Hello world" string, and a2 = 12
sw ra,16(sp) # Save our return address (jal overwrites)
jal write # Call write
li a2,13 # Delay slot! Executed BEFORE instr above!
lw ra,16(sp) # Restore our return address
move v0,0 # Our return value is zero
jr ra # Adjust stack and return to caller
addiu sp,sp,24 # Delay slot! Executed BEFORE instr above!
nop

6 / 34

Assembly code—helloworld.s

.rdata
LC0:
.ascii "Hello World\n\000"

.text
main:
addiu sp,sp,-24 # Set up stack frame for main
la a1,LC0 # Params for write: a0 = 1, a1 = address
li a0,1 # of "Hello world" string, and a2 = 12
sw ra,16(sp) # Save our return address (jal overwrites)
jal write # Call write
li a2,13 # Delay slot! Executed BEFORE instr above!
lw ra,16(sp) # Restore our return address
move v0,0 # Our return value is zero
jr ra # Adjust stack and return to caller
addiu sp,sp,24 # Delay slot! Executed BEFORE instr above!
nop

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Running a Program

Assembly code—helloworld.s

Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Contents of section .data:

Contents of section .rodata:

% Hello World.....
0000 48656C6C 6F2C2077 6F726C64 0A000000

7 / 34

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Contents of section .data:

Contents of section .rodata:

% Hello World.....
0000 48656C6C 6F2C2077 6F726C64 0A00000020

13
-0

5-
19

CS34
Programs, Memory, & Address Space

Running a Program

Object code—helloworld.o

The .rodata contains "Hello, world\n"

Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

27BDFFE8 addiu sp,sp,-24
3C050000 lui a1,0
24A50000 addiu a1,a1,0
24040001 li a0,1
AFBF0010 sw ra,16(sp)
0C000000 jal 0
2406000C li a2,12
8FBF0010 lw ra,16(sp)
00001021 move v0,0
03E00008 jr ra
27BD0018 addiu sp,sp,24
00000000 nop

8 / 34

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

27BDFFE8 addiu sp,sp,-24
3C050000 lui a1,0
24A50000 addiu a1,a1,0
24040001 li a0,1
AFBF0010 sw ra,16(sp)
0C000000 jal 0
2406000C li a2,12
8FBF0010 lw ra,16(sp)
00001021 move v0,0
03E00008 jr ra
27BD0018 addiu sp,sp,24
00000000 nop

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Running a Program

Object code—helloworld.o

Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Relocation records for section .text:

Type Value
0004 R_MIPS_HI16 .rodata
0008 R_MIPS_LO16 .rodata
0014 R_MIPS_26 write

9 / 34

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Relocation records for section .text:

Type Value
0004 R_MIPS_HI16 .rodata
0008 R_MIPS_LO16 .rodata
0014 R_MIPS_26 write20

13
-0

5-
19

CS34
Programs, Memory, & Address Space

Running a Program

Object code—helloworld.o

Programs, Memory, & Address Space Running a Program

Executable code—helloworld

Link with libc.a and crt0.o

I crt0.o contains startup code
I libc.a contains code for write

I Note no dynamic/shared library support yet!
I Linker can resolve the relocation entries
I End result is an executable, or load image.

The OS still needs to:
I Decide if it has resources to run the program right now

(long-term scheduler)
I Decide where to put the program in memory
I Perform any additional setup
I Start executing the program

10 / 34

Executable code—helloworld

Link with libc.a and crt0.o

I crt0.o contains startup code
I libc.a contains code for write

I Note no dynamic/shared library support yet!
I Linker can resolve the relocation entries
I End result is an executable, or load image.

The OS still needs to:
I Decide if it has resources to run the program right now

(long-term scheduler)
I Decide where to put the program in memory
I Perform any additional setup
I Start executing the program

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Running a Program

Executable code—helloworld

Programs, Memory, & Address Space Filling Memory

Uniprogramming OS

User
Space
(768 KB)

OS
(256 KB)

Only one process—can always locate running
process in same place

I Static linking
I Loading is easy

Class Exercise
What is the easiest way to retrofit this model to
run a second program when the first one has to
wait for a while?

11 / 34

Uniprogramming OS

User
Space
(768 KB)

OS
(256 KB)

Only one process—can always locate running
process in same place

I Static linking
I Loading is easy

Class Exercise
What is the easiest way to retrofit this model to
run a second program when the first one has to
wait for a while?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Uniprogramming OS

Programs, Memory, & Address Space Filling Memory

Simple Multiprogramming, using Swapping

Add swapping to uniprogramming OS:

User
Space
(768 KB)

OS
(256 KB)

P1

P2

Swap out

Swap in

12 / 34

Simple Multiprogramming, using Swapping

Add swapping to uniprogramming OS:

User
Space
(768 KB)

OS
(256 KB)

P1

P2

Swap out

Swap in20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Simple Multiprogramming, using Swapping

Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

Add more memory, to allow multiple processes

But
I Processes don’t have a fixed address in memory
I Loading must deal with relocation?

13 / 34

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

Add more memory, to allow multiple processes

But
I Processes don’t have a fixed address in memory
I Loading must deal with relocation?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Fixed Partitioning

Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

Add more memory, to allow multiple processes
But

I Processes don’t have a fixed address in memory
I Loading must deal with relocation?

13 / 34

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

Add more memory, to allow multiple processes
But

I Processes don’t have a fixed address in memory
I Loading must deal with relocation?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Fixed Partitioning

Programs, Memory, & Address Space Filling Memory

Runtime Relocation—Hardware to the rescue

Remember when we talked about protection?

Processor

base

limit

logical addr. +

<

Memory

TRAP

Add base register to user addresses
I Logical address—used by program
I Physical address—actual address in physical memory

14 / 34

Runtime Relocation—Hardware to the rescue

Remember when we talked about protection?

Processor

base

limit

logical addr. +

<

Memory

TRAP

Add base register to user addresses
I Logical address—used by program
I Physical address—actual address in physical memory

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Runtime Relocation—Hardware to the rescue

Programs, Memory, & Address Space Filling Memory

Runtime Relocation—Software alternative

Position-independent code: either
I Grab a register to use as our “base” register and add or

subtract from that, or
I Calculate address based on current program counter

15 / 34

Runtime Relocation—Software alternative

Position-independent code: either
I Grab a register to use as our “base” register and add or

subtract from that, or
I Calculate address based on current program counter

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Runtime Relocation—Software alternative

Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

What else is wrong though?

And some need more. . .

16 / 34

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

What else is wrong though?

And some need more. . .

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Fixed Partitioning

Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Some programs need less memory than others. . .

And some need more. . .

17 / 34

Fixed Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Some programs need less memory than others. . .

And some need more. . .

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Fixed Partitioning

Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Some programs need less memory than others. . .

And some need more. . .

18 / 34

Fixed Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Some programs need less memory than others. . .

And some need more. . .

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Fixed Partitioning

Programs, Memory, & Address Space Filling Memory

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

19 / 34

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Dynamic Partitioning

Programs, Memory, & Address Space Filling Memory

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

19 / 34

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Dynamic Partitioning

Programs, Memory, & Address Space Filling Memory

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

19 / 34

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Dynamic Partitioning

Programs, Memory, & Address Space Filling Memory

Dynamic Partitioning

OS
(256 KB)

Process 2
(256 KB)

Process 4
(512 KB)

Process 5
(384 KB)

Dynamic partitions solve the problem

... or do they?

Next process needs
I 384 KB

20 / 34

Dynamic Partitioning

OS
(256 KB)

Process 2
(256 KB)

Process 4
(512 KB)

Process 5
(384 KB)

Dynamic partitions solve the problem

... or do they?

Next process needs
I 384 KB

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Filling Memory

Dynamic Partitioning

Programs, Memory, & Address Space Selecting Space

Which Hole?

Best fit?
I Choose smallest hole that is large enough

Worst fit?
I Choose largest hole that is large enough

First fit?
I Choose first hole that is large enough

Next fit?
I Choose first hole that is large enough, starting search after

last hole we allocated from

21 / 34

Which Hole?

Best fit?
I Choose smallest hole that is large enough

Worst fit?
I Choose largest hole that is large enough

First fit?
I Choose first hole that is large enough

Next fit?
I Choose first hole that is large enough, starting search after

last hole we allocated from20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Selecting Space

Which Hole?

Programs, Memory, & Address Space Selecting Space

Which hole?

Class Exercise

Which method is best?
8K�

�

12K�
�

22K�
�

18K�
�

8K�
�

6K�
�

14K�
�

36K�
�

Last�
allocated�
block (14K)�
�

8K�
�

12K�
�

6K�
�

2K�
�

8K�
�

6K�
�

14K�
�

20 K�
�

Next Fit / Worst Fit�
�

Allocated block�
�

Best Fit�
�

First Fit�
�

Free block�
�

22 / 34

Which hole?

Class Exercise

Which method is best?
8K�

�

12K�
�

22K�
�

18K�
�

8K�
�

6K�
�

14K�
�

36K�
�

Last�
allocated�
block (14K)�
�

8K�
�

12K�
�

6K�
�

2K�
�

8K�
�

6K�
�

14K�
�

20 K�
�

Next Fit / Worst Fit�
�

Allocated block�
�

Best Fit�
�

First Fit�
�

Free block�
�20

13
-0

5-
19

CS34
Programs, Memory, & Address Space

Selecting Space

Which hole?

Programs, Memory, & Address Space Selecting Space

External Fragmentation

All methods are prone to fragmentation
I Best fit and first fit have least fragmentation on average

Class Exercise

How can we avoid external fragmentation?

23 / 34

External Fragmentation

All methods are prone to fragmentation
I Best fit and first fit have least fragmentation on average

Class Exercise

How can we avoid external fragmentation?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Selecting Space

External Fragmentation

Can eliminate fragmentation by compaction

Programs, Memory, & Address Space Memory Sharing

Wasted Memory...?

What if two people are running the same editor?

24 / 34

Wasted Memory...?

What if two people are running the same editor?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Wasted Memory...?

Programs, Memory, & Address Space Memory Sharing

Segments

We could introduce segments—code and data:

I Program code is put in a program segment (read only),
shared between processes

I Program data is put in a data segment, unique to each
process

25 / 34

Segments

We could introduce segments—code and data:

I Program code is put in a program segment (read only),
shared between processes

I Program data is put in a data segment, unique to each
process

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segments

Programs, Memory, & Address Space Memory Sharing

Segments

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

26 / 34

Segments

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

segment table

CS
DS

basesegment limit
6702 3766
4178 1118

CS:0
address

logical memory

process 1

physical memory

0

1738

4178

6702

12164

address

EDIT
OR

xyzzy

foo

bar

16384

foo

EDIT
OR

CS:3766
DS:0

DS:1118

segment table

CS
DS

basesegment limit
6702 3766
1738 910

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:910
bar

process 2

segment table

CS
DS

basesegment limit
6702 3766
12164 1284

CS:0
address

logical memory

EDIT
OR

CS:3766
DS:0

DS:1284

process 3

xyzzy

CMPT 300, 99-2
Segment 8, Page 21

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segments

Programs, Memory, & Address Space Memory Sharing

More Segments

If two segments are a good idea, would more be even better?

27 / 34

More Segments

If two segments are a good idea, would more be even better?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

More Segments

Programs, Memory, & Address Space Memory Sharing

More Segments

If two segments are a good idea, would more be even better?

How about...
I A stack segment?

Class Exercise

Any other segments that might be nice to have?

27 / 34

More Segments

If two segments are a good idea, would more be even better?

How about...
I A stack segment?

Class Exercise

Any other segments that might be nice to have?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

More Segments

Programs, Memory, & Address Space Memory Sharing

More Segments

If two segments are a good idea, would more be even better?
(The x86 has CS, DS, SS and ES)

27 / 34

More Segments

If two segments are a good idea, would more be even better?
(The x86 has CS, DS, SS and ES)

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

More Segments

Programs, Memory, & Address Space Memory Sharing

More Segments

If two segments are a good idea, would more be even better?
How about...

I A stack segment?
I A shared-data segment?
I A heap segment?
I A segment for the C library
I A thread-local storage segment
I A bonus segment?

27 / 34

More Segments

If two segments are a good idea, would more be even better?
How about...

I A stack segment?
I A shared-data segment?
I A heap segment?
I A segment for the C library
I A thread-local storage segment
I A bonus segment?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

More Segments

Programs, Memory, & Address Space Memory Sharing

More Segments

If two segments are a good idea, would more be even better?
How about...

I A stack segment?
I A shared-data segment?
I A heap segment?
I A segment for the C library
I A thread-local storage segment
I A bonus segment?

The x86 has CS, DS, SS, ES, plus FS and GS.

Problems?

27 / 34

More Segments

If two segments are a good idea, would more be even better?
How about...

I A stack segment?
I A shared-data segment?
I A heap segment?
I A segment for the C library
I A thread-local storage segment
I A bonus segment?

The x86 has CS, DS, SS, ES, plus FS and GS.

Problems?20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

More Segments

Confused programmers!

• Given a 32-bit address, it’s hard to know which segment it points
into

Are six segments enough?

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture

Logical address consists of the pair

<segment-number, offset>

Example
Use 32-bit logical address

I High-order 8 bits are segment number
I Low-order 24 bits are offset within segment

256 segments, of max size 16,777,216 bytes (16MB)

28 / 34

Segmentation Architecture

Logical address consists of the pair

<segment-number, offset>

Example
Use 32-bit logical address

I High-order 8 bits are segment number
I Low-order 24 bits are offset within segment

256 segments, of max size 16,777,216 bytes (16MB)

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture—Segment Table

Processor needs to map 2D user-defined addresses into 1D
physical addresses.
In segment table, each entry has:

I Base—Starting address of the segment in physical memory
I Limit—Length of the segment

29 / 34

Segmentation Architecture—Segment Table

Processor needs to map 2D user-defined addresses into 1D
physical addresses.
In segment table, each entry has:

I Base—Starting address of the segment in physical memory
I Limit—Length of the segment

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture—Segment Table

Programs, Memory, & Address Space Memory Sharing

Segment Table

Processor

s d

ls

0

b

0

b

m

segment table

physical address

logical address

physical memory

+

base limit

b

<
d < l

l

TRAP

Class Exercise

What are the practical limits on the number of segments?
30 / 34

Segment Table

Processor

s d

ls

0

b

0

b

m

segment table

physical address

logical address

physical memory

+

base limit

b

<
d < l

l

TRAP

Class Exercise

What are the practical limits on the number of segments?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segment Table

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture

Design Issues:

I Relocation
I Dynamic
I By segment table

I Sharing
I Shared segments
I Same segment number

I Allocation
I First fit/best fit
I External fragmentation

Class Exercise

Do shared segments need to
have the same segment
number?

I If so, why?
I If not, why? (And why

might we give them the
same segment number
anyway?)

31 / 34

Segmentation Architecture

Design Issues:

I Relocation
I Dynamic
I By segment table

I Sharing
I Shared segments
I Same segment number

I Allocation
I First fit/best fit
I External fragmentation

Class Exercise

Do shared segments need to
have the same segment
number?

I If so, why?
I If not, why? (And why

might we give them the
same segment number
anyway?)20

13
-0

5-
19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture

Class Exercise
Does our segmentation scheme capture the difference between
code and data segments?

I If not, what would we need to fix it?

Class Exercise
What if a program wants more contiguous data space than a
segment can hold? Is this a problem?

32 / 34

Segmentation Architecture

Class Exercise
Does our segmentation scheme capture the difference between
code and data segments?

I If not, what would we need to fix it?

Class Exercise
What if a program wants more contiguous data space than a
segment can hold? Is this a problem?

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture

With each entry in segment table, associate:

• Validation bit—0 => illegal segment

• Read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at
segment level

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal

—Not a problem

I External

—We have a problem! (And compaction would take
too long)

What’s the cause of the fragmentation?

I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments

33 / 34

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal

—Not a problem

I External

—We have a problem! (And compaction would take
too long)

What’s the cause of the fragmentation?

I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture—Fragmentation

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal—Not a problem
I External—We have a problem! (And compaction would take

too long)

What’s the cause of the fragmentation?
I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments

33 / 34

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal—Not a problem
I External—We have a problem! (And compaction would take

too long)

What’s the cause of the fragmentation?
I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture—Fragmentation

Programs, Memory, & Address Space Memory Sharing

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal—Not a problem
I External—We have a problem! (And compaction would take

too long)

What’s the cause of the fragmentation?
I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments
33 / 34

Segmentation Architecture—Fragmentation

Class Exercise

What kinds of fragmentation do we have?
I Internal—Not a problem
I External—We have a problem! (And compaction would take

too long)

What’s the cause of the fragmentation?
I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Segmentation Architecture—Fragmentation

Programs, Memory, & Address Space Memory Sharing

Tiny Segments

Properties
I All segments are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure

I Physical locations for pages are called page frames

34 / 34

Tiny Segments

Properties
I All segments are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure

I Physical locations for pages are called page frames

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Paging

Programs, Memory, & Address Space Memory Sharing

Paging

Properties
I All pages are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure
I Physical locations for pages are called page frames

34 / 34

Paging

Properties
I All pages are the same size (e.g., 4K)
I No need for limit registers
I No longer reflect program structure
I Physical locations for pages are called page frames

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Memory Sharing

Paging

	Patch Peer Review
	Programs, Memory, & Address Space
	Running a Program
	Filling Memory
	Selecting Space
	Memory Sharing

