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Patch Peer Review

Numeric Evaluations

Group Clarity Concise Fit Correct Docs Total
fax 4.22 4.78 4.56 4.11 4.67 22.34
ewes 3.67 4.67 4.67 3.67 4.33 21.01
biker 4.33 4.67 4.00 3.33 4.67 21.00
nigh 4.33 4.67 5.00 3.33 3.67 21.00
loan 3.67 4.33 4.33 3.67 4.33 20.33
eat 5.00 4.33 3.67 2.00 4.67 19.67
fakes 3.67 3.67 4.00 3.33 5.00 19.67
gates 4.33 3.33 4.00 2.33 5.00 18.99
loop 4.67 3.67 4.67 2.67 2.67 18.35
halos 3.67 3.67 3.00 4.00 4.00 18.34
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Patch Peer Review

Ranking

Rank Group
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Programs, Memory, & Address Space Running a Program

Background—How Processes Get into Memory

Class Exercise:

What transformations does the C source below need go through
to become a running process?

int main()
{

write(1, "Hello, world\n", 13);
return 0;

}

5 / 34

Background—How Processes Get into Memory

Class Exercise:

What transformations does the C source below need go through
to become a running process?

int main()
{

write(1, "Hello, world\n", 13);
return 0;

}

20
13

-0
5-

19

CS34
Programs, Memory, & Address Space

Running a Program

Background—How Processes Get into Memory



Programs, Memory, & Address Space Running a Program

Assembly code—helloworld.s

.rdata
LC0:
.ascii "Hello World\n\000"

.text
main:
addiu sp,sp,-24 # Set up stack frame for main
la a1,LC0 # Params for write: a0 = 1, a1 = address
li a0,1 # of "Hello world" string, and a2 = 12
sw ra,16(sp) # Save our return address (jal overwrites)
jal write # Call write
li a2,13 # Delay slot! Executed BEFORE instr above!
lw ra,16(sp) # Restore our return address
move v0,0 # Our return value is zero
jr ra # Adjust stack and return to caller
addiu sp,sp,24 # Delay slot! Executed BEFORE instr above!
nop
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Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Contents of section .data:

Contents of section .rodata:

% Hello World.....
0000 48656C6C 6F2C2077 6F726C64 0A000000
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Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

27BDFFE8 addiu sp,sp,-24
3C050000 lui a1,0
24A50000 addiu a1,a1,0
24040001 li a0,1
AFBF0010 sw ra,16(sp)
0C000000 jal 0
2406000C li a2,12
8FBF0010 lw ra,16(sp)
00001021 move v0,0
03E00008 jr ra
27BD0018 addiu sp,sp,24
00000000 nop
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Programs, Memory, & Address Space Running a Program

Object code—helloworld.o

Contents of section .text:

0000 27BDFFE8 3C050000 24A50000 24040001
0010 AFBF0010 0C000000 2406000C 8FBF0010
0020 00001021 03E00008 27BD0018 00000000

Relocation records for section .text:

Type Value
0004 R_MIPS_HI16 .rodata
0008 R_MIPS_LO16 .rodata
0014 R_MIPS_26 write
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Programs, Memory, & Address Space Running a Program

Executable code—helloworld

Link with libc.a and crt0.o

I crt0.o contains startup code
I libc.a contains code for write

I Note no dynamic/shared library support yet!
I Linker can resolve the relocation entries
I End result is an executable, or load image.

The OS still needs to:
I Decide if it has resources to run the program right now

(long-term scheduler)
I Decide where to put the program in memory
I Perform any additional setup
I Start executing the program
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Programs, Memory, & Address Space Filling Memory

Uniprogramming OS

User
Space
(768 KB)

OS
(256 KB)

Only one process—can always locate running
process in same place

I Static linking
I Loading is easy

Class Exercise
What is the easiest way to retrofit this model to
run a second program when the first one has to
wait for a while?
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Programs, Memory, & Address Space Filling Memory

Simple Multiprogramming, using Swapping

Add swapping to uniprogramming OS:

User
Space
(768 KB)

OS
(256 KB)

P1

P2

Swap out

Swap in
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Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

Add more memory, to allow multiple processes

But
I Processes don’t have a fixed address in memory
I Loading must deal with relocation?
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Programs, Memory, & Address Space Filling Memory

Runtime Relocation—Hardware to the rescue

Remember when we talked about protection?

Processor

base

limit

logical addr. +

<

Memory

TRAP

Add base register to user addresses
I Logical address—used by program
I Physical address—actual address in physical memory
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Programs, Memory, & Address Space Filling Memory

Runtime Relocation—Software alternative

Position-independent code: either
I Grab a register to use as our “base” register and add or

subtract from that, or
I Calculate address based on current program counter
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Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(384 KB)

Process 2
(384 KB)

Process 3
(384 KB)

What else is wrong though?

And some need more. . .
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Programs, Memory, & Address Space Filling Memory

Fixed Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Some programs need less memory than others. . .

And some need more. . .
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Fixed Partitioning
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Process 1
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Process 2
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(256 KB)

Process 4
(512 KB)

Some programs need less memory than others. . .
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Programs, Memory, & Address Space Filling Memory

Dynamic Partitioning

OS
(256 KB)

Process 1
(128 KB)

Process 2
(256 KB)

Process 3
(256 KB)

Process 4
(512 KB)

Variable-sized partitions solve the problem

. . . or do they?

Next process needs
I 64KB

Where should you put it?

Next three processes need
I 64KB
I 64KB
I 256 KB

Or perhaps next four processes need
I 64KB
I 96 KB
I 96 KB
I 128 KB
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I 384 KB
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Programs, Memory, & Address Space Selecting Space

Which Hole?

Best fit?
I Choose smallest hole that is large enough

Worst fit?
I Choose largest hole that is large enough

First fit?
I Choose first hole that is large enough

Next fit?
I Choose first hole that is large enough, starting search after

last hole we allocated from
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Which hole?

Class Exercise

Which method is best?
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Programs, Memory, & Address Space Selecting Space

External Fragmentation

All methods are prone to fragmentation
I Best fit and first fit have least fragmentation on average

Class Exercise

How can we avoid external fragmentation?
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Programs, Memory, & Address Space Memory Sharing

Wasted Memory...?

What if two people are running the same editor?
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Segments

We could introduce segments—code and data:

I Program code is put in a program segment (read only),
shared between processes

I Program data is put in a data segment, unique to each
process
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Segments

segment table
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More Segments

Confused programmers!

• Given a 32-bit address, it’s hard to know which segment it points
into

Are six segments enough?
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What are the practical limits on the number of segments?
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Design Issues:

I Relocation
I Dynamic
I By segment table

I Sharing
I Shared segments
I Same segment number

I Allocation
I First fit/best fit
I External fragmentation

Class Exercise

Do shared segments need to
have the same segment
number?

I If so, why?
I If not, why? (And why

might we give them the
same segment number
anyway?)
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With each entry in segment table, associate:

• Validation bit—0 => illegal segment

• Read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at
segment level
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What kinds of fragmentation do we have?
I Internal

—Not a problem

I External

—We have a problem! (And compaction would take
too long)

What’s the cause of the fragmentation?

I Differing segment sizes

Crazy Solution !?!

Make all segments the same size!
I But now we have internal fragmentation!
I Better make the segments small, to minimize

wastage—remember, we can cope with small segments
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I No need for limit registers
I No longer reflect program structure

I Physical locations for pages are called page frames
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