
CS 134:
Operating Systems

Scheduling

1 / 52

CS 134:
Operating Systems

Scheduling

20
13

-0
5-

17

CS34



Scheduling

Process Switching

Class Exercise

When can/do we switch processes (or threads)?

2 / 52

Process Switching

Class Exercise

When can/do we switch processes (or threads)?

20
13

-0
5-

17

CS34
Scheduling

Process Switching



Scheduling

Process Switching

We could switch processes any time the OS has control, i.e.,
I Interrupt occurs

I Clock
I I/O interrupt
I Page fault

I Trap occurs
I Trace
I Protection fault

I System call
I I/O request
I Wait for child
I etc.

3 / 52

Process Switching

We could switch processes any time the OS has control, i.e.,
I Interrupt occurs

I Clock
I I/O interrupt
I Page fault

I Trap occurs
I Trace
I Protection fault

I System call
I I/O request
I Wait for child
I etc.20

13
-0

5-
17

CS34
Scheduling

Process Switching



Scheduling

Process Switch Overheads

To switch processes, system must
I Save the state of the old process
I Load the saved state for the new process

4 / 52

Process Switch Overheads

To switch processes, system must
I Save the state of the old process
I Load the saved state for the new process

20
13

-0
5-

17

CS34
Scheduling

Process Switch Overheads



Scheduling

The Essence of Scheduling

Scheduler manages some of these state transitions:

Which ones?

5 / 52

The Essence of Scheduling

Scheduler manages some of these state transitions:

Which ones?

20
13

-0
5-

17

CS34
Scheduling

The Essence of Scheduling



Scheduling

Scheduling Goals

Many different scheduling algorithms
I Tradeoffs
I Different goals⇒ Different choices

What are some possible goals for a scheduler?
I What could we try to optimize?

6 / 52

Scheduling Goals

Many different scheduling algorithms
I Tradeoffs
I Different goals⇒ Different choices

What are some possible goals for a scheduler?
I What could we try to optimize?

20
13

-0
5-

17

CS34
Scheduling

Scheduling Goals



Scheduling

Scheduling Exercise

Consider the following set of running processes
Arrival Burst Priority

Process Time Time (if applicable)
A 0 10 3
B 0 1 1
C 0 2 3
D 0 1 4
E 0 5 2

7 / 52

Scheduling Exercise

Consider the following set of running processes
Arrival Burst Priority

Process Time Time (if applicable)
A 0 10 3
B 0 1 1
C 0 2 3
D 0 1 4
E 0 5 2

20
13

-0
5-

17

CS34
Scheduling

Scheduling Exercise



Scheduling

Example Answer

8 / 52

Example Answer

20
13

-0
5-

17

CS34
Scheduling

Example Answer



Scheduling

Example Answer

9 / 52

Example Answer

20
13

-0
5-

17

CS34
Scheduling

Example Answer

This is a priority-based round-robin scheduler with a 2-second (well,
2-unit) time slice, where higher numbers are higher priorities. All
processes arrive at time 0, so D runs first (priority 4). Then A and C
alternate; C quickly finishes so A hogs the CPU until it’s done. Then E
runs exclusively, followed by B.



Scheduling

First Come, First Served

10 / 52

First Come, First Served

20
13

-0
5-

17

CS34
Scheduling

First Come, First Served

We assume that although the processes all arrive at time 0, they
arrive in alphabetical order. Simple.



Scheduling

Shortest Burst First

11 / 52

Shortest Burst First

20
13

-0
5-

17

CS34
Scheduling

Shortest Burst First

Within each burst leave, it’s FCFS.



Scheduling

Nonpreemptive Priority

Class Question

Should low-priority jobs starve?

12 / 52

Nonpreemptive Priority

Class Question

Should low-priority jobs starve?

20
13

-0
5-

17

CS34
Scheduling

Nonpreemptive Priority

Note that here, low numbers mean high priority. Urgh! So we run B,
then E, then A, C, D in that order. It’s FCFS sorted by priority.



Scheduling

Round Robin

13 / 52

Round Robin

20
13

-0
5-

17

CS34
Scheduling

Round Robin



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 0

14 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

MLF == Multi-Level Feedback. Three parameters are summed: base
priority (niceness, -256 to 256); dynamic priority (decremented by
delta of 16 when stopped by a clock interrupt, incremented by 16
when blocks or yieds); and compensation priority (set to 0 when
scheduled, incremented whenever passed over).



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 0

15 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

Initially A is the only process, so it is chosen to run (boldface).



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 0

16 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32
Dynamic 0
Compensation 0

Total 32

Time = 020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A begins running. It has a 2-unit time slice.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 0
Dynamic 0 0 0
Compensation 0 0 0

Total 32 2 0

Time = 1

17 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 0
Dynamic 0 0 0
Compensation 0 0 0

Total 32 2 0

Time = 120
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B and D arrive, with different base priorities.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0
Dynamic -16 0 0 0
Compensation 0 0 0 0

Total 16 2 2 0

Time = 2

18 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0
Dynamic -16 0 0 0
Compensation 0 0 0 0

Total 16 2 2 0

Time = 220
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A’s first timie slice expires, so its dynamic priority is reduced. But it’s
still highest.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0
Dynamic -16 0 0 0
Compensation 0 1 1 1

Total 16 3 3 1

Time = 2

19 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0
Dynamic -16 0 0 0
Compensation 0 1 1 1

Total 16 3 3 1

Time = 220
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A continues to run. Everybody else gets compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -16 0 0 0 0
Compensation 0 1 1 1 0

Total 16 3 3 1 8

Time = 3

20 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -16 0 0 0 0
Compensation 0 1 1 1 0

Total 16 3 3 1 8

Time = 320
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

E arrives at time 3. A still has the highest priority. We don’t
compensate because a time slice didn’t end, so we didn’t reschedule.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 0
Compensation 0 1 1 1 0

Total 0 3 3 1 8

Time = 4

21 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 0
Compensation 0 1 1 1 0

Total 0 3 3 1 8

Time = 420
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A’s time slice ends, so we reduce its dynamic priority. Time to
reschedule!



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 0
Compensation 1 2 2 2 0

Total 1 4 4 2 8

Time = 4

22 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 0
Compensation 1 2 2 2 0

Total 1 4 4 2 8

Time = 420
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

E now has the highest priority. Everybody else (including A) gets
compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 16
Compensation 1 2 2 2 0

Total 1 4 4 2 24

Time = 5

23 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 16
Compensation 1 2 2 2 0

Total 1 4 4 2 24

Time = 520
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

E runs for one time unit and then blocks for I/O. It gets a 16-point
dynamic priority boost for doing I/O, but isn’t eligible for scheduling
because it’s blocked.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 16
Compensation 2 0 3 3 0

Total 2 2 5 3 24

Time = 5

24 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 0 0 0 16
Compensation 2 0 3 3 0

Total 2 2 5 3 24

Time = 520
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B and C are now tied for the highest total, so we arbitrarily choose B.
B’s compensation gets set to 0, and everybody else who is passed
over has their compensation incremented. Note that E doesn’t get
compensation because it is blocked for I/O, so it wasn’t passed over.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 0 0 16
Compensation 2 0 3 3 0

Total 2 18 5 3 24

Time = 6

25 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 0 0 16
Compensation 2 0 3 3 0

Total 2 18 5 3 24

Time = 620
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B runs for one unit and blocks for I/O. It gets a dynamic boost of 16. C
now has the highest priority.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 0 0 16
Compensation 3 0 0 4 0

Total 3 18 2 4 24

Time = 6

26 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 0 0 16
Compensation 3 0 0 4 0

Total 3 18 2 4 24

Time = 620
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

C is chosen to run (boldface) and has its compensation set to 0;
everybody non-blocked gets a compensation bump.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 16 0 16
Compensation 3 0 0 4 0

Total 3 18 18 4 24

Time = 7

27 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 16 0 16
Compensation 3 0 0 4 0

Total 3 18 18 4 24

Time = 720
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B’s I/O is finished, and C blocks for I/O. C gets a dynamic boost of 16.
B’s numbers don’t change; they were handled when it blocked.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 16 0 16
Compensation 4 0 0 5 0

Total 4 18 18 5 24

Time = 7

28 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 16 16 0 16
Compensation 4 0 0 5 0

Total 4 18 18 5 24

Time = 720
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B runs again (as a reward for having done I/O). A and C get
compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 0 16
Compensation 4 0 0 5 0

Total 4 34 18 5 24

Time = 8

29 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 0 16
Compensation 4 0 0 5 0

Total 4 34 18 5 24

Time = 820
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B again blocks, getting another dynamic boost. D will run next.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 0 16
Compensation 5 0 0 0 0

Total 5 34 18 0 24

Time = 8

30 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 0 16
Compensation 5 0 0 0 0

Total 5 34 18 0 24

Time = 820
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D runs, so its compensation gest set to 0. A gets more compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 -16 16
Compensation 5 0 0 0 0

Total 5 34 18 -16 24

Time = 10

31 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 -16 16
Compensation 5 0 0 0 0

Total 5 34 18 -16 24

Time = 1020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

We skip to time 10, when D’s time slice runs out. It gets a dynamic
penalty. A will run next.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 -16 16
Compensation 0 0 0 1 0

Total 0 34 18 -15 24

Time = 10

32 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -32 32 16 -16 16
Compensation 0 0 0 1 0

Total 0 34 18 -15 24

Time = 1020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A is chosen to run; its compensation is reset. D gets compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -16 16
Compensation 0 0 0 1 0

Total -16 34 18 -15 24

Time = 12

33 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -16 16
Compensation 0 0 0 1 0

Total -16 34 18 -15 24

Time = 1220
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A expires its time slice. It becomes (barely) lower priority than D.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -16 16
Compensation 1 0 0 0 0

Total -15 34 18 -16 24

Time = 12

34 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -16 16
Compensation 1 0 0 0 0

Total -15 34 18 -16 24

Time = 1220
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D is chosen to run; A gets compensation.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -32 16
Compensation 1 0 0 0 0

Total -15 34 18 -32 24

Time = 14

35 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -32 16
Compensation 1 0 0 0 0

Total -15 34 18 -32 24

Time = 1420
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D uses up its slice. A and D are now round-robining.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -32 16
Compensation 0 0 0 1 0

Total -15 34 18 -31 24

Time = 14

36 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -48 32 16 -32 16
Compensation 0 0 0 1 0

Total -15 34 18 -31 24

Time = 1420
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -32 16
Compensation 0 0 0 1 0

Total -32 34 18 -31 24

Time = 16

37 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -32 16
Compensation 0 0 0 1 0

Total -32 34 18 -31 24

Time = 1620
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A expires.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -32 16
Compensation 1 0 0 0 0

Total -31 34 18 -32 24

Time = 16

38 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -32 16
Compensation 1 0 0 0 0

Total -31 34 18 -32 24

Time = 1620
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -48 16
Compensation 1 0 0 0 0

Total -31 34 18 -48 24

Time = 18

39 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -48 16
Compensation 1 0 0 0 0

Total -31 34 18 -48 24

Time = 1820
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B and C finish I/O at time 17. Properly speaking, they should interrupt
D at this point. But either the diagram is wrong, or the MLF scheduler
refuses to preempt a running CPU-bound task. (If so, it’s not doing
well; this would be a good time to discuss deceptive idleness and
anticipatory scheduling.)



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -48 16
Compensation 2 0 1 1 0

Total -30 34 19 -47 24

Time = 18

40 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 32 16 -48 16
Compensation 2 0 1 1 0

Total -30 34 19 -47 24

Time = 1820
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B is now the highest priority. Compensations are adjusted, and it
runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 16
Compensation 2 0 1 1 0

Total -30 50 19 -47 24

Time = 19

41 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 16
Compensation 2 0 1 1 0

Total -30 50 19 -47 24

Time = 1920
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

B is heavily I/O-bound, so it blocks yet again, getting another dynamic
boost.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 16
Compensation 3 0 2 2 0

Total -29 50 20 -46 24

Time = 19

42 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 16
Compensation 3 0 2 2 0

Total -29 50 20 -46 24

Time = 1920
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

E has a higher base priority than C, so it runs. (Eventually, C’s
compensation would help it out.)



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 32
Compensation 3 0 2 2 0

Total -29 50 20 -46 24

Time = 20

43 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 32
Compensation 3 0 2 2 0

Total -29 50 20 -46 24

Time = 2020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

E blocks for I/O. C will run now.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 32
Compensation 4 0 0 3 0

Total -28 50 18 -45 24

Time = 20

44 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 16 -48 32
Compensation 4 0 0 3 0

Total -28 50 18 -45 24

Time = 2020
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

C runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 32 -48 32
Compensation 4 0 0 3 0

Total -28 50 34 -45 24

Time = 21

45 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 32 -48 32
Compensation 4 0 0 3 0

Total -28 50 34 -45 24

Time = 2120
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

C blocks, getting another 16 dynamic. Now we only have CPU-bound
processes left.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 32 -48 32
Compensation 0 0 0 4 0

Total -32 50 34 -44 24

Time = 21

46 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -64 48 32 -48 32
Compensation 0 0 0 4 0

Total -32 50 34 -44 24

Time = 2120
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -48 32
Compensation 0 0 0 4 0

Total -48 50 34 -44 24

Time = 23

47 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -48 32
Compensation 0 0 0 4 0

Total -48 50 34 -44 24

Time = 2320
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

A is preempted.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -48 32
Compensation 1 0 0 0 0

Total -47 50 34 -48 24

Time = 23

48 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -48 32
Compensation 1 0 0 0 0

Total -47 50 34 -48 24

Time = 2320
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D runs.



Scheduling

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -64 32
Compensation 1 0 0 0 0

Total -47 50 34 -64 24

Time = 25

49 / 52

OS/161 MLF Scheduler

Priority A B C D E
Base 32 2 2 0 8
Dynamic -80 48 32 -64 32
Compensation 1 0 0 0 0

Total -47 50 34 -64 24

Time = 2520
13

-0
5-

17

CS34
Scheduling

OS/161 MLF Scheduler

D is preempted. A will run again here.



Scheduling

Priority Inversion

What happens when a low-priority thread holds a lock that a high
priority thread wants?

50 / 52

Priority Inversion

What happens when a low-priority thread holds a lock that a high
priority thread wants?

20
13

-0
5-

17

CS34
Scheduling

Priority Inversion



Scheduling

Real-Time Scheduling

Consider two applications
I Video playback
I Controlling cancer treatment X-ray

How can we deal with their needs?

51 / 52

Real-Time Scheduling

Consider two applications
I Video playback
I Controlling cancer treatment X-ray

How can we deal with their needs?

20
13

-0
5-

17

CS34
Scheduling

Real-Time Scheduling

Two approaches:
Hard Real-Time
You do some form of “admission control”:

• A process will say “this is what I need in the future”

• Depending on what it’s already committed to, the scheduler will say
yes or no to that process

Soft Real-Time

• You usually give a deadline (“I want this done by this time”)

• If it doesn’t get done, it doesn’t get done (dropping frames during
video playback)

– You might not notice if only a few operations don’t make it



Scheduling

Class Exercise

Should we preempt kernel code, or wait until we hit user code?

52 / 52

Class Exercise

Should we preempt kernel code, or wait until we hit user code?

20
13

-0
5-

17

CS34
Scheduling

Class Exercise

In hard real-time, definitely yes.
Traditionally, the kernel was never preemptible. A system call went
until it decided to yield.
Advantages to non-preemptible kernel: easier to code; easier to
make thread-safe; avoids many race conditions and bugs.
Advantages to preemptible kernel: you’re worrying about
mutithreaded cores anyway; can improve average latency; time spent
in kernel could lead to scheduling unfairness; even with fair scheduler
that tracks in-kernel time, you could get bad latency; it’s possible to
have kernel ignore timer interrupts (prevent preemption), while still
having other interrupts (like disk access).
But. . . there are other solutions to latency. Instead of preemption,
kernel could explicitly yield during hard/slow operations (original Unix
kernel did that).
OS 161 preempts the kernel.
Once you have a multiprocessor, you already need locks and stuff in
your kernel, so making it preemptible is not as big a deal.


	Scheduling

