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What happens. . .
I User process accesses invalid memory—traps to OS

I OS:
I Saves process state
I Checks access was actually legal
I Finds a free frame
I Reads from disk to free frame—I/O wait, process blocked
I Gets interrupt from disk (I/O complete)—process ready
I Scheduler restarts process—process running
I Adjusts page table
I Restores process state
I Returns to user code
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Page Faults (cont.)

How long?
I Disk is slow
I 5–15 ms is a conservative guess
I Main memory takes 5–15 ns
I Page fault is about 1 million times slower than a regular

memory access
I Page faults must be rare! (Need locality!)
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A “Back of an Envelope Calculation”

How often are there page faults?

An example from a desktop machine:
I In 14 days

I 378,110 page-ins
I Average load < 4%→ 12 hours actual compute time
I 8.75 page faults per second average

I 1,000,000,000 memory accesses per second (a guess)
I 43,200,000,000,000 memory accesses in 12 hours
I 1 page-in every 114,252,466 memory accesses
I Using 5 ns for memory, 5 ms for disk:

I t avg = (5,000,000 ∗ 1 + 5 ∗ 114,252,465)/114,252,466
I t avg = 5.04ns
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Here’s the problem with t avg: it’s spread over 14 days, including time
when the desktop’s owner was asleep. It’s an average! So what if just
1% of those 378K page-ins happened last Monday morning when the
owner started work? All of a sudden we’re spending
3781× 5ms = 18.905sec waiting for the machine to respond. And the
reality is that many more than 1% of the page-ins happen when the
owner is most actively using the machine. . .
Part of the problem is “cold start,” when a program is faulting itself in.
We can improve that in several ways; for example we can pre-load
the first page of instructions, perhaps the first page of each dynamic
library. We can also detect sequential page accesses and prefetch
future pages. Or going further, we can remember what happened last
time the program ran and bring in those pages.
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Page Faults (cont.)

Other kinds of page faults:
I Demand-page executables from their files, not swap device
I Copy-on-write memory—great for fork
I Lazy memory allocation
I Other tricks. . .
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What kind of other tricks? Well, for example, debugging and tracing;
VM translation; buffer-overflow prevention.
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What happens when we run out of free frames?

I Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

I Add modified (dirty) bit to page table.
I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

8 / 37

Page Replacement

What happens when we run out of free frames?

I Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

I Add modified (dirty) bit to page table.
I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

20
13

-0
5-

17

CS34
Page Replacement

Page Replacement



Page Replacement

Page Replacement

What happens when we run out of free frames?
I Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement
I Add modified (dirty) bit to page table.

I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

8 / 37

Page Replacement

What happens when we run out of free frames?
I Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement
I Add modified (dirty) bit to page table.

I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

20
13

-0
5-

17

CS34
Page Replacement

Page Replacement



Page Replacement

Page Replacement

What happens when we run out of free frames?
I Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement
I Add modified (dirty) bit to page table.

I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

8 / 37

Page Replacement

What happens when we run out of free frames?
I Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement
I Add modified (dirty) bit to page table.

I Only modified pages are written to disk.

This brings us to Virtual Memory—we can provide a larger logical
address space than we have physical memory

20
13

-0
5-

17

CS34
Page Replacement

Page Replacement



Page Replacement Algorithms

Page-Replacement Algorithms

Deciding which page to kick out is tricky
How to compare algorithms?

I Run them on a stream of page numbers corresponding to
execution of a (hypothetical?) program

(We want to achieve the lowest page-fault rate, i.e., minimum t avg)
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Page Replacement Algorithms

For example, suppose memory accesses by the system are
00002e00 00002e04 00002e08 00002e0c
00002f00 00002f04 00003216 00003800
00002f08 00001eb0 00001eb4 00001eb8
00005380 00002f0c 00002f10 00002f14
00002f18 00002f1c 00002f20 00002f24
00004d84 00004d88 00004d8c 00005380
00003800 00003216 00002f28 00005380
00002f2c 00002f30

The stream of page numbers for the above execution is

2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2
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Page-Replacement Policies

When you need to free up a frame, how do you choose?

Class Exercise
What are some easy strategies?
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Page Replacement Easy Approaches

Random (RAND)

Throw out a random page.

RAND is
I Easy to implement
I Prone to throwing out a page that’s being used

I The page will get paged back in
I Hope it is lucky and won’t get zapped again next time

(NRU is a variant on RAND)
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Random (RAND)

NRU (Not Recently Used) is the VAX VMS algorithm: periodically
clear referenced bits, and evict a random not-referenced page; see
book for details.
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First-in First-out Policy (FIFO)

Throw out the oldest page.

Try the following stream of page numbers with 3 frames and with 4
frames:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

FIFO is
I Easy to implement
I Prone to throwing out a page that’s being used

I The page will get paged back in
I It will then be young again, and will not be thrown out again for

a long time
I Prone to Belady’s Anomaly—increasing the number of frames

can sometimes increase the number of page faults
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First-in First-out Policy (FIFO)

Do this on the board with the class.
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Optimal Page-Replacement Policy (OPT)

Replace the page that won’t be accessed for the longest time

OPT is
I Provably optimal
I Impossible to implement
I Useful as a benchmark
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Page Replacement Realistic Approaches

Least Recently Used (LRU)

Choose to replace the page that hasn’t been accessed for the
longest time.

Class Exercise
Why is LRU hard to implement?

LRU is
I Hard to implement
I Fairly close to OPT in performance

Class Exercise
What’s the worst case for LRU?

Can it happen in real programs?
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Clock (aka Second Chance)

Hardware maintains a “referenced” bit in the page table
I Set by hardware when page is accessed
I Only cleared by the OS

Use FIFO page replacement, but:
I If a page has its referenced bit set, clear it and move on to the

next page

Clock is
I Easy to implement
I An approximation of LRU
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Clock (cont.)

(before allocation)
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Clock (cont.)

Here, the magenta frames are ones that have been referenced. When
there is a fault on virtual page 26 (poor choice of example, since it’s
hard to see 28/26 difference on the diagram), we clear the referenced
bits on physical pages 2 and 3, then place virtual 26 into physical 4,
setting its referenced bit, and advance the pointer to physical 5.
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Clock (cont.)

If there is another fault immediately, we’ll put the new page in physical
page 5, replacing virtual page 44.
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Comparing the Policies

Spend some time on this slide.
An “F” under a column indicates that there was a fault. All algorithms
are the same for the first four accesses, and all fault on the fifth
access. Note that the first three faults aren’t shown.
The last “F” under OPT could replace either virtual 4 or virtual 3.
On CLOCK, the fifth access finds all referenced bits set, so it chooses
the page that was originally under the hand—after scanning every
other page in the system! Fortunately, this is rare in real systems with
thousands or even millions of pages.



Optimizing Page Replacement

Optimizations

Why is page replacement slow?

20 / 37

Optimizations

Why is page replacement slow?

20
13

-0
5-

17

CS34
Optimizing Page Replacement

Optimizations

One of the big costs is writing dirty pages. That’s especially bad
because it may mean seeking to the swap space to write, then
somewhere else to read.
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An Improved Clock

Here, we’ve skipped over virtual page 28 (physical 4) because it’s
dirty, and instead we’ve replaced physical 6. That saves us the disk
write—but if we keep going in this mode, eventually all pages will be
dirty, not accessed. We’ll come back to that point in a moment.
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Why is that an issue?
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More Clock

It’s an issue because the notion of “recently used” depends on how
fast you go around. Adding memory has an effect; so does adding
other programs.
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Two-Handed Clock

Have two clock hands, separated by fixed amount:
I Leading hand clears referenced bit
I Lagging hand frees unreferenced pages
I “Recently used” now depends only on distance between

hands
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Page Buffering

Try to do some work ahead of time—keep a list of “free” pages
I Find a page that doesn’t appear to be being used
I Write it to disk if dirty
I Free it if clean
I Can be implemented with queue of “ready to free” pages

I Can reprieve page from queue if it gets referenced

Even FIFO page replacement is workable with page buffering.
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“Pre-poning” Work

Using Queues, The Mach Approach

This is a practical implementation of a buffering algorithm.
Only dirty pages can be reactivated, because otherwise the OS has
lost track of “what they really are.”
Attempts to keep 2/3 of pages active, 1/3 inactive, 5% in free list.
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With fewer pages, page fault rate rises.
I If a process “almost always” page faults, it needs more frames
I If a process “almost never” page faults, it has spare frames
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Formal definition is “pages referenced in last k accesses.” Close
approximation is “pages referenced in last n ms.” Note that this is
pretty close to what the CLOCK algorithm does, except that other
processes can interfere. Which leads to. . .
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Frame Allocation Policies

So far, we’ve examined paging without thinking about
processes—but what about processes?

I Each process needs a bare minimum number of pages (set
by hardware characteristics of machine)

I Frames need to be shared out fairly between processes
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Local, Fixed Frame Allocation

Give each of the n processes 1/n of the available frames
I Each process can only take frames from itself

Class Exercise

What do you think?
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Give each process frames in proportion to the amount of virtual
memory they use

Class Exercise

What do you think?
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• Some processes use a lot of VM, but don’t access it often

• Some processes use a little VM, but access it often

• Not fair
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Global, Variable Allocation

Just take the “best” (e.g., LRU) page, no matter which process it
belongs to. . .

Class Exercise
Is this policy fair?

If not, why not?
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Local, Variable Allocation

Each program has a frame allocation
I Use working set measurements to adjust frame allocation

from time to time.
I Each process can only take frames from itself.

Class Exercise

What’s wrong with this policy?
I I.e., what assumptions are we making that could be wrong?

What should we do if the working sets of all processes are more
than the total number of frames available?
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Wrong assumptions: that we can measure working sets properly.
That we can fit all working sets in memory.
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If we don’t have “enough” pages, the page-fault rate is very high
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I Low CPU utilization
I Lots of I/O activity
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Thrashing

Under local replacement policy, only problem process is affected
(usually)

I Can detect and swap out until can give bigger working set
I If can’t give big enough, might want to kill. . .

Under global replacement policy, whole machine can be brought
to its knees!

. . . But even under local policy, disk can become so busy that no
other work gets done!
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