
CS 134:
Operating Systems

File System Implementation

1 / 34

CS 134:
Operating Systems

File System Implementation

20
13

-0
5-

17

CS34



Overview

Implementation Issues
Caching
Failures
Disk Scheduling

API
What Goes in an API?
Two Strange APIs
Consistency
Other File Operations

2 / 34

Overview

Implementation Issues
Caching
Failures
Disk Scheduling

API
What Goes in an API?
Two Strange APIs
Consistency
Other File Operations20

13
-0

5-
17

CS34

Overview



Implementation Issues Caching

Disk Caching—Class Exercise

If OS caches blocks of a file in memory,
I How should it track what it’s caching?
I How should it decide what to cache?

3 / 34

Disk Caching—Class Exercise

If OS caches blocks of a file in memory,
I How should it track what it’s caching?
I How should it decide what to cache?

20
13

-0
5-

17

CS34
Implementation Issues

Caching

Disk Caching—Class Exercise

There’s a close relationship to paging algorithms.



Implementation Issues Caching

Disk Buffering

Allow writes to return immediately
I Copy data into a buffer
I Write out to the disk

Buffers vs. Caches

Which do we actually need?

4 / 34

Disk Buffering

Allow writes to return immediately
I Copy data into a buffer
I Write out to the disk

Buffers vs. Caches

Which do we actually need?

20
13

-0
5-

17

CS34
Implementation Issues

Caching

Disk Buffering

We need some kind of buffer (the write may not be the same size as
the block).
We don’t need the cache; it just improves performance.



Implementation Issues Caching

Buffer Cache

Store disk blocks waiting to write in buffer cache

I “Free” buffers used as cache for blocks recently read
I Dirty buffers will eventually be written to disk
I Allow buffer cache to use any free memory in the machine
I Ensure that a certain number of buffers are always available

Class Exercises & Reminders

When should we write the dirty buffers?

Per-process or system-wide?

Remind you of anything?

5 / 34

Buffer Cache

Store disk blocks waiting to write in buffer cache

I “Free” buffers used as cache for blocks recently read
I Dirty buffers will eventually be written to disk
I Allow buffer cache to use any free memory in the machine
I Ensure that a certain number of buffers are always available

Class Exercises & Reminders

When should we write the dirty buffers?

Per-process or system-wide?

Remind you of anything?

20
13

-0
5-

17

CS34
Implementation Issues

Caching

Buffer Cache



Implementation Issues Caching

Buffer Cache (cont.)

One buffer cache for all processes and all block devices
I Local disks
I Remote disks
I Tapes, CD-ROMs, etc.

6 / 34

Buffer Cache (cont.)

One buffer cache for all processes and all block devices
I Local disks
I Remote disks
I Tapes, CD-ROMs, etc.

20
13

-0
5-

17

CS34
Implementation Issues

Caching

Buffer Cache (cont.)



Implementation Issues Failures

Dealing with System Failure—Class Exercise

Extending the file by one block. . .

In what order should we update the structures on disk to cause
minimum damage if the system crashes?

(Assume disk will never leave a block half-written. . . )

What about
I File creation?
I File deletion?

7 / 34

Dealing with System Failure—Class Exercise

Extending the file by one block. . .

In what order should we update the structures on disk to cause
minimum damage if the system crashes?

(Assume disk will never leave a block half-written. . . )

What about
I File creation?
I File deletion?20

13
-0

5-
17

CS34
Implementation Issues

Failures
Dealing with System Failure—Class Exercise



Implementation Issues Failures

Recovering from System Failure

Before system failure. . .
I Backups!

After system failure. . .
I Run consistency checker—compares data in directory

structure with data blocks on disk, tries to fix inconsistencies.
I Recover lost files (or disk) by restoring data from backup

8 / 34

Recovering from System Failure

Before system failure. . .
I Backups!

After system failure. . .
I Run consistency checker—compares data in directory

structure with data blocks on disk, tries to fix inconsistencies.
I Recover lost files (or disk) by restoring data from backup

20
13

-0
5-

17

CS34
Implementation Issues

Failures
Recovering from System Failure



Implementation Issues Disk Scheduling

Disk Scheduling

OS needs to use all I/O devices efficiently:
I Minimize access time—composed of

I Seek time
I Rotational latency

I Maximize disk bandwidth
I Bandwidth = Total Bytes Transferred / Total Time Taken

I Usually, disk requests can be re-ordered
I Several algorithms exist to schedule disk I/O requests

I Consider, e.g., cylinders 98, 183, 37, 122, 14, 124, 65, 67 and
an initial head position of 53

9 / 34

Disk Scheduling

OS needs to use all I/O devices efficiently:
I Minimize access time—composed of

I Seek time
I Rotational latency

I Maximize disk bandwidth
I Bandwidth = Total Bytes Transferred / Total Time Taken

I Usually, disk requests can be re-ordered
I Several algorithms exist to schedule disk I/O requests

I Consider, e.g., cylinders 98, 183, 37, 122, 14, 124, 65, 67 and
an initial head position of 5320

13
-0

5-
17

CS34
Implementation Issues

Disk Scheduling

Disk Scheduling



Implementation Issues Disk Scheduling

First-Come First-Served (FCFS)

Handle request queue in order. . .

Total head movement of 640 cylinders—Yuck!

10 / 34

First-Come First-Served (FCFS)

Handle request queue in order. . .

Total head movement of 640 cylinders—Yuck!

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

First-Come First-Served (FCFS)



Implementation Issues Disk Scheduling

Shortest Seek Time First (SSTF)

Service request with minimum seek time from current head
position

Total head movement of 236 cylinders
11 / 34

Shortest Seek Time First (SSTF)

Service request with minimum seek time from current head
position

Total head movement of 236 cylinders

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Shortest Seek Time First (SSTF)

SSTF may starve requests (why?).



Implementation Issues Disk Scheduling

Scan (aka The Elevator Algorithm)

Move head from one end of the disk to the other, servicing
requests as we go

Total head movement of 208 cylinders
12 / 34

Scan (aka The Elevator Algorithm)

Move head from one end of the disk to the other, servicing
requests as we go

Total head movement of 208 cylinders

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Scan (aka The Elevator Algorithm)



Implementation Issues Disk Scheduling

Look

Like Scan, but only go as far as least/greatest request. . .

Total head movement of 180 cylinders

13 / 34

Look

Like Scan, but only go as far as least/greatest request. . .

Total head movement of 180 cylinders

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Look



Implementation Issues Disk Scheduling

Circular-SCAN (C-Scan)

Like Scan, but only move in one direction. . .

Total head movement of 382 cylinders

14 / 34

Circular-SCAN (C-Scan)

Like Scan, but only move in one direction. . .

Total head movement of 382 cylinders

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Circular-SCAN (C-Scan)

Why do this? It wastes head movement. . .



Implementation Issues Disk Scheduling

C-Look

The circular variant of Look (again, only move in one direction)

Total head movement of 322 cylinders

15 / 34

C-Look

The circular variant of Look (again, only move in one direction)

Total head movement of 322 cylinders

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

C-Look



Implementation Issues Disk Scheduling

Fairness

What if we had two processes, each producing the following
requests

I 0, 5, 10, . . . , 75
I 125, 130, 135, . . . , 200

How fair would these techniques be?

16 / 34

Fairness

What if we had two processes, each producing the following
requests

I 0, 5, 10, . . . , 75
I 125, 130, 135, . . . , 200

How fair would these techniques be?

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Fairness



Implementation Issues Disk Scheduling

Fairness—Look

17 / 34

Fairness—Look

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Fairness—Look



Implementation Issues Disk Scheduling

Fairness—FCFS

18 / 34

Fairness—FCFS

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Fairness—FCFS



Implementation Issues Disk Scheduling

Fairness—FScan / N-step-Scan

19 / 34

Fairness—FScan / N-step-Scan

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Fairness—FScan / N-step-Scan



Implementation Issues Disk Scheduling

Selecting a Disk-Scheduling Algorithm

Comparing algorithms, we find that:
I FCFS can be okay if disk controller manages the scheduling

(many do these days)
I SSTF is common and has natural appeal
I LOOK works well (lowest amount of head moment in our test)
I LOOK and C-LOOK perform better for systems under heavy

load

20 / 34

Selecting a Disk-Scheduling Algorithm

Comparing algorithms, we find that:
I FCFS can be okay if disk controller manages the scheduling

(many do these days)
I SSTF is common and has natural appeal
I LOOK works well (lowest amount of head moment in our test)
I LOOK and C-LOOK perform better for systems under heavy

load

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Selecting a Disk-Scheduling Algorithm



Implementation Issues Disk Scheduling

Modern Disk Geometry

Modern disks maximize utilization by varying the number of
sectors per cylinder

I Logical block→(Sector, Track/Cylinder)?
I Complex or impossible for operating system to calculate!

Sometimes tracks are even laid out in a zig-zag pattern

Consequences?

21 / 34

Modern Disk Geometry

Modern disks maximize utilization by varying the number of
sectors per cylinder

I Logical block→(Sector, Track/Cylinder)?
I Complex or impossible for operating system to calculate!

Sometimes tracks are even laid out in a zig-zag pattern

Consequences?

20
13

-0
5-

17

CS34
Implementation Issues

Disk Scheduling

Modern Disk Geometry

Disk scheduling becomes impossible to perform perfectly. But
approximations work reasonably well. Or we can just hand it off to the
disk (modern disks are smart).
But careful placement of vital data across platters may not work out.



API What Goes in an API?

File-Access API

Class Exercise

What operations should we provide for accessing files?

Describe & Develop
I Basic requirements for a file access API
I A stateful interface that satisfies those requirements
I A stateless interface that satisfies them

22 / 34

File-Access API

Class Exercise

What operations should we provide for accessing files?

Describe & Develop
I Basic requirements for a file access API
I A stateful interface that satisfies those requirements
I A stateless interface that satisfies them

20
13

-0
5-

17

CS34
API

What Goes in an API?
File-Access API

This is a lengthy exercise; they should divide into groups and do it on
paper.



API What Goes in an API?

Stateful File Access

OS maintains some “context” for each open file. . .

File access
I handle = open(filename, mode)
I read(handle, length, buffer)
I write(handle, length, buffer)
I truncate(handle, length)
I seek(handle, position)
I close(handle)

File management
I info(name, info)
I delete(name)
I change_directory(dirname)
I create_dir(dirname)
I move(name, name)

23 / 34

Stateful File Access

OS maintains some “context” for each open file. . .

File access
I handle = open(filename, mode)
I read(handle, length, buffer)
I write(handle, length, buffer)
I truncate(handle, length)
I seek(handle, position)
I close(handle)

File management
I info(name, info)
I delete(name)
I change_directory(dirname)
I create_dir(dirname)
I move(name, name)

20
13

-0
5-

17

CS34
API

What Goes in an API?
Stateful File Access



API What Goes in an API?

Stateless File Access

No (apparent) internal state—each system call fully describes the
desired operation

File access
I create(filename)
I read(filename, pos, length, buffer)
I write(filename, pos, length, buffer)
I truncate(filename, length)

File management
I info(name, info)
I delete(name)
I create_dir(dirname)
I move(name, name)

Class Exercise

Contrast these two approaches. . .

24 / 34

Stateless File Access

No (apparent) internal state—each system call fully describes the
desired operation

File access
I create(filename)
I read(filename, pos, length, buffer)
I write(filename, pos, length, buffer)
I truncate(filename, length)

File management
I info(name, info)
I delete(name)
I create_dir(dirname)
I move(name, name)

Class Exercise

Contrast these two approaches. . .20
13

-0
5-

17

CS34
API

What Goes in an API?
Stateless File Access

Completeness: Each method can simulate the other
Stateless operation:

• Simple

• Works well in a multi-threaded program

• Basis for NFS

Stateful operation:

• Assumes file-locality and sequential access is common

• Provides the operating system with more information about which
files are being used

• Maps well to other kinds of device besides files (e.g., read/write to a
terminal)

• May add arbitrary limitations (e.g, maximum open files)



API Two Strange APIs

Michigan Terminal System (60’s)

I Files divided into variable-length “lines”
I Even binary files made up of lines
I Each line numbered (fixed-point, 6 fractional decimal digits)
I Could read by line number or by “next line”
I Could write by line number (inserting in middle if appropriate)

or (?) just append at end
I No user access to devices

I E.g., print by creating file, then handing to OS
I Slightly problematic when terminals introduced. . .

25 / 34

Michigan Terminal System (60’s)

I Files divided into variable-length “lines”
I Even binary files made up of lines
I Each line numbered (fixed-point, 6 fractional decimal digits)
I Could read by line number or by “next line”
I Could write by line number (inserting in middle if appropriate)

or (?) just append at end
I No user access to devices

I E.g., print by creating file, then handing to OS
I Slightly problematic when terminals introduced. . .

20
13

-0
5-

17

CS34
API

Two Strange APIs

Michigan Terminal System (60’s)



API Two Strange APIs

RSX-11M/VMS (70’s)

I “inodes” exposed to application
I Directories identified by OS but accessed with file API
I OS responsible for allocating blocks upon request
I Complex read/write interface (asynchronous, fixed/variable

records, devices treated separately)
I Much of file system in library

26 / 34

RSX-11M/VMS (70’s)

I “inodes” exposed to application
I Directories identified by OS but accessed with file API
I OS responsible for allocating blocks upon request
I Complex read/write interface (asynchronous, fixed/variable

records, devices treated separately)
I Much of file system in library

20
13

-0
5-

17

CS34
API

Two Strange APIs

RSX-11M/VMS (70’s)



API Consistency

Consistency Model

Additional complications:
I Multiple processes can access files

—Two (or more) processes could read and write same file
I Asynchronous writes + errors = ?
I What if file is moved/renamed/deleted while a process is

using it?

What should the rules be?

27 / 34

Consistency Model

Additional complications:
I Multiple processes can access files

—Two (or more) processes could read and write same file
I Asynchronous writes + errors = ?
I What if file is moved/renamed/deleted while a process is

using it?

What should the rules be?

20
13

-0
5-

17

CS34
API

Consistency

Consistency Model



API Consistency

Class Exercise

Develop and justify a consistency model for file operations.

Develop another one.

28 / 34

Class Exercise

Develop and justify a consistency model for file operations.

Develop another one.

20
13

-0
5-

17

CS34
API

Consistency

Class Exercise



API Consistency

Class Exercise

Develop and justify a consistency model for file operations.

Develop another one.

28 / 34

Class Exercise

Develop and justify a consistency model for file operations.

Develop another one.

20
13

-0
5-

17

CS34
API

Consistency

Class Exercise



API Consistency

Unix Consistency Model

Unix uses the following rules:
I All file operations are globally atomic
I File is only deleted when its link (name) count is zero—an
open counts as a link

I write in one process is globally visible immediately
afterwards

I writes are asynchronous—I/O errors may not be discovered
until the file is closed

29 / 34

Unix Consistency Model

Unix uses the following rules:
I All file operations are globally atomic
I File is only deleted when its link (name) count is zero—an
open counts as a link

I write in one process is globally visible immediately
afterwards

I writes are asynchronous—I/O errors may not be discovered
until the file is closed

20
13

-0
5-

17

CS34
API

Consistency

Unix Consistency Model

These rules do not map well onto a stateless I/O interface.



API Consistency

NFSv2 Consistency Model

Classic NFS uses the following rules:
I All file operations are globally atomic and stateless
I move/rename/delete can disrupt accesses performed by

other processes
I write in one process is globally visible immediately

afterwards
I writes are synchronous—I/O errors are discovered

immediately

30 / 34

NFSv2 Consistency Model

Classic NFS uses the following rules:
I All file operations are globally atomic and stateless
I move/rename/delete can disrupt accesses performed by

other processes
I write in one process is globally visible immediately

afterwards
I writes are synchronous—I/O errors are discovered

immediately

20
13

-0
5-

17

CS34
API

Consistency

NFSv2 Consistency Model

These rules map well onto a stateless I/O interface, but are not
entirely consistent with the POSIX file model.



API Consistency

File Locking

What if we want to lock sections of a file?

31 / 34

File Locking

What if we want to lock sections of a file?

20
13

-0
5-

17

CS34
API

Consistency

File Locking



API Other File Operations

File Access—Leveraging the VM System

Use virtual memory system to provide file access
I “Map” file into memory
I Page faults retrieve file’s data from disk
I Provide copy-on-write or writeback semantics

Add the following system calls:
I map_file(handle, size, mode, address)
I unmap_file(address)

(This mechanism doesn’t allow extending or truncating the file.)

32 / 34

File Access—Leveraging the VM System

Use virtual memory system to provide file access
I “Map” file into memory
I Page faults retrieve file’s data from disk
I Provide copy-on-write or writeback semantics

Add the following system calls:
I map_file(handle, size, mode, address)
I unmap_file(address)

(This mechanism doesn’t allow extending or truncating the file.)20
13

-0
5-

17

CS34
API

Other File Operations

File Access—Leveraging the VM System



API Other File Operations

More File Access

Besides calls for protection, there are other system calls we might
want:

I Control owner, permissions, etc.
I Control file caching
I Find (remaining) capacity of the disk
I Eject disk
I Discover whether any reads/writes have failed
I . . .

33 / 34

More File Access

Besides calls for protection, there are other system calls we might
want:

I Control owner, permissions, etc.
I Control file caching
I Find (remaining) capacity of the disk
I Eject disk
I Discover whether any reads/writes have failed
I . . .

20
13

-0
5-

17

CS34
API

Other File Operations

More File Access



API Other File Operations

Generic Mechanisms

Two approaches
I ioctl(handle, request, buffer)
I Pseudo-files and pseudo-filesystems

34 / 34

Generic Mechanisms

Two approaches
I ioctl(handle, request, buffer)
I Pseudo-files and pseudo-filesystems

20
13

-0
5-

17

CS34
API

Other File Operations

Generic Mechanisms

Ioctl is clumsy, hard to use, prone to inconsistency. Pseudo-files
aren’t good for adding one new feature (such as locking).


	Implementation Issues
	Caching
	Failures
	Disk Scheduling

	API
	What Goes in an API?
	Two Strange APIs
	Consistency
	Other File Operations


