CS147 50-5102

CS 147: Computer Systems Performance Analysis Review of Statistics

CS 147: Computer Systems Performance Analysis Review of Statistics

Introduction to Statistics

troduction to Statistics

Concentration on applied statistics
 Especially those useful in measurement
 Today's lecture will cover 15 basic concepts
 You should already be familiar with them

- Concentration on applied statistics
- Especially those useful in measurement
- Today's lecture will cover 15 basic concepts
- You should already be familiar with them

1. Independent Events

٠	Occurrence of one event doesn't affect probability of othe					
÷	Examples:					
	 Coin flips 					
	 Inputs from separate users 					
	 "Unrelated"traffic accidents 					

Independent Events

Occurrence of one event doesn't affect probability of other

Examples:

- Coin flips
- Inputs from separate users
- "Unrelated"traffic accidents

1. Independent Events

Occurrence of one event doesn't affect probability of other

Examples:

- Coin flips
- Inputs from separate users
- "Unrelated"traffic accidents
- What about second basketball free throw after the player misses the first?

2. Random Variable

- Variable that takes values probabilistically
- Variable usually denoted by capital letters, particular values by lowercase
- Examples:
- Number shown on dice
 Noteenth dictory
- Network delay
 CS 70 attendance
- What about disk seek time?

- Variable that takes values probabilistically
- Variable usually denoted by capital letters, particular values by lowercase

Examples:

- Number shown on dice
- Network delay
- CS 70 attendance
- What about disk seek time?

15 Concepts CE

3. Cumulative Distribution Function (CDF)

Maps a value a to probability that the outcome is less than or equal to a:

 $F_x(a) = P(x \leq a)$

- Valid for discrete and continuous variables
- Monotonically increasing
- Easy to specify, calculate, measure

CDF Examples

0.0 0 1 Exponential packet interarrival times:

0.5

Coin flip (T = 0, H = 1)

4. Probability Density Function (pdf)

Derivative of (continuous) CDF:

$$f(x) = \frac{dF(x)}{dx}$$

Usable to find probability of a range:

 $P(x_1 < x \le x_2) = F(x_2) - F(x_1) \\ = \int_{x_1}^{x_2} f(x) \, dx$

 $\begin{array}{c} \text{CS147} \\ \begin{array}{c} 15 \text{ Concepts} \\ \begin{array}{c} -pdf \\ \hline -4. \text{ Probability Density Function (pdf)} \end{array} \end{array} \begin{array}{c} \text{2. Probability Density Function (pdf)} \end{array}$

5 Concepts pd

Examples of pdf

Exponential interarrival times:

Gaussian (normal) distribution:

CS147 - 15 Concepts - pdf - Examples of pdf

5. Probability Mass Function (pmf)

- CDF not differentiable for discrete random variables
- pmf serves as replacement: f(x_i) = p_i where p_i is the probability that x will take on the value x_i:

$$P(x_1 < x \le x_2) = F(x_2) - F(x_1) \\ = \sum_{x_1 < x \le x_2} p_i$$

	15	5 Concepts pm					
Examples of p	omf			പ്പ CS147 പ്പ5 Concepts	Examples of pmf Coin flip: 1.0 95		
 Coin flip: 1.0 						o └─pmf co └─Examples of pmf	as
0.5			↑ 1				
Typical CS	grad class	size:					
0.3							
0.2	≜		♠				
0.1 0.0 ↓				Ť			
27	28	29	30	31	32		

6. Expected Value (Mean)

6. Expected Value (Mean)

Summation if discrete

Integration if continuous

 $\mu = E(x) = \sum_{i=1}^{n} p_i x_i = \int_{-\infty}^{\infty} x f(x) dx$

Mean:

$$\mu = E(x) = \sum_{i=1}^{n} p_i x_i = \int_{-\infty}^{\infty} x f(x) \, dx$$

- Summation if discrete
- Integration if continuous

5 Concepts Varian

7. Variance

Variance:

$$Var(x) = E[(x - \mu)^{2}] = \sum_{i=1}^{n} p_{i}(x_{i} - \mu)^{2}$$
$$= \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) \, dx$$

- Often easier to calculate equivalent $E(x^2) E(x)^2$
- Usually denoted σ^2 ; square root σ is called *standard deviation*

15 Concepts Coefficient of Variation

8. Coefficient of Variation (C.O.V. or C.V.)

Ratio of standard deviation to mean:

$$\mathsf{C}.\mathsf{V}_{\cdot} = \frac{\sigma}{\mu}$$

Indicates how well mean represents the variable

15 Concepts

9. Covariance

 $Cov(x, y) = \sigma_{ev}^2 = E[(x - \mu_x)(y - \mu_y)]$

Two typos on p.181 of book

= E(xy) - E(x)E(y)

▶ Given *x*, *y* with means *x* and *y*, their covariance is:

$$Cov(x, y) = \sigma_{xy}^2 = E[(x - \mu_x)(y - \mu_y)]$$

= E(xy) - E(x)E(y)

- Two typos on p.181 of book
- High covariance implies y departs from mean whenever x does

Covariance (cont'd)

Covariance (cont'd)

- For independent variables, E(xy) = E(x)E(y) so Cov(x, y) = 0- Reverse isn't true: Cov(x, y) = 0 does **NOT** imply independence + If y = x, covariance reduces to variance

- For independent variables, E(xy) = E(x)E(y) so Cov(x, y) = 0
- Reverse isn't true: Cov(x, y) = 0 does NOT imply independence
- If y = x, covariance reduces to variance

10. Correlation Coefficient

13. Correlation Coefficient - Normalisat associations: Constitution(x_1) = $x_{0} = \frac{1}{x_{0}x_{0}}$ - A Manya lass batewas - 1 and 1 - Constitution (1 = x - y, 1 = x - 1)

Normalized covariance:

$$\text{Correlation}(x, y) = \rho_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y}$$

- Always lies between -1 and 1
- Correlation of $1 \Rightarrow x \sim y$, $-1 \Rightarrow x \sim \frac{1}{y}$

11. Mean and Variance of Sums

► For any random variables,

 $E(a_1x_1+\cdots+a_kx_k)=a_1E(x_1)+\cdots+a_kE(x_k)$

► For independent variables,

$$\operatorname{Var}(a_1x_1 + \dots + a_kx_k) = a_1^2\operatorname{Var}(x_1) + \dots + a_k^2\operatorname{Var}(x_k)$$

15 Concepts Quant

12. Quantile

x value at which CDF takes a value α is called α-quantile or 100α-percentile, denoted by x_α

 $P(x \leq x_{\alpha}) = F(x_{\alpha}) = \alpha$

 If 90th-percentile score on GRE was 1500, then 90% of population got 1500 or less

15 Concepts Media

13. Median

13. Mediar

- 50th percentile (0.5-quantile) of a random variable
 Alternative to mean
- By definition, 50% of population is below median, 50% above
 Lots of bad (good) drivers
 Lots of smart (stupid) people

- ▶ 50th percentile (0.5-quantile) of a random variable
- Alternative to mean
- By definition, 50% of population is below median, 50% above
 - Lots of bad (good) drivers
 - Lots of smart (stupid) people

15 Concepts Mod

14. Mode

 Most likely value, i.e., x, with highest probability p;, or x at which pdfipmf is maximum

- Not necessarily defined (e.g., tie)
- Some distributions are bi-modal (e.g., human height has one mode for males and one for females)

- Most likely value, i.e., x_i with highest probability p_i, or x at which pdf/pmf is maximum
- Not necessarily defined (e.g., tie)
- Some distributions are bi-modal (e.g., human height has one mode for males and one for females)

5 Concepts Mode

Examples of Mode

Dice throws:

Adult human weight:

15. Normal (Gaussian) Distribution

- Most common distribution in data analysis
- pdf is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- \blacktriangleright $-\infty \leq x \leq +\infty$
- Mean is μ , standard deviation σ

Notation for Gaussian Distributions

- Often denoted $N(\mu, \sigma)$
- ▶ Unit normal is *N*(0, 1)
- If x has $N(\mu, \sigma)$, $\frac{x-\mu}{\sigma}$ has N(0, 1)
- The α-quantile of unit normal z ~ N(0,1) is denoted z_α so that

$$\left\{ \mathcal{P}(rac{\mathbf{x}-\mu}{\sigma}\leq\mathbf{z}_{lpha})
ight\} =\left\{ \mathcal{P}(\mathbf{x})\leq\mu+\mathbf{z}_{lpha}\sigma
ight\} =lpha$$

ation for Gaussian Distributions

Why Is Gaussian So Popular?

• We've seen that if $x_i \sim N(\mu, \alpha_i)$ and all x_i independent, then $\sum \alpha_i x_i$ is normal with mean $\sum \alpha_i \mu_i$ and variance $a^2 = \sum \alpha_i^2 a_i^2$. • Sum of large number of independent observations from any distribution is beaf normal (destruction) $m \approx$ Experimental errors can be modeled as normal distribution.

hy Is Gaussian So Popular?

- ▶ We've seen that if $x_i \sim N(\mu_i, \alpha_i)$ and all x_i independent, then $\sum \alpha_i x_i$ is normal with mean $\sum \alpha_i \mu_i$ and variance $\sigma^2 = \sum \alpha_i^2 \sigma_i^2$
- Sum of large number of independent observations from any distribution is itself normal (Central Limit Theorem)
 ⇒ Experimental errors can be modeled as normal distribution.

Central Limit Theorem

Sum of 2 coin flips (H=1, T=0): 1.0

► Sum of 8 coin flips:

