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Concentration on applied statistics
Especially those useful in measurement
Today’s lecture will cover 15 basic concepts
You should already be familiar with them
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Occurrence of one event doesn't affect probability of other
Examples:

Coin flips
Inputs from separate users
“Unrelated”traffic accidents
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1. Independent Events
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Occurrence of one event doesn't affect probability of other
Examples:

Coin flips

Inputs from separate users

“Unrelated”traffic accidents
What about second basketball free throw after the player
misses the first?
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2. Random Variable
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Variable that takes values probabilistically

Variable usually denoted by capital letters, particular values
by lowercase

Examples:

Number shown on dice
Network delay
CS 70 attendance

What about disk seek time?
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§ L-3. Cumulative Distribution Function (CDF)

Maps a value a to probability that the outcome is less than or
equal to a:
Fx(a)=P(x < a)
Valid for discrete and continuous variables
Monotonically increasing
Easy to specify, calculate, measure
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CDF Examples

Coinflip (T=0,H=1):

1.0

0.5

0.0
0 1

Exponential packet interarrival times:

1.0

0.5

0.0
0 1 2
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4. Probability Density Function (pdf)
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Derivative of (continuous) CDF:

Usable to find probability of a range:

P(x1 <x<x2) = F(x2)— F(xy)

X2

= /X f(x) dx
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Examples of pdf
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Exponential interarrival times:
1.0

0.5

0.0
0 1 2 3 4

Gaussian (normal) distribution:

0.25

0.00

Gaussian (normal) st
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5. Probability Mass Function (pmf)
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CDF not differentiable for discrete random variables

pmf serves as replacement: f(x;) = p; where p; is the
probability that x will take on the value x;:

P(x1 <x<x2) = F(x2)— F(xy)

= ZP;

X1 <X<Xo
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Examples of pmf =R —
2 L—pmf
Coin flip: 2 L—Examples of pmf
1.0
0.0
0 1

Typical CS grad class size:
0.3
0.2

0.1 T T
0.0
27 28 29 30 31 32
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6. Expected Value (Mean)
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Mean:

uw=E(x)= zn:p,-x,- = /Oo xf(x) dx
i=1 -

Summation if discrete
Integration if continuous
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7. Variance
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Variance:
Var(x) = E[(x —pu)?] = > pi(xi— p)?
i=1
= /OO (x — p)?f(x) dx

Often easier to calculate equivalent £(x?) — E(x)?
Usually denoted o2; square root o is called standard deviation
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8. Coefficient of Variation (C.O.V. or C.V.)
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Ratio of standard deviation to mean:

cv.=2
L

Indicates how well mean represents the variable
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9. Covariance
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Given x, y with means x and y, their covariance is:

Cov(x,y) =05, = E[(x— )y — py)]

E(xy) — E(X)E(y)

Two typos on p.181 of book

High covariance implies y departs from mean whenever x
does
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Covariance (cont'd)
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For independent variables, E(xy) = E(x)E(y) so
Cov(x,y) =0
Reverse isn’t true: Cov(x, y) = 0 does NOT imply
independence

If y = x, covariance reduces to variance
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10. Correlation Coefficient

Normalized covariance:

2

. ny
Correlation(x, y) = pxy =

O'Xo'y

Always lies between -1 and 1

Correlationof 1 = x ~ y, -1 = x ~ 1

y
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11. Mean and Variance of Sums

For any random variables,
E(aixy + -+ akxx) = a1E(x1) + - - - + akE(xk)
For independent variables,

Var(aixq + -+ axxx) = @&Var(xy) + - - - + & Var(xx)
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12. Quantile
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x value at which CDF takes a value « is called a-quantile or
100a-percentile, denoted by x,,

P(x < x,) =F(Xa) =«

If 90th-percentile score on GRE was 1500, then 90% of
population got 1500 or less
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Quantile Example 0 BT ot
2 -Quantile
é L—Quantile Example
1.0
0.8

0.6

0.4

0.2

|
|
|
|
|
|
|
0.0 ! !
-3 -2 -1 0 1 2 3

c-quantile 0.5-quantile
(0=0.1)
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13. Median
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50th percentile (0.5-quantile) of a random variable

Alternative to mean
By definition, 50% of population is below median, 50% above

Lots of bad (good) drivers
Lots of smart (stupid) people
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14. Mode
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Most likely value, i.e., x; with highest probability p;, or x at
which pdf/pmf is maximum

Not necessarily defined (e.g., tie)

Some distributions are bi-modal (e.g., human height has one
mode for males and one for females)
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Examples of Mode

Dice throws:
0.2 / Mode

I“Il.
6

7 8 9 10 11 12

N

Adult human weight:

Mode

Sub-mode I I I | I
I 1.,
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15. Normal (Gaussian) Distribution
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Most common distribution in data analysis
pdf is:

—o0 < X < 40
Mean is u, standard deviation o

23/26



15 Concepts Normal Distribution

Notation for Gaussian Distributions

Often denoted N(u, o)

Unit normal is N(0, 1)

If x has N(u, o), *>£ has N(0, 1)

The a-quantile of unit normal z ~ N(0, 1) is denoted z, so
that

PO < 2)| = (P <t 20k =a
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Why Is Gaussian So Popular?

We've seen that if x; ~ N(uj, «j) and all x; independent, then

>~ a;x; is normal with mean 3" a;u; and variance 02 = Y a20?

Sum of large number of independent observations from any
distribution is itself normal (Central Limit Theorem)

= Experimental errors can be modeled as normal
distribution.
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Central Limit Theorem 0 §S147
5 15 Concepts
?; L_Normal Distribution
Sum of 2 coin flips (H=1, T=0): s L—Central Limit Theorem
1.0
0.5

0---
o 1 2

Sum of 8 coin flips:
0.3

0.2
0.1 I
00 — W= m

i 2 3 4 5 6 7 8
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