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15 Concepts

Introduction to Statistics

I Concentration on applied statistics
I Especially those useful in measurement
I Today’s lecture will cover 15 basic concepts
I You should already be familiar with them
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15 Concepts Independent Events

1. Independent Events

I Occurrence of one event doesn’t affect probability of other
I Examples:

I Coin flips
I Inputs from separate users
I “Unrelated”traffic accidents

I What about second basketball free throw after the player
misses the first?
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15 Concepts Random Variable

2. Random Variable

I Variable that takes values probabilistically
I Variable usually denoted by capital letters, particular values

by lowercase
I Examples:

I Number shown on dice
I Network delay
I CS 70 attendance

I What about disk seek time?
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15 Concepts CDF

3. Cumulative Distribution Function (CDF)

I Maps a value a to probability that the outcome is less than or
equal to a:

Fx(a) = P(x ≤ a)

I Valid for discrete and continuous variables
I Monotonically increasing
I Easy to specify, calculate, measure
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15 Concepts CDF

CDF Examples

I Coin flip (T = 0, H = 1):

0 1 2

0.0

0.5

1.0

I Exponential packet interarrival times:

0 1 2 3 4

0.0

0.5

1.0
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15 Concepts pdf

4. Probability Density Function (pdf)

I Derivative of (continuous) CDF:

f (x) =
dF (x)

dx

I Usable to find probability of a range:

P(x1 < x ≤ x2) = F (x2)− F (x1)

=

∫ x2

x1

f (x)dx
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15 Concepts pdf

Examples of pdf

I Exponential interarrival times:

0 1 2 3 4

0.0

0.5

1.0

I Gaussian (normal) distribution:

0 1 2 3 4 5 6

0.00

0.25
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15 Concepts pmf

5. Probability Mass Function (pmf)

I CDF not differentiable for discrete random variables
I pmf serves as replacement: f (xi) = pi where pi is the

probability that x will take on the value xi :

P(x1 < x ≤ x2) = F (x2)− F (x1)

=
∑

x1<x≤x2

pi
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15 Concepts pmf

Examples of pmf

I Coin flip:

0 1

0.0

0.5

1.0

I Typical CS grad class size:

27 28 29 30 31 32

0.0

0.1

0.2

0.3
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15 Concepts Mean

6. Expected Value (Mean)

I Mean:

µ = E(x) =
n∑

i=1

pixi =

∫ ∞
−∞

xf (x)dx

I Summation if discrete
I Integration if continuous
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15 Concepts Variance

7. Variance

I Variance:

Var(x) = E [(x − µ)2] =
n∑

i=1

pi(xi − µ)2

=

∫ ∞
−∞

(x − µ)2f (x)dx

I Often easier to calculate equivalent E(x2)− E(x)2

I Usually denoted σ2; square root σ is called standard deviation
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15 Concepts Coefficient of Variation

8. Coefficient of Variation (C.O.V. or C.V.)

I Ratio of standard deviation to mean:

C.V. =
σ

µ

I Indicates how well mean represents the variable
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15 Concepts Covariance

9. Covariance

I Given x , y with means x and y , their covariance is:

Cov(x , y) = σ2
xy = E [(x − µx)(y − µy )]

= E(xy)− E(x)E(y)

I Two typos on p.181 of book
I High covariance implies y departs from mean whenever x

does
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15 Concepts Covariance

Covariance (cont’d)

I For independent variables, E(xy) = E(x)E(y) so
Cov(x , y) = 0

I Reverse isn’t true: Cov(x , y) = 0 does NOT imply
independence

I If y = x , covariance reduces to variance
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15 Concepts Correlation Coefficient

10. Correlation Coefficient

I Normalized covariance:

Correlation(x , y) = ρxy =
σ2

xy

σxσy

I Always lies between -1 and 1
I Correlation of 1⇒ x ∼ y , -1⇒ x ∼ 1

y
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15 Concepts Mean and Variance of Sums

11. Mean and Variance of Sums

I For any random variables,

E(a1x1 + · · ·+ akxk ) = a1E(x1) + · · ·+ akE(xk )

I For independent variables,

Var(a1x1 + · · ·+ akxk ) = a2
1Var(x1) + · · ·+ a2

kVar(xk )
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15 Concepts Quantile

12. Quantile

I x value at which CDF takes a value α is called α-quantile or
100α-percentile, denoted by xα

P(x ≤ xα) = F (xα) = α

I If 90th-percentile score on GRE was 1500, then 90% of
population got 1500 or less
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15 Concepts Quantile

Quantile Example
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15 Concepts Median

13. Median

I 50th percentile (0.5-quantile) of a random variable
I Alternative to mean
I By definition, 50% of population is below median, 50% above

I Lots of bad (good) drivers
I Lots of smart (stupid) people

20 / 26

13. Median

I 50th percentile (0.5-quantile) of a random variable
I Alternative to mean
I By definition, 50% of population is below median, 50% above

I Lots of bad (good) drivers
I Lots of smart (stupid) people

20
15

-0
6-

15

CS147
15 Concepts

Median
13. Median



15 Concepts Mode

14. Mode

I Most likely value, i.e., xi with highest probability pi , or x at
which pdf/pmf is maximum

I Not necessarily defined (e.g., tie)
I Some distributions are bi-modal (e.g., human height has one

mode for males and one for females)
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15 Concepts Mode

Examples of Mode

I Dice throws:

2 3 4 5 6 7 8 9 10 11 12

0.0

0.1

0.2 Mode

I Adult human weight:

Mode

Sub-mode
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15 Concepts Normal Distribution

15. Normal (Gaussian) Distribution

I Most common distribution in data analysis
I pdf is:

f (x) =
1

σ
√

2π
e

−(x−µ)2

2σ2

I −∞ ≤ x ≤ +∞
I Mean is µ, standard deviation σ
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15 Concepts Normal Distribution

Notation for Gaussian Distributions

I Often denoted N(µ, σ)

I Unit normal is N(0,1)
I If x has N(µ, σ), x−µ

σ has N(0,1)
I The α-quantile of unit normal z ∼ N(0,1) is denoted zα so

that {
P(

x − µ
σ
≤ zα)

}
= {P(x) ≤ µ+ zασ} = α
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15 Concepts Normal Distribution

Why Is Gaussian So Popular?

I We’ve seen that if xi ∼ N(µi , αi) and all xi independent, then∑
αixi is normal with mean

∑
αiµi and variance σ2 =

∑
α2

i σ
2
i

I Sum of large number of independent observations from any
distribution is itself normal (Central Limit Theorem)
⇒ Experimental errors can be modeled as normal
distribution.
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15 Concepts Normal Distribution

Central Limit Theorem

I Sum of 2 coin flips (H=1, T=0):

0 1 2

0.0

0.5

1.0

I Sum of 8 coin flips:

0 1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3
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