Computer Systems Performance Analysis

Review of Statistics

Introduction to Statistics

```
CS147
    L15 Concepts
\stackrel{i}{%}
LIntroduction to Statistics
```

- Concentration on applied statistics
- Especially those useful in measurement
- Today's lecture will cover 15 basic concepts
- You should already be familiar with them

1. Independent Events

```
CS147
¢
O}\mathrm{ i L Independent Events
201
1. Independent Events
```

- Occurrence of one event doesn't affect probability of other
- Examples:
- Coin flips
- Inputs from separate users
- "Unrelated"traffic accidents

1. Independent Events

```
CS147
¢
O}\mathrm{ i L Independent Events
2015
&1. Independent Events
```

- Occurrence of one event doesn't affect probability of other
- Examples:
- Coin flips
- Inputs from separate users
- "Unrelated"traffic accidents
- What about second basketball free throw after the player misses the first?
- Variable that takes values probabilistically
- Variable usually denoted by capital letters, particular values by lowercase
- Examples:
- Number shown on dice
- Network delay
- CS 70 attendance
- What about disk seek time?

3. Cumulative Distribution Function (CDF)

```
CS147
\varrho! L-15 Concepts
&-CCDF
~
```


- Maps a value a to probability that the outcome is less than or equal to a:

$$
F_{x}(a)=P(x \leq a)
$$

- Valid for discrete and continuous variables
- Monotonically increasing
- Easy to specify, calculate, measure

CDF Examples

```
\curvearrowleft CS147
¢`.L15 Concepts
O-CDF
```

- Coin flip ($\mathrm{T}=0, \mathrm{H}=1$):

0.0

0
1
2

- Exponential packet interarrival times:

4. Probability Density Function (pdf)

```
CS147
¢
O
\stackrel{~}{~}
4. Probability Density Function (pdf)
```

- Derivative of (continuous) CDF:

$$
f(x)=\frac{d F(x)}{d x}
$$

- Usable to find probability of a range:

$$
\begin{aligned}
P\left(x_{1}<x \leq x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& =\int_{x_{1}}^{x_{2}} f(x) d x
\end{aligned}
$$

Examples of pdf

```
\curvearrowleft CS147
¢
O% Lpdf
```

- Exponential interarrival times:

- Gaussian (normal) distribution:

CDF not differentiable for discrete random variables

- pmf serves as replacement: $f\left(x_{i}\right)=p_{i}$ where p_{i} is the probability that x will take on the value x_{i} :

$$
\begin{aligned}
P\left(x_{1}<x \leq x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& =\sum_{x_{1}<x \leq x_{2}} p_{i}
\end{aligned}
$$

Examples of pmf

- Coin flip:
1.0
0.5
0.0
4
1
- Typical CS grad class size:

- Mean:

$$
\mu=E(x)=\sum_{i=1}^{n} p_{i} x_{i}=\int_{-\infty}^{\infty} x f(x) d x
$$

- Summation if discrete
- Integration if continuous
- Variance:

$$
\begin{aligned}
\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right] & =\sum_{i=1}^{n} p_{i}\left(x_{i}-\mu\right)^{2} \\
& =\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{aligned}
$$

- Often easier to calculate equivalent $E\left(x^{2}\right)-E(x)^{2}$
- Usually denoted σ^{2}; square root σ is called standard deviation
- Ratio of standard deviation to mean:

$$
\text { C.V. }=\frac{\sigma}{\mu}
$$

- Indicates how well mean represents the variable

9. Covariance

- Tow pexes nisis toxese

- Given x, y with means x and y, their covariance is:

$$
\begin{aligned}
\operatorname{Cov}(x, y)=\sigma_{x y}^{2} & =E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
& =E(x y)-E(x) E(y)
\end{aligned}
$$

- Two typos on p. 181 of book
- High covariance implies y departs from mean whenever x does
- For independent variables, $E(x y)=E(x) E(y)$ so $\operatorname{Cov}(x, y)=0$
- Reverse isn't true: $\operatorname{Cov}(x, y)=0$ does NOT imply independence
- If $y=x$, covariance reduces to variance
- Normalized covariance:

$$
\text { Correlation }(x, y)=\rho_{x y}=\frac{\sigma_{x y}^{2}}{\sigma_{x} \sigma_{y}}
$$

- Always lies between -1 and 1
- Correlation of $1 \Rightarrow x \sim y,-1 \Rightarrow x \sim \frac{1}{y}$

11. Mean and Variance of Sums

- For any random variables,

$$
E\left(a_{1} x_{1}+\cdots+a_{k} x_{k}\right)=a_{1} E\left(x_{1}\right)+\cdots+a_{k} E\left(x_{k}\right)
$$

- For independent variables,

$$
\operatorname{Var}\left(a_{1} x_{1}+\cdots+a_{k} x_{k}\right)=a_{1}^{2} \operatorname{Var}\left(x_{1}\right)+\cdots+a_{k}^{2} \operatorname{Var}\left(x_{k}\right)
$$

12. Quantile

 $\operatorname{sem}^{P(x S x)-F(x)=-\infty}$

- x value at which CDF takes a value α is called α-quantile or 100α-percentile, denoted by x_{α}

$$
P\left(x \leq x_{\alpha}\right)=F\left(x_{\alpha}\right)=\alpha
$$

- If 90th-percentile score on GRE was 1500 , then 90% of population got 1500 or less

Quantile Example

- 50th percentile (0.5-quantile) of a random variable
- Alternative to mean
- By definition, 50% of population is below median, 50% above
- Lots of bad (good) drivers
- Lots of smart (stupid) people
- Most likely value, i.e., x_{i} with highest probability p_{i}, or x at which pdf/pmf is maximum
- Not necessarily defined (e.g., tie)
- Some distributions are bi-modal (e.g., human height has one mode for males and one for females)

- Dice throws:

- Adult human weight:

- Most common distribution in data analysis
- pdf is:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- $-\infty \leq x \leq+\infty$
- Mean is μ, standard deviation σ
- Often denoted $N(\mu, \sigma)$
- Unit normal is $N(0,1)$
- If x has $N(\mu, \sigma), \frac{x-\mu}{\sigma}$ has $N(0,1)$
- The α-quantile of unit normal $z \sim N(0,1)$ is denoted z_{α} so that

$$
\left\{P\left(\frac{x-\mu}{\sigma} \leq z_{\alpha}\right)\right\}=\left\{P(x) \leq \mu+z_{\alpha} \sigma\right\}=\alpha
$$

- We've seen that if $x_{i} \sim N\left(\mu_{i}, \alpha_{i}\right)$ and all x_{i} independent, then $\sum \alpha_{i} x_{i}$ is normal with mean $\sum \alpha_{i} \mu_{i}$ and variance $\sigma^{2}=\sum \alpha_{i}^{2} \sigma_{i}^{2}$
- Sum of large number of independent observations from any distribution is itself normal (Central Limit Theorem) \Rightarrow Experimental errors can be modeled as normal distribution.

Central Limit Theorem

- Sum of 2 coin flips $(\mathrm{H}=1, \mathrm{~T}=0)$:
1.0

- Sum of 8 coin flips:

