CS 147:

Computer Systems Performance Analysis
Summarizing Data

Overview

"Standard" Indices of Central Tendency
Definitions
Characteristics
Selecting an Index

Other Indices

Geometric Mean
Harmonic Mean
Dealing with Ratios
Case 1: Two Physical Meanings
Case 1a: Constant Denominator
Case 1b: Constant Numerator
Case 2: Multiplicative Relationship

Summarizing Data With a Single Number

 \qquad
Usuay chise trosesesis

- Most condensed form of presentation of set of data
- Usually called the average
- Average isn't necessarily the mean
- Must be representative of a major part of the data set
- Mean
- Median
- Mode
- All specify center of location of distribution of observations in sample

Sample Mean

```
CS147
\doteqdot`.L"Standard" Indices of Central Tendency
Definitions
    LSample Mean
```


- Take sum of all observations
- Divide by number of observations
- More affected by outliers than median or mode
- Mean is a linear property
- Mean of sum is sum of means
- Not true for median and mode

Sample Median

```
CS147
`̄% L"Standard" Indices of Central Tendency
% LDefinitions
~
```

$=$

- Sort observations
- Take observation in middle of series
- If even number, split the difference
- More resistant to outliers
- But not all points given "equal weight"

Sample Mode

- Plot histogram of observations
- Using existing categories
- Or dividing ranges into buckets
- Or using kernel density estimation
- Choose midpoint of bucket where histogram peaks
- For categorical variables, the most frequently occurring
- Effectively ignores much of the sample
- "Standard" Indices of Central Tendency
LDefinitions
-Sample Mode

Characteristics of Mean, Median, and Mode

```
CS147
`ढ% L"Standard" Indices of Central Tendency
%-LCharacteristics
```

- Mean and median always exist and are unique
- Mode may or may not exist
- If there is a mode, may be more than one
- Mean, median and mode may be identical
- Or may all be different
- Or some may be the same

So, Which Should I Use?

```
CS147
\grave{O}L\mathrm{ "Standard" Indices of Central Tendency}
&-
~
```


and

- Depends on characteristics of the metric
- If data is categorical, use mode
- If a total of all observations makes sense, use mean
- If not (e.g., ratios), and distribution is skewed, use median
- Otherwise, use mean
... but think about what you're choosing

Most-used resource in system

Most-used resource in system

- Mode
- Interarrival times

Some Examples

```
~CS147
#
O
~
``` - meane

Most-used resource in system
- Mode
- Interarrival times
- Mean
- Load

\section*{Some Examples}
```

CS147

# 

O}\mathrm{ -Selecting an Index
~

```
momem
\(=\)

Most-used resource in system
- Mode
- Interarrival times
- Mean
- Load
- Median
- Means are often overused and misused
- Means of significantly different values
- Means of highly skewed distributions
- Multiplying means to get mean of a product
- Only works for independent variables
- Errors in taking ratios of means
- Means of categorical variables
- An alternative to the arithmetic mean
\[
\dot{x}=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
\]
- Use geometric mean if product of observations makes sense
- Layered architectures
- Performance improvements over successive versions
- Average error rate on multihop network path
- Year-to-year interest rates
- Harmonic mean of sample \(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) is
\[
\ddot{x}=\frac{n}{1 / x_{1}+1 / x_{2}+\cdots+1 / x_{n}}
\]
- Use when arithmetic mean of \(1 / x_{i}\) is sensible

\section*{Example of Using Harmonic Mean}

\section*{CS147}
-Other Indices
LHarmonic Mean
LExample of Using Harmonic Mean
\(\frac{x-\frac{m}{T}}{}\)
- When working with MIPS numbers from a single benchmark
- Since MIPS calculated by dividing constant number of instructions by elapsed time
\[
x_{i}=\frac{m}{t_{i}}
\]
- Not valid if different m's (e.g., different benchmarks for each observation)
- Given \(n\) ratios, how do you summarize them?
- Can't always just use harmonic mean
- Or similar simple method
- Consider numerators and denominators
- Both numerator and denominator have physical meaning
- Then the average of the ratios is the ratio of the averages

Dealing with Ratios Case 1: Two Physical Meanings

\section*{Example: CPU Utilizations}
\begin{tabular}{rr}
Measurement & \multicolumn{1}{c}{ CPU } \\
Duration & Busy (\%) \\
1 & 40 \\
1 & 50 \\
1 & 40 \\
1 & 50 \\
100 & 20 \\
\hline Sum & \(200 \%\) \\
Mean? &
\end{tabular}

\section*{Example: CPU Utilizations}
\begin{tabular}{rr}
\begin{tabular}{c}
Measurement \\
Duration
\end{tabular} & \multicolumn{1}{c}{ CPU } \\
Busy (\%) \\
1 & 40 \\
1 & 50 \\
1 & 40 \\
1 & 50 \\
100 & 20 \\
\hline Sum & \(200 \%\) \\
Mean? & Not \(40 \%\)
\end{tabular}

\section*{Example: CPU Utilizations}
\begin{tabular}{rr}
\begin{tabular}{c}
Measurement \\
Duration
\end{tabular} & \multicolumn{1}{c}{ CPU } \\
1 & Busy (\%) \\
1 & 40 \\
1 & 50 \\
1 & 40 \\
100 & 50 \\
Sum & 20 \\
\hline Mean? & Nor \(1.92 \%!\)
\end{tabular}

 han antenon too obesma
- Why not \(40 \%\) ?
- Because CPU-busy percentages are ratios
- So their denominators aren't comparable
- The duration-100 observation must be weighted more heavily than the duration-1 ones

Properly Calculating Mean For CPU Utilization

\section*{So What Is the Proper Average?}

- Go back to the original ratios:
\[
\begin{aligned}
\text { Mean CPU } & =\frac{0.40+0.50+0.40+0.50+20}{1+1+1+1+100} \\
\text { Utilization } & =21 \%
\end{aligned}
\]
- Sum of numerators has physical meaning
- Denominator is a constant
- Take arithmetic mean of the ratios to get overall mean

\section*{For Example,}
```

CS147
!
% LCase 1a: Constant Denominator

```
- What if we calculated CPU utilization from last example using only the four duration-1 measurements?
- Then the average is
\[
\frac{1}{4}\left(\frac{.40}{1}+\frac{.50}{1}+\frac{.40}{1}+\frac{.50}{1}\right)=0.45
\]

\section*{Considering Mean of Ratios: Case 1b}
- Sum of denominators has a physical meaning
- Numerator is a constant
- Take harmonic mean of the ratios

\section*{Considering Mean of Ratios: Case 2}
```

CS147
!
O}\mathrm{ LCase 2: Multiplicative Relationship
~
Considering Mean of Ratios: Case 2

```
- Numerator and denominator are expected to have a multiplicative, near-constant property
\[
a_{i}=c b_{i}
\]
- Estimate \(c\) with geometric mean of \(a_{i} / b_{i}\)

\section*{Example for Case 2}
```

CS147
!
\&-Case 2: Multiplicative Relationship
LExample for Case 2

```
- An optimizer reduces the size of code
- What is the average reduction in size, based on its observed performance on several different programs?
- Proper metric is percent reduction in size
- And we're looking for a constant \(c\) as the average reduction

\section*{Program Optimizer Example, Continued}
\begin{tabular}{lrrr}
& \multicolumn{2}{c}{ Code Size } & \\
\cline { 2 - 3 } Program & Before & After & Ratio \\
\hline BubbleP & 119 & 89 & .75 \\
IntmmP & 158 & 134 & .85 \\
PermP & 142 & 121 & .85 \\
PuzzleP & 8612 & 7579 & .88 \\
QueenP & 7133 & 7062 & .99 \\
QuickP & 184 & 112 & .61 \\
SieveP & 2908 & 2879 & .99 \\
TowersP & 433 & 307 & .71
\end{tabular}

\section*{Why Not Use Ratio of Sums?}
```

CS147
!
O
2015
Why Not Use Ratio of Sums?

```
- Why not add up pre- sizes and post-optimized sizes and take the ratio?
- Benchmarks of non-comparable size
- No indication of importance of each benchmark in overall code mix
- When looking for constant factor, not the best method

\section*{So Use the Geometric Mean}
```

CS147
% LDealing with Ratios
\&-GCase 2: Multiplicative Relationship

```


- Multiply the ratios from the 8 benchmarks
- Then take the \(1 / 8\) power of the result
\[
\begin{aligned}
\ddot{x} & =(.75 \times .85 \times .85 \times .88 \times .99 \times .61 \times .99 \times .71)^{1 / 8} \\
& =.82
\end{aligned}
\]```

