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Summarizing Data With a Single Number

I Most condensed form of presentation of set of data
I Usually called the average

I Average isn’t necessarily the mean
I Must be representative of a major part of the data set
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“Standard” Indices of Central Tendency

Indices of Central Tendency

I Mean
I Median
I Mode
I All specify center of location of distribution of observations in

sample
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“Standard” Indices of Central Tendency Definitions

Sample Mean

I Take sum of all observations
I Divide by number of observations
I More affected by outliers than median or mode
I Mean is a linear property

I Mean of sum is sum of means
I Not true for median and mode
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“Standard” Indices of Central Tendency Definitions

Sample Median

I Sort observations
I Take observation in middle of series

I If even number, split the difference
I More resistant to outliers

I But not all points given “equal weight”
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“Standard” Indices of Central Tendency Definitions

Sample Mode

I Plot histogram of observations
I Using existing categories
I Or dividing ranges into buckets
I Or using kernel density estimation

I Choose midpoint of bucket where histogram peaks
I For categorical variables, the most frequently occurring

I Effectively ignores much of the sample
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“Standard” Indices of Central Tendency Characteristics

Characteristics of Mean, Median, and Mode

I Mean and median always exist and are unique
I Mode may or may not exist

I If there is a mode, may be more than one
I Mean, median and mode may be identical

I Or may all be different
I Or some may be the same
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“Standard” Indices of Central Tendency Characteristics

Mean, Median, and Mode Identical
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“Standard” Indices of Central Tendency Characteristics

Median, Mean, and Mode All Different
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“Standard” Indices of Central Tendency Selecting an Index

So, Which Should I Use?

I Depends on characteristics of the metric
I If data is categorical, use mode
I If a total of all observations makes sense, use mean
I If not (e.g., ratios), and distribution is skewed, use median
I Otherwise, use mean

. . . but think about what you’re choosing
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“Standard” Indices of Central Tendency Selecting an Index

Some Examples

I Most-used resource in system

I Mode
I Interarrival times

I Mean

I Load

I Median
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“Standard” Indices of Central Tendency Selecting an Index

Don’t Always Use the Mean

I Means are often overused and misused
I Means of significantly different values
I Means of highly skewed distributions
I Multiplying means to get mean of a product

I Only works for independent variables
I Errors in taking ratios of means
I Means of categorical variables
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Other Indices Geometric Mean

Geometric Means

I An alternative to the arithmetic mean

ẋ =

(
n∏

i=1

xi

)1/n

I Use geometric mean if product of observations makes sense
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Other Indices Geometric Mean

Good Places To Use Geometric Mean

I Layered architectures
I Performance improvements over successive versions
I Average error rate on multihop network path
I Year-to-year interest rates
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Other Indices Harmonic Mean

Harmonic Mean

I Harmonic mean of sample {x1, x2, . . . , xn} is

ẍ =
n

1/x1 + 1/x2 + · · ·+ 1/xn

I Use when arithmetic mean of 1/xi is sensible

16 / 30

Harmonic Mean

I Harmonic mean of sample {x1, x2, . . . , xn} is
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Other Indices Harmonic Mean

Example of Using Harmonic Mean

I When working with MIPS numbers from a single benchmark
I Since MIPS calculated by dividing constant number of

instructions by elapsed time

xi =
m
ti

I Not valid if different m’s (e.g., different benchmarks for each
observation)
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Dealing with Ratios

Means of Ratios

I Given n ratios, how do you summarize them?
I Can’t always just use harmonic mean

I Or similar simple method
I Consider numerators and denominators
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Dealing with Ratios Case 1: Two Physical Meanings

Considering Mean of Ratios: Case 1

I Both numerator and denominator have physical meaning
I Then the average of the ratios is the ratio of the averages
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Dealing with Ratios Case 1: Two Physical Meanings

Example: CPU Utilizations

Measurement CPU
Duration Busy (%)

1 40
1 50
1 40
1 50

100 20
Sum 200%

Mean?
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Dealing with Ratios Case 1: Two Physical Meanings

Properly Calculating Mean For CPU Utilization

I Why not 40%?
I Because CPU-busy percentages are ratios

I So their denominators aren’t comparable
I The duration-100 observation must be weighted more heavily

than the duration-1 ones
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Dealing with Ratios Case 1: Two Physical Meanings

So What Is the Proper Average?

I Go back to the original ratios:

Mean CPU
Utilization

=
0.40 + 0.50 + 0.40 + 0.50 + 20

1 + 1 + 1 + 1 + 100
= 21%
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Dealing with Ratios Case 1a: Constant Denominator

Considering Mean of Ratios: Case 1a

I Sum of numerators has physical meaning
I Denominator is a constant
I Take arithmetic mean of the ratios to get overall mean
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Dealing with Ratios Case 1a: Constant Denominator

For Example,

I What if we calculated CPU utilization from last example using
only the four duration-1 measurements?

I Then the average is

1
4

(
.40
1

+
.50
1

+
.40
1

+
.50
1

)
= 0.45
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Dealing with Ratios Case 1b: Constant Numerator

Considering Mean of Ratios: Case 1b

I Sum of denominators has a physical meaning
I Numerator is a constant
I Take harmonic mean of the ratios
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Dealing with Ratios Case 2: Multiplicative Relationship

Considering Mean of Ratios: Case 2

I Numerator and denominator are expected to have a
multiplicative, near-constant property

ai = cbi

I Estimate c with geometric mean of ai/bi
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Dealing with Ratios Case 2: Multiplicative Relationship

Example for Case 2

I An optimizer reduces the size of code
I What is the average reduction in size, based on its observed

performance on several different programs?
I Proper metric is percent reduction in size
I And we’re looking for a constant c as the average reduction
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Dealing with Ratios Case 2: Multiplicative Relationship

Program Optimizer Example, Continued

Code Size

Program Before After Ratio
BubbleP 119 89 .75
IntmmP 158 134 .85
PermP 142 121 .85
PuzzleP 8612 7579 .88
QueenP 7133 7062 .99
QuickP 184 112 .61
SieveP 2908 2879 .99
TowersP 433 307 .71

28 / 30

Program Optimizer Example, Continued

Code Size

Program Before After Ratio
BubbleP 119 89 .75
IntmmP 158 134 .85
PermP 142 121 .85
PuzzleP 8612 7579 .88
QueenP 7133 7062 .99
QuickP 184 112 .61
SieveP 2908 2879 .99
TowersP 433 307 .7120

15
-0

6-
15

CS147
Dealing with Ratios

Case 2: Multiplicative Relationship
Program Optimizer Example, Continued



Dealing with Ratios Case 2: Multiplicative Relationship

Why Not Use Ratio of Sums?

I Why not add up pre- sizes and post-optimized sizes and take
the ratio?

I Benchmarks of non-comparable size
I No indication of importance of each benchmark in overall code

mix
I When looking for constant factor, not the best method
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Dealing with Ratios Case 2: Multiplicative Relationship

So Use the Geometric Mean

I Multiply the ratios from the 8 benchmarks
I Then take the 1/8 power of the result

ẍ = (.75× .85× .85× .88× .99× .61× .99× .71)1/8

= .82
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ẍ = (.75× .85× .85× .88× .99× .61× .99× .71)1/8

= .82

20
15

-0
6-

15

CS147
Dealing with Ratios

Case 2: Multiplicative Relationship
So Use the Geometric Mean


	``Standard'' Indices of Central Tendency
	Definitions
	Characteristics
	Selecting an Index

	Other Indices
	Geometric Mean
	Harmonic Mean

	Dealing with Ratios
	Case 1: Two Physical Meanings
	Case 1a: Constant Denominator
	Case 1b: Constant Numerator
	Case 2: Multiplicative Relationship


