CS 147:

Computer Systems Performance Analysis
Summarizing Variability and Determining Distributions

Overview

Introduction

Indices of Dispersion
Range
Variance, Standard Deviation, C.V.
Quantiles
Miscellaneous Measures
Choosing a Measure
Identifying Distributions
Histograms
Kernel Density Estimation
Quantile-Quantile Plots
Statistics of Samples
Meaning of a Sample
Guessing the True Value

Summarizing Variability

```
CS147
¢}\mathrm{ - Introduction
~
```


- A single number rarely tells entire story of a data set
- Usually, you need to know how much the rest of the data set varies from that index of central tendency
\qquad

- Consider two Web servers:
- Server A services all requests in 1 second
- Server B services 90% of all requests in .5 seconds
- But 10% in 55 seconds
- Both have mean service times of 1 second
- But which would you prefer to use?

Indices of Dispersion

```
~CS147
% LIntroduction
```

- Measures of how much a data set varies
- Range
- Variance and standard deviation
- Percentiles
- Semi-interquartile range
- Mean absolute deviation
- Minimum \& maximum values in data set
- Can be tracked as data values arrive
- Variability characterized by difference between minimum and maximum
- Often not useful, due to outliers
- Minimum tends to go to zero
- Maximum tends to increase over time
- Not useful for unbounded variables

Example of Range

```
~CS147
¢`%LIndices of Dispersion
O}\mathrm{ L- Range
\stackrel{N}{N}
LExample of Range
```

- For data set $2,5.4,-17,2056,445,-4.8,84.3,92,27,-10$
- Maximum is 2056
- Minimum is -17
- Range is 2073
- While arithmetic mean is 268
- Sample variance is

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Expressed in units of the measured quantity, squared
- Which isn't always easy to understand
- Standard deviation and coefficient of variation are derived from variance

Variance Example

```
CS147
`. LIndices of Dispersion
& Variance, Standard Deviation, C.V.
~
\squareVariance Example
```

- For data set $2,5.4,-17,2056,445,-4.8,84.3,92,27,-10$
- Variance is 413746.6
- You can see the problem with variance:
- Given a mean of 268, what does that variance indicate?

Standard Deviation

- Square root of the variance
- In same units as units of metric
- So easier to compare to metric
- For sample set we've been using, standard deviation is 643
- Given mean of 268, standard deviation clearly shows lots of variability from mean
- Ratio of standard deviation to mean
- Normalizes units of these quantities into ratio or percentage
- Often abbreviated C.O.V. or C.V.
- For sample set we've been using, standard deviation is 643
- Mean is 268
- So C.O.V. is $643 / 268 \approx 2.4$
- Specification of how observations fall into buckets
- E.g., 5-percentile is observation that is at the lower 5% of the set
- While 95-percentile is observation at the 95% boundary
- Useful even for unbounded variables

Relatives of Percentiles

```
CS147
ढ
&- LQuantiles
\stackrel{N}{~}
LRelatives of Percentiles
```


- Quantiles - fraction between 0 and 1
- Instead of percentage

Also called fractiles

- Deciles—percentiles at 10\% boundaries
- First is 10-percentile, second is 20-percentile, etc.
- Quartiles-divide data set into four parts
- 25% of sample below first quartile, etc.
- Second quartile is also median

Calculating Quantiles

```
CS147
¢
O}\mathrm{ -Quantiles
\stackrel{N}{~}
LCalculating Quantiles
```

To estimate α-quantile:

- First sort the set
- Then take $[(n-1) \alpha+1]^{\text {th }}$ element
- 1-indexed
- Round to nearest integer index
- Exception: for small sets, may be better to choose "intermediate" value as is done for median
- For data set 2, 5.4, -17, 2056, 445, -4.8, 84.3, 92, 27, -10 (10 observations)
- Sort it: -17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
- First quartile, Q1, is -4.8
- Third quartile, Q3, is 92

Interquartile Range

- Yet another measure of dispersion
- The difference between Q3 and Q1
- Semi-interquartile range is half that:

$$
\mathrm{SIQR}=\frac{Q_{3}-Q_{1}}{2}
$$

- Often interesting measure of what's going on in middle of range
- Basically indicates distance of quartiles from median

Semi-Interquartile Range Example

 Son- $-\frac{0-a}{2}-\frac{8-(-48)}{2}-48$

For data set $-17,-10,-4.8,2,5.4,27,84.3,92,445,2056$

- Q3 is 92
- Q1 is -4.8

$$
\mathrm{SIQR}=\frac{Q_{3}-Q_{1}}{2}=\frac{92-(-4.8)}{2}=48
$$

- Compare to standard deviation of 643
- Suggests that much of variability is caused by outliers
- Yet another measure of variability
- Mean absolute deviation $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|$
- Good for hand calculation (doesn't require multiplication or square roots)

For data set -17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056

- Mean absolute deviation is

$$
\frac{1}{10} \sum_{i=1}^{10}\left|x_{i}-268\right|=393
$$

- From most to least,
- Range
- Variance
- Mean absolute deviation
- Semi-interquartile range

So, Which Index of Dispersion Should I Use?

But always remember what you're looking for

Finding a Distribution for Datasets

```
CS147
    LIdentifying Distributions
@े
LFinding a Distribution for Datasets
```


- If a data set has a common distribution, that's the best way to summarize it
- Saying a data set is uniformly distributed is more informative than just giving mean and standard deviation
- So how do you determine if your data set fits a distribution?
- Plot a histogram
- Kernel density estimation
- Quantile-quantile plot
- Statistical methods (not covered in this class)

Plotting a Histogram

```
CS147
@% LIdentifying Distributions
\measuredangleHistograms
LPlotting a Histogram
```


1 Deemine angeo olosemaions

Suitable if you have relatively large number of data points
Procedure:

1. Determine range of observations
2. Divide range into buckets
3. Count number of observations in each bucket
4. Divide by total number of observations and plot as column chart
```
CS147
¢% LIdentifying Distributions
&-
```

- Oexmming and sise

- Determining cell size
- If too small, too few observations per cell
- If too large, no useful details in plot
- If fewer than five observations in a cell, cell size is too small

Kernel Density Estimation

```
CS147
\varrho\varrho-LIdentifying Distributions
O}\mathrm{ - Kernel Density Estimation
~N.LKernel Density Estimation
```

- Basic idea: any observation represents probability of high near near that observation
- Example:
- Seeing 7 means pdf is high all around 7
- Seeing 6.5 also means pdf is high near 7
- "Average out" observations to get smooth histogram

KDE Equations

```
CS147
LIdentifying Distributions
O
```

- Want to estimate continuous $p(x)$:

$$
\hat{p}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)
$$

- Where $K(x)$ is kernel function
- Must integrate to unity: $\int_{-\infty}^{\infty} K(x) d x=1$
- Purpose is to select nearby samples
- h is bandwidth parameter
- Controls how many nearby samples selected
- Large bandwidth \Rightarrow more smoothing, less detail

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

\section*{๓ CS147
 | \circ |
| :---: | Identifying Distributions
 © LKentifying Distributions
 $\stackrel{\stackrel{\rightharpoonup}{\sim}}{\text { ลे }}$ KDE Intuition (Rectangular)}

KDE Intuition (Rectangular)

↔ CS147
 $\stackrel{n}{6}$ LIdentifying Distributions
 © L Kernel Density Estimation
 $\stackrel{\rightharpoonup}{\sim}$
 KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

CS147
$\frac{n}{6}$ LIdentifying Distributions
$\stackrel{\circ}{\circ} \quad$ Kernel Density Estimation
$\stackrel{\stackrel{\sim}{N}}{ }$
$\left\llcorner_{\text {KDE Intuition (Rectangular) }}\right.$

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

CS147
\doteqdot - Identifying Distributions
$\stackrel{\text { © Kernel Density Estimation }}{\circ}$
$\stackrel{\stackrel{\rightharpoonup}{*}}{ }$
KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Rectangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

๓ CS147
 $\frac{n}{6}$ LIdentifying Distributions
 $\begin{array}{cc}\text { ob } & \text { Kernel Density Estimation } \\ \stackrel{i}{\circ} & \text { KKDE Intuition (Triangular) }\end{array}$

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

```
\curvearrowleft CS147
\varrho`%
O
```


KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

KDE Intuition (Triangular)

```
CCS147
\varrho`%
O- LKitifying Distributions
<KDE Intuition (Triangular)
```


KDE Intuition (Triangular)

KDE Example

${ }^{\circ}$ CS147

$\int_{i} n$

- Sample data set: -17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
- One observation per sample
- KDE with Gaussian window (RHS dropped):

KDE Example \#2

- Same data set
- Narrower Gaussian window
- (Again, RHS dropped):

- More suitable than KDE for small data sets
- Basically, guess a distribution
- Plot where quantiles of data should fall in that distribution
- Against where they actually fall
- If plot is close to linear, data closely matches guessed distribution
- Need to determine where quantiles should fall for a particular distribution
- Requires inverting CDF for that distribution
- Then determining quantiles for observed points
- Then plugging quantiles into inverted CDF
- Many common distributions have already been inverted (how convenient...)
- For others that are hard to invert, tables and approximations often available (nearly as convenient)
- Our data set was -17, -10, -4.8, 2, 5.4, 27, 84.3, 92, 445, 2056
- Does this match normal distribution?
- Normal distribution doesn't invert nicely
- But there is an approximation:

$$
x_{i}=4.91\left(q_{i}^{0.14}-\left(1-q_{i}\right)^{0.14}\right)
$$

- Or invert numerically
 Plot

i	q_{i}	y_{i}	x_{i}
1	0.05	-17.0	-1.64684
2	0.15	-10.0	-1.03481
3	0.25	-4.8	-0.67234
4	0.35	2.0	-0.38375
5	0.45	5.4	-0.12510
6	0.55	27.0	0.12510
7	0.65	84.3	0.38375
8	0.75	92.0	0.67234
9	0.85	445.0	1.03481
10	0.95	2056.0	1.64684

Analysis

- Definitely not normal
- Because it isn't linear
- Tail at high end is too long for normal
- But perhaps the lower part of graph is normal?

Quantile-Quantile Plot of Partial Data

© CS147
$\bar{\circ}$-Identifying Distributions
- LQuantile-Quantile Plots
$\stackrel{\stackrel{\rightharpoonup}{N}}{ }$
ᄂQuantile-Quantile Plot of Partial Data

Analysis of Partial Data Plot

CS147
$〒$-Identifying Distributions
© LQuantile-Quantile Plots
-Analysis of Partial Data Plot

- Again, at highest points it doesn't fit normal distribution
- But at lower points it fits somewhat well
- So, again, this distribution looks like normal with longer tail to right
- Again, at highest points it doesn't fit normal distribution
- But at lower points it fits somewhat well
- So, again, this distribution looks like normal with longer tail to right
- (Really need more data points)
- Again, at highest points it doesn't fit normal distribution
- But at lower points it fits somewhat well
- So, again, this distribution looks like normal with longer tail to right
- (Really need more data points)
- You can keep this up for a good, long time

Interpreting Quantile-Quantile Plots

Mnemonic: Q-Q plot shaped like " S " has Short tails; opposite has long ones.

What is a Sample?

- How tall is a human?
- Could measure every person in the world
- Or could measure everyone in this room
- Population has parameters
- Real and meaningful
- Sample has statistics
- Drawn from population
- Inherently erroneous
- How tall is a human?
- People in B126 have a mean height
- People in Edwards have a different mean
- Sample mean is itself a random variable
- Has own distribution

Estimating Population from Samples

```
CS147
\varrho
& LMeaning of a Sample
```


- How tall is a human?
- Measure everybody in this room
- Calculate sample mean \bar{x}
- Assume population mean μ equals \bar{x}
- What is the error in our estimate?

Estimating Error

\qquad

- Sample mean is a random variable
\Rightarrow Mean has some distribution
\therefore Multiple sample means have "mean of means"
- Knowing distribution of means, we can estimate error

Estimating the Value of a Random Variable

```
~CS147
¢ LStatistics of Samples
i \(\quad\) LGuessing the True Value
Estimating the Value of a Random Variable
```

- How tall is Fred?

Estimating the Value of a Random Variable

- How tall is Fred?
- Suppose average human height is 170 cm

Estimating the Value of a Random Variable

- How tall is Fred?
- Suppose average human height is 170 cm \therefore Fred is 170 cm tall

```
CS147
\varrho
&
~
                                Estimating the Value of a Random Variable
Estimating the Value of a Random Variable
```


Estimating the Value of a Random Variable

- How tall is Fred?
- Suppose average human height is 170 cm
\therefore Fred is 170 cm tall
- Yeah, right

Estimating the Value of a Random Variable

- How tall is Fred?
- Suppose average human height is 170 cm
\therefore Fred is 170 cm tall
- Yeah, right
- Safer to assume a range
 Sup

Confidence Intervals

- How tall is Fred?

Confidence Intervals

- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm

Confidence Intervals

- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm
\therefore Fred is between 155 and 190 cm

Confidence Intervals

- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm
\therefore Fred is between 155 and 190 cm
- We are 90% confident that Fred is between 155 and 190 cm

