CS 147:

Computer Systems Performance Analysis
Comparing Systems and Analyzing Alternatives

Finding Confidence Intervals
Basics
Using the z Distribution
Using the t Distribution
Comparing Alternatives
Paired Observations
Unpaired Observations
Proportions
Special Considerations
Sample Sizes

- It's not usually enough to collect data
- Usually we also want to say what's better

How tall is Fred?

- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm

Review

```
~CS147
¢ L-Finding Confidence Intervals
```


- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm
\therefore Fred is between 155 and 190 cm
$\xrightarrow{40}$
- How tall is Fred?
- Suppose 90% of humans are between 155 and 190 cm
\therefore Fred is between 155 and 190 cm
- We are 90% confident that Fred is between 155 and 190 cm
- Knowing where 90% of sample means fall, we can state a 90\% confidence interval
- Key is Central Limit Theorem:
- Sample means are normally distributed
- Only if samples independent
- Mean of sample means is population mean μ
- Standard deviation (standard error) is σ / \sqrt{n}

Estimating Confidence Intervals

- Two formulas for confidence intervals
- Over 30 samples from any distribution: z-distribution
- Small sample from normally distributed population: t-distribution
- Common error: using t-distribution for non-normal population
- Central Limit Theorem often saves us
- Interval on either side of mean:

$$
\bar{x} \mp z_{1-\frac{\alpha}{2}}\left(\frac{s}{\sqrt{n}}\right)
$$

- Significance level α is small for large confidence levels
- Tables of z are tricky: be carefu!!

Example of z Distribution

```
CS147
```



```
O
\stackrel{N}{~}
LExample of z Distribution
```


- 35 samples: $10,16,47,48,74,30,81,42,57,67,7,13,56$, $44,54,17,60,32,45,28,33,60,36,59,73,46,10,40,35$, 65, 34, 25, 18, 48, 63
- Sample mean $\bar{x}=42.1$. Standard deviation $s=20.1 . n=35$.
- 90% confidence interval is

$$
42.1 \mp(1.6456) \frac{20.1}{\sqrt{35}}=(36.5,47.4)
$$

Graph of z Distribution Example

```
~CS147
\varrho\varrho%LFinding Confidence Intervals
& Using the z Distribution
    Graph of z Distribution Example


\section*{The \(t\) Distribution}
\(\pi\)
- Formula is almost the same:
\[
\bar{x} \mp t_{\left[1-\frac{\alpha}{2} ; n-1\right]}\left(\frac{s}{\sqrt{n}}\right)
\]
- Usable only for normally distributed populations!
- But works with small samples
- 10 height samples: \(148,166,170,191,187,114,168,180\), 177, 204
- Sample mean \(\bar{x}=\) 170.5. Standard deviation \(s=25.1\), \(n=10\).
- \(90 \%\) confidence interval is
\[
170.5 \mp(1.833) \frac{25.1}{\sqrt{10}}=(156.0,185.0)
\]
- \(99 \%\) interval is \((144.7,196.3)\)

\section*{Graph of \(t\) Distribution Example}
```

CS147
¢`.LFinding Confidence Intervals
O-LUsing the t Distribution
\stackrel{N}{~}
Graph of t Distribution Example

```
```

CS147
Linding Confidence Intervals
LUsing the t Distribution
Getting More Confidence

```
- Asking for a higher confidence level widens the confidence interval
- Counterintuitive?
- How tall is Fred?
- \(90 \%\) sure he's between 155 and 190 cm
- We want to be \(99 \%\) sure we're right
- So we need more room: 99\% sure he's between 145 and 200 cm

\section*{Making Decisions}

\section*{CS147 \\ -Comparing Alternatives \\ \(\stackrel{i}{\stackrel{1}{6}}\) \\ \(\left\llcorner_{\text {Making Decisions }}\right.\)}
- Why do we use confidence intervals?
- Summarizes error in sample mean
- Gives way to decide if measurement is meaningful
- Allows comparisons in face of error
- But remember: at \(90 \%\) confidence, \(10 \%\) of sample C.I.s do not include population mean
- In other words, \(10 \%\) of experiments give wrong answer!
- Is population mean significantly \(\neq 0\) ?
- If confidence interval includes 0 , answer is no
- Can test for any value (mean of sums is sum of means)
- Our height samples are consistent with average height of 170 cm
- Is population mean significantly \(\neq 0\) ?
- If confidence interval includes 0 , answer is no
- Can test for any value (mean of sums is sum of means)
- Our height samples are consistent with average height of 170 cm
- Also consistent with 160 and 180!

\section*{Comparing Alternatives}

\author{
CS147 \\ -Comparing Alternatives \\ \(\stackrel{\circ}{\circ}\)
\(\stackrel{H}{i}\)
\(\stackrel{i}{2}\) \\ LComparing Alternatives
}
- Often need to find better system
- Choose fastest computer to buy
- Prove our algorithm runs faster
- Different methods for paired/unpaired observations
- Paired if \(i^{\text {th }}\) test on each system was same
- Unpaired otherwise
- For each test calculate performance difference
- Calculate confidence interval for differences
- If interval includes zero, systems aren't different
- If not, sign indicates which is better

\section*{Example: Comparing Paired Observations}

Do home baseball teams outscore visitors?
- Sample from 9-4-96:
\begin{tabular}{crrrrrrrrrrrrrrr}
H & 4 & 5 & 0 & 11 & 6 & 6 & 3 & 12 & 9 & 5 & 6 & 3 & 1 & 6 \\
V & 2 & 7 & 7 & 6 & 0 & 7 & 10 & 6 & 2 & 2 & 4 & 2 & 2 & 0 \\
\hline \(\mathrm{H}-\mathrm{V}\) & 2 & -2 & -7 & 5 & 6 & -1 & -7 & 6 & 7 & 3 & 2 & 1 & -1 & 6
\end{tabular}
- Mean 1.4, \(90 \%\) interval \((-0.75,3.6)\)
- Can't tell from this data
- \(70 \%\) interval is \((0.10,2.76)\)
- But tuning the interval to the data is guaranteed to produce wrong answers ("data snooping")

\section*{}
 

Start with confidence intervals
- If no overlap:
- Systems are different and higher mean is better (for HB metrics)
- If overlap and at least one CI contains other's mean:
- Systems are not different at this level
- If overlap and neither mean is in other Cl
- Must do \(t\)-test

1. Compute sample means \(\bar{x}_{a}\) and \(\bar{x}_{b}\)
2. Compute sample standard deviations \(s_{a}\) and \(s_{b}\)
3. Compute mean difference \(=\bar{x}_{a}-\bar{x}_{b}\)
4. Compute standard deviation of difference:
\[
s=\sqrt{\frac{s_{a}^{2}}{n_{a}}+\frac{s_{b}^{2}}{n_{b}}}
\]

\section*{The \(t\)-Test (2)}

\author{
CS147 \\ 
}
1. Compute effective degrees of freedom:
\[
\nu=\frac{\left(s_{a}^{2} / n_{a}+s_{b}^{2} / n_{b}\right)^{2}}{\frac{1}{n_{a}+1}\left(\frac{s_{a}^{2}}{n_{a}}\right)+\frac{1}{n_{b}+1}\left(\frac{s_{b}^{2}}{n_{b}}\right)}-2
\]
2. Compute the confidence interval:
\[
\left(\bar{x}_{a}-\bar{x}_{b}\right) \mp t_{[1-\alpha / 2 ; \nu]} s
\]
3. If interval includes zero, no difference

\section*{Comparing Proportions}
```

CS147
¢`.
i+
\stackrel{-}{~}

```

- If \(k\) of \(n\) trials give a certain result, then confidence interval is:
\[
\frac{k}{n} \mp z_{1-\alpha / 2} \frac{\sqrt{k-k^{2} / n}}{n}
\]
- If interval includes 0.5 , can't say which outcome is statistically meaningful
- Must have \(k \geq 10\) to get valid results

\section*{Selecting a Confidence Level}
```

CS147
\varrho`.
2015-06
Lpecial Considerations
-Selecting a Confidence Level

```
- Depends on cost of being wrong
- \(90 \%, 95 \%\) are common values for scientific papers
- Generally, use highest value that lets you make a firm statement
- But you must choose before you analyze data
- And it's better to be consistent throughout a given paper
- The null hypothesis \(\left(H_{0}\right)\) is common in statistics
- Confusing due to double negative
- Gives less information than confidence interval
- Often harder to compute
- Should understand that rejecting null hypothesis implies result is meaningful
- Two-sided intervals test for mean being outside a certain range (see "error bands" in previous graphs)
- One-sided tests useful if only interested in one limit
- Use \(z_{1-\alpha}\) or \(t_{1-\alpha ; n}\) instead of \(z_{1-\alpha / 2}\) or \(t_{1-\alpha / 2 ; n}\) in formulas

\section*{Sample Sizes}
```

CS147
\varrho\varrho LComparing Alternatives

```


- Bigger sample sizes give narrower intervals
- Smaller values of \(t, \nu\) as \(n\) increases
- \(\sqrt{n}\) in formulas
- But sample collection is often expensive
- What is minimum we can get away with?

\section*{Choosing a Sample Size}
```

CS147
\varrho\varrho LComparing Alternatives
%}\mathrm{ LSample Sizes
~
Choosing a Sample Size

```


\(n_{n-\left(\frac{1028 x}{x a}\right)^{2}}\)

\(n-z^{\frac{p(1)-p)}{n}}\)
- To get a given percentage error, \(\pm r \%\) of the mean:
\[
n=\left(\frac{100 z s}{r \bar{x}}\right)^{2}
\]
- Here, \(z\) represents either \(z\) or \(t\) as appropriate
- For a proportion \(p=k / n\) :
\[
n=z^{2} \frac{p(1-p)}{r^{2}}
\]
```

CS147
\vdots}\mathrm{ ¢Comparing Alternatives
\stackrel{i}{~}

```


- Want to demonstrate system A is better than B (or vice versa)
- Must use same number of samples \(n\) for both systems
- Then we need:
\[
\hat{n} \geq\left(\frac{z_{1-\alpha / 2}\left(s_{A}+S_{B}\right)}{\bar{x}_{B}-\bar{x}_{A}}\right)^{2}
\]
- For proportions, use \(p_{A}\) for \(\bar{x}_{A}\), and \(\sqrt{p_{A}\left(1-p_{A}\right)}\) for \(s_{A}\), etc.
```

CS147
\varrho`%Comparing Alternatives
%-LSample Sizes
\stackrel{N}{~}
-Example of Choosing Sample Size

```
- Five runs of a compilation took 22.5, 19.8, 21.1, 26.7, 20.2 seconds
- How many runs to get \(\pm 5 \%\) confidence interval at \(90 \%\) confidence level?
- \(\bar{x}=22.1, s=2.8, t_{0.95 ; 4}=2.132\)
- \(n=\left(\frac{(100)(2.132)(2.8)}{(5)(22.1)}\right)^{2}=5.4^{2}=29.2\)
- Note that first 5 runs can't be reused!```

