CS 147:

Computer Systems Performance Analysis
Linear Regression Models

Overview

What is a (good) model?
Estimating Model Parameters
Allocating Variation
Confidence Intervals for Regressions
Parameter Intervals
Prediction Intervals
Verifying Regression

- For correlated data, model predicts response given an input
- Model should be equation that fits data
- Standard definition of "fits" is least-squares
- Minimize squared error
- Keep mean error zero
- Minimizes variance of errors

Least-Squared Error

- If $\hat{y}=b_{0}+b_{1} x$ then error in estimate for x_{i} is $e_{i}=y_{i}-\hat{y}_{i}$
- Minimize Sum of Squared Errors (SSE)

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

- Subject to the constraint

$$
\sum_{i=1}^{n} e_{i}=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)=0
$$

Estimating Model Parameters

- Best regression parameters are

$$
b_{1}=\frac{\sum x_{i} y_{i}-n \overline{x y}}{\sum x_{i}^{2}-n \bar{x}^{2}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum x_{i} \quad \bar{y}=\frac{1}{n} \sum y_{i}
$$

- Note that book may have errors in these equations!

Parameter Estimation Example

- Execution time of a script for various loop counts:

Loops	3	5	7	9	10
Time	1.2	1.7	2.5	2.9	3.3

- $\bar{x}=6.8, \bar{y}=2.32, \sum x y=88.54, \sum x^{2}=264$
- $b_{1}=\frac{88.54-5(6.8)(2.32)}{264-5(6.8)^{2}}=0.29$
- $b_{0}=2.32-(0.29)(6.8)=0.35$

Graph of Parameter Estimation Example

Allocating Variation

Analysis of Variation (ANOVA):

- If no regression, best guess of y is \bar{y}
- Observed values of y differ from \bar{y}, giving rise to errors (variance)
- Regression gives better guess, but there are still errors
- We can evaluate quality of regression by allocating sources of errors

The Total Sum of Squares
Without regression, squared error is

๓ CS147

$$
\begin{aligned}
\text { SST } & =\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}^{2}-2 y_{i} \bar{y}+\bar{y}^{2}\right) \\
& =\left(\sum_{i=1}^{n} y_{i}^{2}\right)-2 \bar{y}\left(\sum_{i=1}^{n} y_{i}\right)+n \bar{y}^{2} \\
& =\left(\sum_{i=1}^{n} y_{i}^{2}\right)-2 \bar{y}(n \bar{y})+n \bar{y}^{2} \\
& =\left(\sum_{i=1}^{n} y_{i}^{2}\right)-n \bar{y}^{2} \\
& =\text { SSY }- \text { SSO }
\end{aligned}
$$

The Sum of Squares from Regression

- Recall that regression error is

$$
\mathrm{SSE}=\sum e_{i}^{2}=\sum\left(y_{i}-\bar{y}\right)^{2}
$$

- Error without regression is SST (previous slide)
- So regression explains SSR = SST - SSE
- Regression quality measured by coefficient of determination

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\mathrm{SST}-\mathrm{SSE}}{\mathrm{SST}}
$$

Evaluating Coefficient of Determination

- Compute SST $=\left(\sum y^{2}\right)-n \bar{y}^{2}$
- Compute SSE $=\sum y^{2}-b_{0} \sum y-b_{1} \sum x y$
- Compute $\mathrm{R}^{2}=\frac{\text { SST }- \text { SSE }}{\text { SST }}$

For previous regression example:

Loops	3	5	7	9	10
Time	1.2	1.7	2.5	2.9	3.3

- $\sum y=11.60, \sum y^{2}=29.79, \sum x y=88.54$, $n \bar{y}^{2}=5(2.32)^{2}=26.9$
- SSE $=29.79-(0.35)(11.60)-(0.29)(88.54)=0.05$
- SST $=29.79-26.9=2.89$
- $\mathrm{SSR}=2.89-0.05=2.84$
- $R^{2}=(2.89-0.05) / 2.89=0.98$
- Variance of errors is SSE divided by degrees of freedom
- DOF is $n-2$ because we've calculated 2 regression parameters from the data
- So variance (mean squared error, MSE) is SSE/($n-2$)
- Standard deviation of errors is square root: $s_{e}=\sqrt{\frac{\text { SSE }}{n-2}}$ (minor error in book)

Checking Degrees of Freedom

```
CS147
-Allocating Variation
LChecking Degrees of Freedom
```

Degrees of freedom always equate:

- SS0 has 1 (computed from \bar{y})
- SST has $n-1$ (computed from data and \bar{y}, which uses up 1)
- SSE has $n-2$ (needs 2 regression parameters)
- So SST $=$ SSY - SSO $=$ SSR + SSE
$n-1=n-1=1 \quad+(n-2)$

Example of Standard Deviation of Errors

- For regression example, SSE was 0.05 , so MSE is $0.05 / 3=0.017$ and $s_{e}=0.13$
- Note high quality of our regression:
- $R^{2}=0.98$
- $s_{e}=0.13$
- Why such a nice straight-line fit?

```
CS147
LAllocating Variation
%
```


- Regression is done from a single population sample (size n)
- Different sample might give different results
- True model is $y=\beta_{0}+\beta_{1} x$
- Parameters b_{0} and b_{1} are really means taken from a population sample

Calculating Intervals for Regression Parameters

- Standard deviations of parameters:

$$
\begin{aligned}
s_{b_{0}} & =s_{e} \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum x^{2}-n \bar{x}^{2}}} \\
s_{b_{1}} & =\frac{s_{e}}{\sqrt{\sum x^{2}-n \bar{x}^{2}}}
\end{aligned}
$$

- Confidence intervals are $b_{i} \mp t_{\left[1-\frac{\alpha}{2} ; n-2\right]} s_{b_{i}}$
- Note that t has $n-2$ degrees of freedom!

Example of Parameter Confidence Intervals

```
CS147
Confidence Intervals for Regressions
LParameter Intervals
Example of Parameter Confidence Intervals
```

- Recall $s_{e}=0.13, n=5, \sum x^{2}=264, \bar{x}=6.8$
- So $s_{b_{0}}=0.13 \sqrt{\frac{1}{5}+\frac{(6.8)^{2}}{264-5(6.8)^{2}}}=0.16$
$s_{b_{1}}=\frac{0.13}{\sqrt{264-5(6.8)^{2}}}$
$=0.004$
- Using 90% confidence level, $t_{0.95 ; 3}=2.353$
- Thus, $b 0$ interval is $0.35 \mp 2.353(0.16)=(-0.03,0.73)$
- Not significant at 90%
- And b_{1} is $0.29 \mp 2.353(0.004)=(0.28,0.30)$
- Significant at 90% (and would survive even 99.9% test)

Confidence Intervals for Predictions

- Previous confidence intervals are for parameters
- How certain can we be that the parameters are correct?
- Purpose of regression is prediction
- How accurate are the predictions?
- Regression gives mean of predicted response, based on sample we took
- Standard deviation for mean of future sample of m observations at x_{p} is

$$
s_{\hat{y}_{m p}}=s_{e} \sqrt{\frac{1}{m}+\frac{1}{n}+\frac{\left(x_{p}-\bar{x}\right)^{2}}{\sum x^{2}-n \bar{x}^{2}}}
$$

- Note deviation drops as $m \rightarrow \infty$
- Variance minimal at $x=\bar{x}$
- Use t-quantiles with $n-2$ DOF for calculating confidence interval
- Using previous equation, what is predicted time for a single run of 8 loops?
- Time $=0.35+0.29(8)=2.67$
- Standard deviation of errors $s_{e}=0.13$

$$
s_{\hat{y}_{1,8}}=0.13 \sqrt{1+\frac{1}{5}+\frac{(8-6.8)^{2}}{264-5(6.8)^{2}}}=0.14
$$

- 90% interval is then $2.65 \mp 2.353(0.14)=(2.34,3.00)$

Prediction Confidence

© CS147
$\stackrel{\omega}{\circ}$ COnfidence Intervals for Regressions
© LPrediction Intervals
$\stackrel{\stackrel{5}{N}}{\stackrel{\circ}{2}}$
Prediction Confidence

x

- Regressions are based on assumptions:
- Linear relationship between response y and predictor x
- Or nonlinear relationship used in fitting
- Predictor x nonstochastic and error-free
- Model errors statistically independent
- With distribution $N(0, c)$ for constant c
- If assumptions violated, model misleading or invalid

Testing Linearity

Testing Independence of Errors

```
\curvearrowleft CS147
¢
```


Scatter-plot ε_{i} versus \hat{y}_{i}

- Should be no visible trend
- Example from our curve fit:

- May be useful to plot error residuals versus experiment number
- In previous example, this gives same plot except for x scaling
- No foolproof tests
- "Independence" test really disproves particular dependence
- Maybe next test will show different dependence!

```
Testing for Normal Errors
```

- Prepare quantile-quantile plot of errors
- Example for our regression:

Testing for Constant Standard Deviation

```
\OmegaCS147
LVerifying Regression
OLTesting for Constant Standard Deviation
```

- Tongue-twister: homoscedasticity
- Return to independence plot
- Look for trend in spread
- Example:

- Regression throws away some information about the data
- To allow more compact summarization
- Sometimes vital characteristics are thrown away
- Often, looking at data plots can tell you whether you will have a problem

Example of Misleading Regression

I		II			III		
IV							
x	y	x	y	x	y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

- Exactly the same thing for each data set!
- $n=11$
- Mean of $y=7.5$
- $y=3+0.5 x$
- Standard error of regression is 0.118
- All the sums of squares are the same
- Correlation coefficient $=0.82$
- $R^{2}=0.67$

40

