CS 147:

Computer Systems Performance Analysis
Multiple and Categorical Regression

Multiple Linear Regression
 Basic Formulas
 Example
 Quality of the Example

Categorical Models

- Develops models with more than one predictor variable
- But each predictor variable has linear relationship to response variable
- Conceptually, plotting a regression line in n-dimensional space, instead of 2-dimensional

```
CS147
\varrho\varrho-Multiple Linear Regression
O}\mathrm{ - Basic Formulas
```

Response y is a function of k predictor variables $x_{1}, x_{2}, \ldots, x_{k}$

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}+e
$$

A Multiple Linear Regression Model

Given sample of n observations

$$
\left\{\left(x_{11}, x_{21}, \ldots, x_{k 1}, y_{1}\right), \ldots,\left(x_{1 n}, x_{2 n}, \ldots, x_{k n}, y_{n}\right)\right\}
$$

model consists of n equations (note possible + vs. - typo in book):

$$
\begin{aligned}
y_{1} & =b_{0}+b_{1} x_{11}+b_{2} x_{21}+\cdots+b_{k} x_{k 1}+e_{1} \\
y_{2} & =b_{0}+b_{1} x_{12}+b_{2} x_{22}+\cdots+b_{k} x_{k 2}+e_{2} \\
& \vdots \\
y_{n} & =b_{0}+b_{1} x_{1 n}+b_{2} x_{2 n}+\cdots+b_{k} x_{k n}+e_{n}
\end{aligned}
$$

Looks Like It's Matrix Arithmetic Time

```
CS147
¢ -Multiple Linear Regression
& -Basic Formulas
&Looks Like It's Matrix Arithmetic Time
```

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X b}+\mathbf{e} \\
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] } & =\left[\begin{array}{ccccc}
1 & x_{11} & x_{21} & \ldots & x_{k 1} \\
1 & x_{12} & x_{22} & \ldots & x_{k 2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{1 n} & x_{2 n} & \ldots & x_{k n}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k}
\end{array}\right]+\left[\begin{array}{c}
e_{0} \\
e_{1} \\
\vdots \\
e_{n}
\end{array}\right]
\end{aligned}
$$

Note that:

- \mathbf{y} and \mathbf{e} have n elements
- b has $k+1$
- \mathbf{x} is k by n

Analysis of Multiple Linear Regression

```
CS147
\varrho`
&
~
```

0

- Listed in box 15.1 of Jain
- Not terribly important (for our purposes) how they were derived
- This isn't a class on statistics
- But you need to know how to use them
- Mostly matrix analogs to simple linear regression results

Example of Multiple Linear Regression

```
CS147
¢ -Multiple Linear Regression
%-
~
```

- IMDB keeps numerical popularity ratings of movies
- Postulate popularity of Academy Award-winning films is based on two factors:
- Year made
- Running time
- Produce a regression

$$
\text { rating }=b_{0}+b_{1}(\text { year })+b_{2}(\text { length })
$$

Title	Year	Length	Rating
Silence of the Lambs	1991	118	8.1
Terms of Endearment	1983	132	6.8
Rocky	1976	119	7.0
Oliver!	1968	153	7.4
Marty	1955	91	7.7
Gentleman's Agreement	1947	118	7.5
Mutiny on the Bounty	1935	132	7.6
It Happened One Night	1934	105	8.0

 and

- We need to calculate $\mathbf{X}, \mathbf{X}^{\top}, \mathbf{X}^{\top} \mathbf{X},\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$, and $\mathbf{X}^{\top} \mathbf{y}$
- Because $\mathbf{b}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{y}\right)$
- We will see that $\mathbf{b}=(18.5430,-0.0051,-0.0086)$
- Meaning the regression predicts:
rating $=18.5430-0.0051$ (year) -0.0086 (length)

X Matrix for Example

```
~CS147
\varrho\varrho-Multiple Linear Regression
%-
\stackrel{\circ}{~}
X Matrix for Example
```

$\mathbf{X}=\left[\begin{array}{rrr}1 & 1991 & 118 \\ 1 & 1983 & 132 \\ 1 & 1976 & 119 \\ 1 & 1968 & 153 \\ 1 & 1955 & 91 \\ 1 & 1947 & 118 \\ 1 & 1935 & 132 \\ 1 & 1934 & 105\end{array}\right]$

$$
\mathbf{X}^{\top}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1991 & 1983 & 1976 & 1968 & 1955 & 1947 & 1935 & 1934 \\
118 & 132 & 119 & 153 & 91 & 118 & 132 & 105
\end{array}\right]
$$

Multiple Linear Regression Example

$$
\mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{rrr}
8 & 15689 & 968 \\
15689 & 30771385 & 1899083 \\
968 & 1899083 & 119572
\end{array}\right]
$$

$$
\mathbf{C}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\left[\begin{array}{rrr}
1207.7585 & -0.6240 & 0.1328 \\
-0.6240 & 0.0003 & -0.0001 \\
0.1328 & -0.0001 & 0.0004
\end{array}\right]
$$

$$
\mathbf{X}^{\top} \mathbf{y}=\left[\begin{array}{r}
60.1 \\
117840.7 \\
7247.5
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{l}
18.5430 \\
-0.0051 \\
-0.0086
\end{array}\right]
$$

- How accurately does model predict film rating based on age and running time?
- Best way to determine this analytically is to calculate errors:

$$
\mathrm{SSE}=\mathbf{y} \top \mathbf{y}-\mathbf{b}^{\top} \mathbf{X}^{\top} \mathbf{y}
$$

or

$$
\mathrm{SSE}=\sum e_{i}^{2}
$$

Calculating the Errors

```
~CS147
¢ -Multiple Linear Regression
QQuality of the Example
Calculating the Errors
```

Estimated

Year	Length	Rating	Rating	e_{i}	e_{i}^{2}
1991	118	8.1	7.4	-0.71	0.51
1983	132	6.8	7.3	0.51	0.26
1976	119	7.0	7.5	0.45	0.21
1968	153	7.4	7.2	-0.20	0.04
1955	91	7.7	7.8	0.10	0.01
1947	118	7.5	7.6	0.11	0.01
1935	132	7.6	7.6	-0.05	0.00
1934	105	8.0	7.8	-0.21	0.04

Calculating the Errors, Continued

```
CS147
\varrho\varrho-Multiple Linear Regression
&-LQuality of the Example
\stackrel{\rightharpoonup}{~}
Calculating the Errors, Continued
\(\llcorner\) Calculating the Errors, Continued
```

- $\operatorname{SSE}=1.08$
- SSY $=\sum y_{i}^{2}=452.91$
- $\mathrm{SSO}=n \bar{y}^{2}=451.5$
- SST $=$ SSY - SSO $=452.9-451.5=1.4$
- $\operatorname{SSR}=$ SST - SSE $=0.33$
- $R^{2}=\frac{S S R}{S S T}=\frac{0.33}{1.41}=0.23$
- In other words, this regression stinks

Why Does It Stink?

- Let's look at properties of the regression parameters

$$
s_{e}=\sqrt{\frac{\mathrm{SSE}}{n-3}}=\sqrt{\frac{1.08}{5}}=0.46
$$

- Now calculate standard deviations of the regression parameters (These are estimations only, since we're working with a sample)
- Estimated stdev of

$$
\begin{aligned}
& b_{0} \text { is } s_{e} \sqrt{c_{00}}=0.46 \sqrt{1207.76}=16.16 \\
& b_{1} \text { is } s_{e} \sqrt{c_{11}}=0.46 \sqrt{0.0003}=0.0084 \\
& b_{2} \text { is } s_{e} \sqrt{c_{22}}=0.46 \sqrt{0.0004}=0.0097
\end{aligned}
$$

- We will use 90% level
- Confidence intervals for

$$
\begin{aligned}
& b_{0} \text { is } 18.54 \mp 2.015(16.16)=(-14.02,51.10) \\
& b_{1} \text { is } 0.005 \mp 2.015(0.0084)=(-0.022,0.012) \\
& b_{2} \text { is } 0.009 \mp 2.015(0.0097)=(-0.028,0.011)
\end{aligned}
$$

- None is significant at this level

Analysis of Variance

```
CS147
Multiple Linear Regression
    <Quality of the Example
    &nalysis of Variance
```

- So, can we really say that none of the predictor variables are significant?
- Not yet; predictors may be correlated
- F-tests can be used for this purpose
- E.g., to determine if the SSR is significantly higher than the SSE
- Equivalent to testing that y does not depend on any of the predictor variables
- Alternatively, that no b_{i} is significantly nonzero
- Need to calculate SSR and SSE
- From those, calculate mean squares of regression (MSR) and errors (MSE)
- MSR/MSE has an F distribution
- If $M S R / M S E>F_{\text {table }}$, predictors explain significant fraction of response variation
- Note typos in book's table 15.3
- SSR has k degrees of freedom
- SST matches $y-\bar{y}$, not $y-\hat{y}$

F-Test for Our Example

- $\operatorname{SSR}=.33$
- $\mathrm{SSE}=1.08$
- $\mathrm{MSR}=\mathrm{SSR} / k=.33 / 2=.16$
- $\mathrm{MSE}=\mathrm{SSE} /(n-k-1)=1.08 /(8-2-1)=.22$
- F-computed $=M S R / M S E=.76$
- $\mathrm{F}[90 ; 2,5]=3.78$
- So it fails the F-test at 90\% (miserably)
- If two predictor variables are linearly dependent, they are collinear
- Meaning they are related
- And thus second variable does not improve regression
- In fact, it can make it worse
- Typical symptom is inconsistent results from various significance tests

Finding Multicollinearity

\pm

- Must test correlation between predictor variables
- If it's high, eliminate one and repeat regression without it
- If significance of regression improves, it's probably due to collinearity between the variables
- Probably not, since significance tests are consistent
- But let's check, anyway
- Calculate correlation of age and length
- After tedious calculation, 0.25
- Not especially correlated
- Important point-adding a predictor variable does not always improve a regression
- See example on p. 253 of book
- Check scatter plots
- Rating vs. year
- Rating vs. length
- Regardless of how good or bad regressions look, always check the scatter plots

Rating vs. Length

Rating vs. Year

```
~CS147
\varrho`
&
    Rating vs. Year
```


Regression With Categorical Predictors

- Regression methods discussed so far assume numerical variables
- What if some of your variables are categorical in nature?
- If all are categorical, use techniques discussed later in the course
- Levels: number of values a category can take

Handling Categorical Predictors

```
CS147
¢%
Handling Categorical Predictors
```


- If only two levels, define b_{i} as follows
- $x_{i}=0$ for first value
- $x_{i}=1$ for second value
- (This definition is missing from book in section 15.2)
- Can use +1 and -1 as values, instead
- Need $k-1$ predictor variables for k levels
- To avoid implying order in categories

Which is a better predictor of a high rating in the movie database?

- Winning an Oscar?
- Winning the Golden Palm at Cannes?
- Winning the New York Critics Circle?
- Categories are not mutually exclusive
- $x_{1}=1$ if Oscar, 0 otherwise
- $x_{2}=1$ if Golden Palm, 0 otherwise
- $x_{3}=1$ if Critics Circle Award, 0 otherwise
- $y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$

A Few Data Points

Title	Rating	Oscar	Palm	NYC
Gentleman's Agreement	7.5	X		X
Mutiny on the Bounty	7.6	X		
Marty	7.4	X	X	X
If	7.8		X	
La Dolce Vita	8.1		X	
Kagemusha	8.2		X	
The Defiant Ones	7.5			X
Reds	6.6			X
High Noon	8.1			X

And Regression Says. . .

- $\hat{y}=7.8-0.1 x_{1}+0.2 x_{2}-0.4 x_{3}$
- How good is that?

And Regression Says. . .

- $\hat{y}=7.8-0.1 x_{1}+0.2 x_{2}-0.4 x_{3}$
- How good is that?
- R^{2} is 34% of variation
- Better than age and length
- But still no great shakes

And Regression Says. . .

CS147
 Categorical Models
 $\stackrel{\stackrel{1}{6}}{\stackrel{\circ}{2}}$
 -And Regression Says...

- $\hat{y}=7.8-0.1 x_{1}+0.2 x_{2}-0.4 x_{3}$
- How good is that?
- R^{2} is 34% of variation
- Better than age and length
- But still no great shakes
- Are regression parameters significant at 90\% level?

