CS 147:

Computer Systems Performance Analysis
Mistakes in Graphical Presentation

Overview

Common Mistakes in Graphics
Excess Information
Multiple Scales
Symbols for Text
Poor Scales
Bad Line Usage
Pictorial Games
Non-Zero Origins
Double Whammy
No Confidence Intervals
Height Scaling
Histogram Problems

```
Graphical Integrity
Special-Purpose Charts
A Few Examples
```

- Sneaky trick to meet length limits
- Rules of thumb:
- 6 curves on line chart
- 10 bars on bar chart
- 8 slices on pie chart
- (But note that Tufte hates pie charts)
- Extract essence; don't cram things in

Way Too Much Information

CS147

What's important on that chart?

- Times for cp and rcp rise with number of replicas
- Most other benchmarks are near constant
- Exactly constant for rm

The Right Amount of Information

๓ CS147

$\stackrel{\circledR}{\circ}$ Common Mistakes in Graphics
© L Excess Information
$\stackrel{\stackrel{\sim}{\sim}}{\sim}$
-The Right Amount of Information

```
TThe Right Amount of flommaion
```


Multiple Scales

- Another way to meet length limits
- Basically, two graphs overlaid on each other
- Confuses reader (which line goes with which scale?)
- Misstates relationships
- Implies equality of magnitude that doesn't exist

Some Especially Bad Multiple Scales

- Graphics should be self-explanatory
- Remember that the graphs often draw the reader in
- So use explanatory text, not symbols
- This means no Greek letters!
- Unless your conference is in Athens...

Explanation is Easy

Waiting Time as a Function

- Fiddle with axis ranges (and logarithms) to get your message across
- But don't lie or cheat
- Sometimes trimming off high ends makes things clearer
- Brings out low-end detail

A Truncated Range

- Don't connect points unless interpolation is meaningful
- Don't smooth lines that are based on samples
- Exception: fitted non-linear curves
- People expect $(0,0)$ origins
- Subconsciously
- So non-zero origins are great way to lie
- More common than not in popular press
- Also very common to cheat by omitting part of scale
- "Really, Your Honor, I included (0,0)" Non-Zero Oigins

Highest point should be $3 / 4$ of scale or more

- Put two related measures on same graph
- One is (almost) function of other
- Hits reader twice with same information
- And thus overstates impact

- Statistical data is inherently fuzzy
- But means appear precise
- Giving confidence intervals can make it clear there's no real difference
- So liars and fools leave them out

Graph Without Confidence Intervals
๓ CS147
$\stackrel{\curvearrowleft}{\circ}$ LPictorial Games
© L No Confidence Intervals
$\stackrel{\circ}{\sim}$
Graph Without Confidence Intervals

Graph With Confidence Intervals

Clip art is popular with illustrators:
Women in the Workforce

- Previous graph had heights of 2:1
- But people perceive areas, not heights
- So areas should be what's proportional to data
- Tufte defines lie factor: size of effect in graphic divided by size of effect in data
- Not limited to area scaling
- But especially insidious there (quadratic effect)

Women in the Workforce

1960

Poor Histogram Cell Size

- Picking bucket size is always problem
- Prefer 5 or more observations per bucket
- Choice of bucket size can affect results:

SS147

-Pictorial Games
—Histogram Problems
-Poor Histogram Cell Size

Note that green bars are steadily decreasing, but blue bars rise, fall, and rise again.

It's not clear which is correct (given small counts in the smaller buckets).

- Proportional representation of numbers
- Clear, detailed, thorough labeling
- Show data variation, not design variation
- Use deflated money units
- Don't have more dimensions than data has
- Don't quote data out of context

```
~CS147
    Graphical Integrity
\stackrel{\circ}{\circ}
LProportional Representation of Numbers
```

- Maintain lie factor of 1.0
- Use areas, not heights, with clip art
- Avoiding "decorative" graphs will do wonders
- Not too hard for most engineers!
- Goal is to defeat distortion and ambiguity
- Write explanations on graphic itself
- Label important events in the data

Show Data Variation, Not Design Variation

```
CS147
Graphical Integrity
\stackrel{i}{~}
LShow Data Variation, Not Design Variation
```

- Use one design for entire graphic
- In papers, try to use one design for all graphs
- Again, artistic license is big culprit
- Often necessary to show money over time
- Even in computer science
- E.g., price/performance over time
- Or expected future cost of a disk
- Nominal dollars are meaningless
- Derate by some standard inflation measure
- That's what the WWW is for!

Don't Have More Dimensions Than Data Has

- This gets back to the Lie Factor
- 1-D data (e.g., money) should occupy one dimension on the graph: not
- Clip art is prohibited by this rule
- But if you have to, use an area measure

Don't Quote Data Out of Context

Tufte's example:
Traffic Deaths and


```
^CS147
    GGaphical Integrity
\stackrel{\circ}{\circ}
```

$\left\llcorner_{\text {Don't Quote Data Out of Context }}\right.$

SS147

Graphical Integrity

Connecticut Traffic Deaths, 1951-1959

- Tukey's box plot
- Histograms
- Scatter plots
- Gantt charts
- Kiviat graphs

Tukey's Box Plot

¿ CS147

Shows range, median, quartiles all in one:

- Tufte can't resist improvements:
or
or even

Tufte improves everything about them:

100

- Useful in statistical analysis
- Also excellent for huge quantities of data
- Can show patterns otherwise invisible

Better Scatter Plots

- Again, Tufte improves the standard
- But it can be a pain with automated tools
- Can use modified Tukey box plot for axes:

Gantt Charts

CS147
 Special-Purpose Charts

- Shows relative duration of Boolean conditions
- Arranged to make lines continuous
- Each level after first follows FTTF pattern
- (Possibly repeated)

Network

Gantt charts are any chart with horizontal lines showing spans on the X axis.
Also useful for scheduling; shows simultaneous tasks.
Lines are divided in mid-true; any vertical line shows one unique combo of conditions.
Length of line with particular condition shows percentage of time system spends in that state.

Kiviat Graphs

```
CS147
\varrho!Special-Purpose Charts
```

- Also called "star charts" or "radar plots"
- Useful for looking at balance between HB and LB metrics

A Very Bad Graph

CS147

A Good Graph: Sunspots

CS147
 -a Few Examples
 -A Good Graph: Sunspots

Vertical scale is latitude of sunspot; length of bar is extent of latitude width of sunspot (longitude width is not in the graph). The 11-year cycle is easily visible.

The horizontal scale is empty in a few places where sunspot data extends into it.

This graph was drawn in 1904 by Edward Walter Maunder (1851-1928). It is commonly called a "butterfly diagram" for obvious reasons.

A Superb Graph: DEC Traces

X axis is time (instructions executed). Y axis is memory address referenced, modulo 4 MB . Red lines are data accesses, blue instructions. Green is perhaps stack? Note how parallel access to arrays is easy to see, as well as occasional faster access and reverse-order access.

