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Choosing a Base System

I Run workloads on two systems
I Normalize performance to chosen system
I Take average of ratios
I Presto: you control what’s best
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Example of Choosing a Base System

I (Carefully) selected Ficus results:
1 2 1/2 2/1

cp 231.8 168.6 1.37 0.73
rcp 260.6 338.3 0.77 1.30
Mean 246.2 253.45 1.07 1.02
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Here, the mean running time on two replicas is worse. But by
choosing the appropriate base, I can make a single replica 7%
slower, or I can make two replicas 2% slower (i.e., a single replica is
2% faster).
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Why Does This Work?

I Expand the arithmetic:

Ra;b =
ya

yb
Rb;b = 1.0

Pa;b =
1
n

∑
Ri;a;b =

1
n

(
y0;a

y0;b
+

y1;a

y1;b
+ · · ·

)
6=

1
n
∑

yi;a
1
n
∑

y1;b
6= 1

Pb;a

6 / 39

Why Does This Work?

I Expand the arithmetic:

Ra;b =
ya

yb
Rb;b = 1.0

Pa;b =
1
n

∑
Ri;a;b =

1
n

(
y0;a

y0;b
+

y1;a

y1;b
+ · · ·

)
6=

1
n
∑

yi;a
1
n
∑

y1;b
6= 1

Pb;a

20
15

-0
6-

15

CS147
Ratio Games

How to Lie
Why Does This Work?

R is the performance ratio of the overall test, i.e., the total time of all
tests (equivalently, their average, assuming paired tests). P is the
average of ratios.
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Using Ratio Metrics

I Pick a metric that is itself a ratio
I E.g., power = throughput ÷ response time
I Or cost/performance

I Handy because division is “hidden”
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Relative Performance Enhancement

I Compare systems with incomparable bases
I Turn into ratios
I Example: compare Ficus 1 vs. 2 replicas with UFS vs. NFS (1

run on chosen day):

“cp” Time Ratio

Ficus 1 vs. 2 197.4 246.6 1.25
UFS vs. NFS 178.7 238.3 1.33

I “Proves” adding Ficus replica costs less than going from UFS
to NFS
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Ratio Games with Percentages

I Percentages are inherently ratios
I But disguised
I So great for ratio games

I Example: Passing tests

Test A Runs A Passes A % B Runs B Passes B %
1 300 60 20 32 8 25
2 50 2 4 500 40 8

Total 350 62 18 532 48 9
I A is worse, but looks better in total line!
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More on Percentages

I Psychological impact
I 1000% sounds bigger than 10-fold (or 11-fold)
I Great when both original and final performance are lousy

I E.g., salary went from $40 to $80 per week
I Small sample sizes can generate big lies

I “83% of dentists surveyed recommend Crest”
I (We asked 6 dentists; 5 liked Crest)

I Base should be initial, not final value
I E.g., price can’t drop 400%
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Can You Win the Ratio Game?

I If one system is better by all measures, a ratio game won’t
work

I But recall percent-passes example
I And selecting the base lets you change the magnitude of the

difference
I If each system wins on some measures, ratio games might be

possible (but no promises)
I May have to try all bases

11 / 39

Can You Win the Ratio Game?

I If one system is better by all measures, a ratio game won’t
work

I But recall percent-passes example
I And selecting the base lets you change the magnitude of the

difference
I If each system wins on some measures, ratio games might be

possible (but no promises)
I May have to try all bases

20
15

-0
6-

15

CS147
Ratio Games

Strategies for Winning
Can You Win the Ratio Game?



Ratio Games Strategies for Winning

How to Win Your Ratio Game

I For LB metrics, use your system as the base
I For HB metrics, use the other as a base
I If possible, adjust lengths of benchmarks

I Elongate when your system performs best
I Short when your system is worst
I This gives greater weight to your strengths
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Correct Analysis of Ratios

I Previously covered in lecture #5
I Generally, harmonic or geometric means are appropriate

I Or use only the raw data
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Introduction To Experimental Design

I You know your metrics
I You know your factors
I You know your levels
I You’ve got your instrumentation and test loads
I Now what?
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Goals in Experiment Design

I Obtain maximum information with minimum work
I Typically meaning minimum number of experiments

I More experiments aren’t better if you’re the one who has to
perform them

I Well-designed experiments are also easier to analyze
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Experimental Replications

I System under study will be run with varying levels of different
factors, potentially with differing workloads

I Run with particular set of levels and other inputs is a
replication

I Often, need to do multiple replications with each set of levels
and other inputs

I Usually necessary for statistical validation
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Interacting Factors

I Some factors have completely independent effects
I Double the factor’s level, halve the response, regardless of

other factors
I But effects of some factors depends on values of others

I Called interacting factors
I Presence of interacting factors complicates experimental

design
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The Basic Problem in Designing Experiments

I You’ve chosen some number of factors
I May or may not interact

I How to design experiment that captures full range of levels?
I Want minimum amount of work

I Which combination or combinations of levels (of factors) do
you measure?
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Common Mistakes in Experimentation

I Ignoring experimental error
I Uncontrolled parameters
I Not isolating effects of different factors
I One-factor-at-a-time experimental designs
I Interactions ignored
I Designs require too many experiments
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Types of Experimental Designs
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I Full factorial design
I Fractional factorial design
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This is all we’ll cover, but there are other possibilities.
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Simple Designs

I Vary one factor at a time
I For k factors with i th factor having ni levels, number of

experiments needed is:

n = 1 +
k∑

i=1

(ni − 1)

I Assumes factors don’t interact
I Even then, more effort than required

I Don’t use it, usually
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Full Factorial Designs

I Test every possible combination of factors’ levels
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I Captures full information about interaction
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Reducing the Work in Full Factorial Designs

I Reduce number of levels per factor
I Generally good choice
I Especially if you know which factors are most important

I Use more levels for those
I Reduce number of factors

I But don’t drop important ones!
I Use fractional factorial designs
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Fractional Factorial Designs

I Only measure some combination of levels of the factors
I Must design carefully to best capture any possible interactions
I Less work, but more chance of inaccuracy
I Especially useful if some factors are known to not interact
I Covered later
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2k Factorial Designs

I Used to determine effect of k factors
I Each with two alternatives or levels

I Often used as preliminary to larger performance study
I Each factor measured at its maximum and minimum level
I Might offer insight on importance and interaction of various

factors
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Experimental Design 2k Designs

Unidirectional Effects

I Effects that only increase as level of a factor increases
I Or vice versa

I If system known to have unidirectional effects, 2k factorial
design at minimum and maximum levels is useful

I Shows whether factor has significant effect
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22 Factorial Designs

I Two factors with two levels each
I Simplest kind of factorial experiment design
I Concepts developed here generalize
I Regression can easily be used
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22 Factorial Design Example

I Consider parallel operating system
I Goal is fastest possible completion of a given program
I Quality usually expressed as speedup
I We’ll use runtime as metric (simpler but equivalent)
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Factors and Levels for Parallel OS

I First factor: number of CPUs
I Vary between 8 and 64

I Second factor: use of dynamic load management
I Migrates work between nodes as load changes

I Other factors possible, but ignore them for now
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Defining Variables for 22 Factorial OS Example

xA =

{
-1 if 8 nodes

+1 if 64 nodes

xB =

{
-1 if no dynamic load management

+1 if dynamic load management
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Sample Data for Parallel OS

Single runs of one benchmark (in seconds):

8 Nodes 64 Nodes
NO DLM 820 217

DLM 776 197
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Regression Model for Example

I y = q0 + qAxA + qBxB + qABxAxB

I Note that model is nonlinear!

820 = q0 − qA − qB + qAB

217 = q0 + qA − qB − qAB

776 = q0 − qA + qB − qAB

197 = q0 + qA + qB + qAB
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Solving the Equations

I 4 equations in 4 unknowns
I q0 = 502.5
I qA = −295.5
I qB = −16
I qAB = 6
I So y = 502.5− 295.5xA − 16xB + 6xAxB
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The Sign Table Method

I Write problem in tabular form:
I A B AB y
1 -1 -1 1 820
1 1 -1 -1 217
1 -1 1 -1 776
1 1 1 1 197

2010 -1182 -64 24 Total
502.5 -295.5 -16 6 Total/4
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Allocation of Variation for 22 Model

I Calculate the sample variance of y:

s2
y =

∑22

i=1(yi − y)2

22 − 1

I Numerator is SST: total variation

SST = 22q2
A + 22q2

B + 22q2
AB

I SST explains causes of variation in y
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Derivation of SST is in book, pp. 287–288. Note that q0 is exactly the
sample mean y . Thus, yi − y = qAxAi + qBxBi + qABxAixBi . Squaring
the latter gives the squares of the individual terms, plus product
terms—but the product terms sum to zero because the columns in
the sign matrix are orthogonal.
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Terms in the SST

I 22q2
A is variation explained by effect of A: SSA

I 22q2
B is variation explained by effect of B: SSB

I 22q2
AB is variation explained by interaction between A and B:

SSAB
I SST = SSA + SSB + SSAB
I In each case, divide SSx by SST to get percent of variation

explained by that factor
I Useful for deciding which factors are important
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Note that variation is not variance; computing contribution of each
factor to variance is hard.
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Variations in Our Example

I SST = 350449
I SSA = 349281
I SSB = 1024
I SSAB = 144
I Now easy to calculate fraction of total variation caused by

each effect:
I Fraction explained by A is 99.67%
I Fraction explained by B is 0.29%
I Fraction explained by interaction of A and B is 0.04%

I So almost all variation comes from number of nodes
I If you want to run faster, apply more nodes, don’t turn on

dynamic load management
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In this simple example, the same conclusion could have been drawn
simply by observing the numbers. But that’s not always the case.



Experimental Design 2k Designs

General 2k Factorial Designs

I Used to explain effects of k factors, each with two alternatives
or levels

I 22 factorial designs are a special case
I Same methods extend to more general case
I Many more interactions between pairs (and trios, etc.) of

factors
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Sample 23 Experiment

I Sign table columns A, B, C are binary count; interactions are
products of appropriate columns:

y I A B C AB AC BC ABC
14 1 -1 -1 -1 1 1 1 -1
22 1 1 -1 -1 -1 -1 1 1
10 1 -1 1 -1 -1 1 -1 1
34 1 1 1 -1 1 -1 -1 -1
46 1 -1 -1 1 1 -1 -1 1
58 1 1 -1 1 -1 1 -1 -1
50 1 -1 1 1 -1 -1 1 -1
86 1 1 1 1 1 1 1 1

T/8 40 10 5 20 5 2 3 1
% 18 4.4 71 4.4 0.7 1.6 0.2

I SST = 564
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