CS 147:

Computer Systems Performance Analysis
Ratio Games and Introduction to Experimental Design

Ratio Games
How to Lie
Strategies for Winning
Fair Analysis

Experimental Design
Introduction
2^{k} Designs

- Choosing a base system
- Using ratio metrics
- Relative performance enhancement
- Ratio games with percentages
- Strategies for winning a ratio game
- Correct analysis of ratios
- Run workloads on two systems
- Normalize performance to chosen system
- Take average of ratios
- Presto: you control what's best
- (Carefully) selected Ficus results:

	1	2	$1 / 2$	$2 / 1$
cp	231.8	168.6	1.37	0.73
rcp	260.6	338.3	0.77	1.30
Mean	246.2	253.45	1.07	1.02

CS147

- Ratio Games

LHow to Lie
Example of Choosing a Base System

Here, the mean running time on two replicas is worse. But by choosing the appropriate base, I can make a single replica 7% slower, or I can make two replicas 2% slower (i.e., a single replica is 2% faster).
R is the performance ratio of the overall test, i.e., the total time of all tests (equivalently, their average, assuming paired tests). P is the average of ratios.

$$
\begin{aligned}
P_{a ; b} & =\frac{1}{n} \sum R_{i ; a ; b}=\frac{1}{n}\left(\frac{y_{0 ; a}}{y_{0 ; b}}+\frac{y_{1 ; a}}{y_{1 ; b}}+\cdots\right) \\
& \neq \frac{\frac{1}{n} \sum y_{i ; a}}{\frac{1}{n} \sum y_{1 ; b}} \neq \frac{1}{P_{b ; a}}
\end{aligned}
$$

Using Ratio Metrics

```
CS147
Ratio Games
&-LHow to Lie
~
```

This is subtler because of the hidden division.

- Pick a metric that is itself a ratio
- E.g., power = throughput \div response time
- Or cost/performance
- Handy because division is "hidden"

```
CS147
Gl-90-910c
Ratio Games
    LHow to Lie
        Relative Performance Enhancement
```


- Compare systems with incomparable bases
- Turn into ratios
- Example: compare Ficus 1 vs. 2 replicas with UFS vs. NFS (1 run on chosen day):

> "cp" Time Ratio

| Ficus 1 vs. 2 | 197.4 | 246.6 | 1.25 |
| :--- | :--- | :--- | :--- | | UFS vs. NFS | 178.7 | 238.3 | 1.33 |
| :--- | :--- | :--- | :--- | :--- |

- "Proves" adding Ficus replica costs less than going from UFS to NFS

Ratio Games with Percentages

```
CS147
    Ratio Games
    LHow to Lie
    Ratio Games with Percentages
```

- Percentages are inherently ratios
- But disguised
- So great for ratio games
- Example: Passing tests

Test	A Runs	A Passes	A \%	B Runs	B Passes	B \%
1	300	60	20	32	8	25
2	50	2	4	500	40	8
Total	350	62	18	532	48	9

- A is worse, but looks better in total line!
- Psychological impact
- 1000% sounds bigger than 10 -fold (or 11-fold)
- Great when both original and final performance are lousy
- E.g., salary went from $\$ 40$ to $\$ 80$ per week
- Small sample sizes can generate big lies
- "83\% of dentists surveyed recommend Crest"
- (We asked 6 dentists; 5 liked Crest)
- Base should be initial, not final value
- E.g., price can't drop 400\%

Can You Win the Ratio Game?

```
CS147
¢ LRatio Games
OLStrategies for Winning
```

- If one system is better by all measures, a ratio game won't work
- But recall percent-passes example
- And selecting the base lets you change the magnitude of the difference
- If each system wins on some measures, ratio games might be possible (but no promises)
- May have to try all bases

How to Win Your Ratio Game

- For LB metrics, use your system as the base
- For HB metrics, use the other as a base
- If possible, adjust lengths of benchmarks
- Elongate when your system performs best
- Short when your system is worst
- This gives greater weight to your strengths

```
CS147
    Ratio Games
    Strategies for Winning
    LHow to Win Your Ratio Game
2015-06-1
```

- Previously covered in lecture \#5
- Generally, harmonic or geometric means are appropriate
- Or use only the raw data

L Introduction To Experimental Design

- You know your metrics
- You know your factors
- You know your levels
- You've got your instrumentation and test loads
- Now what?
- Obtain maximum information with minimum work
- Typically meaning minimum number of experiments
- More experiments aren't better if you're the one who has to perform them
- Well-designed experiments are also easier to analyze
and
- System under study will be run with varying levels of different factors, potentially with differing workloads
- Run with particular set of levels and other inputs is a replication
- Often, need to do multiple replications with each set of levels and other inputs
- Usually necessary for statistical validation

Interacting Factors

- Some factors have completely independent effects
- Double the factor's level, halve the response, regardless of other factors
- But effects of some factors depends on values of others
- Called interacting factors
- Presence of interacting factors complicates experimental design
- You've chosen some number of factors
- May or may not interact
- How to design experiment that captures full range of levels?
- Want minimum amount of work
- Which combination or combinations of levels (of factors) do you measure?

Ignoring experimental error

- Uncontrolled parameters
- Not isolating effects of different factors
- One-factor-at-a-time experimental designs
- Interactions ignored
- Designs require too many experiments

```
~CS147
¢ LExperimental Design
O
~
```

This is all we'll cover, but there are other possibilities.

- Simple designs
- Full factorial design
- Fractional factorial design
- Vary one factor at a time
- For k factors with $i^{\text {th }}$ factor having n_{i} levels, number of experiments needed is:

$$
n=1+\sum_{i=1}^{k}\left(n_{i}-1\right)
$$

- Assumes factors don't interact
- Even then, more effort than required
- Don't use it, usually

Full Factorial Designs

```
CS147
¢ - Experimental Design
```


${ }^{n-\Pi \Pi_{日}^{n}}$

- Test every possible combination of factors' levels
- For k factors with $i^{\text {th }}$ factor having n_{i} levels:

$$
n=\prod_{i=1}^{k} n_{i}
$$

- Captures full information about interaction
- But a huge amount of work

Reducing the Work in Full Factorial Designs

```
CS147
LExperimental Design
% LIntroduction
```

- Reduce number of levels per factor
- Generally good choice
- Especially if you know which factors are most important
- Use more levels for those
- Reduce number of factors
- But don't drop important ones!
- Use fractional factorial designs
- Only measure some combination of levels of the factors
- Must design carefully to best capture any possible interactions
- Less work, but more chance of inaccuracy
- Especially useful if some factors are known to not interact
- Covered later

2^{k} Factorial Designs

```
CS147
ढ
O
~N
```

- Used to determine effect of k factors
- Each with two alternatives or levels
- Often used as preliminary to larger performance study
- Each factor measured at its maximum and minimum level
- Might offer insight on importance and interaction of various factors

Unidirectional Effects

```
CS147
\varrho
O
```


- Effects that only increase as level of a factor increases
- Or vice versa
- If system known to have unidirectional effects, 2^{k} factorial design at minimum and maximum levels is useful
- Shows whether factor has significant effect
- Two factors with two levels each
- Simplest kind of factorial experiment design
- Concepts developed here generalize
- Regression can easily be used
- Consider parallel operating system
- Goal is fastest possible completion of a given program
- Quality usually expressed as speedup
- We'll use runtime as metric (simpler but equivalent)

```
CS147
¢ LExperimental Design
%
~
```

- First factor: number of CPUs
- Vary between 8 and 64
- Second factor: use of dynamic load management
- Migrates work between nodes as load changes
- Other factors possible, but ignore them for now

$$
x_{A}=\left\{\begin{array}{c}
-1 \text { if } 8 \text { nodes } \\
+1 \text { if } 64 \text { nodes }
\end{array}\right.
$$

$$
x_{B}=\left\{\begin{array}{r}
-1 \text { if no dynamic load management } \\
+1 \text { if dynamic load management }
\end{array}\right.
$$

Single runs of one benchmark (in seconds):

	8 Nodes	$\mathbf{6 4}$ Nodes
NO DLM	820	217
DLM	776	197

Regression Model for Example

```
\curvearrowleftCS147
¢ LExperimental Design
L2k Designs
Regression Model for Example
```

- $y=q_{0}+q_{A} x_{A}+q_{B} x_{B}+q_{A B} x_{A} x_{B}$
- Note that model is nonlinear!

$$
\begin{aligned}
820 & =q_{0}-q_{A}-q_{B}+q_{A B} \\
217 & =q_{0}+q_{A}-q_{B}-q_{A B} \\
776 & =q_{0}-q_{A}+q_{B}-q_{A B} \\
197 & =q_{0}+q_{A}+q_{B}+q_{A B}
\end{aligned}
$$

Solving the Equations

```
^CS147
\(\frac{\curvearrowleft}{6}\) Experimental Design
\(\stackrel{-}{\circ} \quad 2^{k}\) Designs
\(\stackrel{\stackrel{\circ}{N}}{ }\)
Solving the Equations
```

- 4 equations in 4 unknowns
- $q_{0}=502.5$
- $q_{A}=-295.5$
- $q_{B}=-16$
- $q_{A B}=6$
- So $y=502.5-295.5 x_{A}-16 x_{B}+6 x_{A} x_{B}$
- Write problem in tabular form:

I	A	B	AB	y
1	-1	-1	1	820
1	1	-1	-1	217
1	-1	1	-1	776
1	1	1	1	197
2010	-1182	-64	24	Total
502.5	-295.5	-16	6	Total/4

Allocation of Variation for 2^{2} Model

```
CS147
LExperimental Design
L2k Designs
Allocation of Variation for 2}\mp@subsup{2}{}{2}\mathrm{ Model
```


$\underbrace{-2}$

- Calculate the sample variance of y :

$$
s_{y}^{2}=\frac{\sum_{i=1}^{2^{2}}\left(y_{i}-\bar{y}\right)^{2}}{2^{2}-1}
$$

- Numerator is SST: total variation

$$
\mathrm{SST}=2^{2} q_{A}^{2}+2^{2} q_{B}^{2}+2^{2} q_{A B}^{2}
$$

- SST explains causes of variation in y

Derivation of SST is in book, pp. 287-288. Note that q_{0} is exactly the sample mean \bar{y}. Thus, $y_{i}-\bar{y}=q_{A} x_{A i}+q_{B} x_{B i}+q_{A B} x_{A i} x_{B i}$. Squaring the latter gives the squares of the individual terms, plus product terms-but the product terms sum to zero because the columns in the sign matrix are orthogonal.

Terms in the SST

```
CS147
\grave{0}
```


- $2^{2} q_{A}^{2}$ is variation explained by effect of A : SSA
- $2^{2} q_{B}^{2}$ is variation explained by effect of B : SSB
- $2^{2} q_{A B}^{2}$ is variation explained by interaction between A and B : SSAB
- SST = SSA + SSB + SSAB
- In each case, divide SSx by SST to get percent of variation explained by that factor
- Useful for deciding which factors are important

Note that variation is not variance; computing contribution of each factor to variance is hard.

Variations in Our Example

- SST = 350449
- SSA = 349281
- $S S B=1024$
- SSAB = 144
- Now easy to calculate fraction of total variation caused by each effect:
- Fraction explained by A is 99.67%
- Fraction explained by B is 0.29%
- Fraction explained by interaction of A and B is 0.04%
- So almost all variation comes from number of nodes
- If you want to run faster, apply more nodes, don't turn on dynamic load management

```
CS147
    LExperimental Design
    L2
    Variations in Our Example
```

In this simple example, the same conclusion could have been drawn simply by observing the numbers. But that's not always the case.

General 2^{k} Factorial Designs

```
CS147
\varrho
O- L2k Designs
~
LGeneral 2k Factorial Designs
```

- Used to explain effects of k factors, each with two alternatives or levels
- 2^{2} factorial designs are a special case
- Same methods extend to more general case
- Many more interactions between pairs (and trios, etc.) of factors

Sample 2^{3} Experiment

- Sign table columns A, B, C are binary count; interactions are products of appropriate columns:

y	I	A	B	C	AB	AC	BC	ABC
14	1	-1	-1	-1	1	1	1	-1
22	1	1	-1	-1	-1	-1	1	1
10	1	-1	1	-1	-1	1	-1	1
34	1	1	1	-1	1	-1	-1	-1
46	1	-1	-1	1	1	-1	-1	1
58	1	1	-1	1	-1	1	-1	-1
50	1	-1	1	1	-1	-1	1	-1
86	1	1	1	1	1	1	1	1
$\mathrm{~T} / 8$	40	10	5	20	5	2	3	1
$\%$		18	4.4	71	4.4	0.7	1.6	0.2

- SST = 564

