5015-06-15 2015-06-15

CS 147: Computer Systems Performance Analysis Replicated Binary Designs CS 147: Computer Systems Performance Analysis Replicated Binary Designs Overview

2^kr Designs

2²r Designs Effects Analysis of Variance Confidence Intervals Predictions Verification

Multiplicative Models Example

General 2^kr Designs

2^k Factorial Designs With Replications

- 2^k factorial designs do not allow for estimation of experimental error
 - No experiment is ever repeated
- Error is usually present
 - And usually important
- Handle issue by replicating experiments
- But which to replicate, and how often?

2^kr Factorial Designs

2^kr Factorial Designs

Replicate each experiment r times
 Alows quantifying experimental error
 Again, easiest to first look at case of only 2 factors

- ▶ Replicate each experiment *r* times
- Allows quantifying experimental error
- Again, easiest to first look at case of only 2 factors

2²*r* Factorial Designs

- 2 factors, 2 levels each, with r replications at each of the four combinations
- $\flat \ y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$
- Now we need to compute effects, estimate errors, and allocate variation
- Can also produce confidence intervals for effects and predicted responses

- 2²r Factorial Designs
- 2 factors, 2 levels each, with r replications at each of the four combinations
- $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + \theta$
- Now we need to compute effects, estimate errors, and allocate variation
 - Can also produce confidence intervals for effects and predicted responses

Computing Effects for 2^2r Factorial Experiments

- We can use sign table, as before
- But instead of single observations, regress off mean of the r observations
- Compute errors for each replication using similar tabular method
 - Sum of errors must be zero
 - $\triangleright e_{ij} = y_{ij} \hat{y}_i$
- Similar methods used for allocation of variance and calculating confidence intervals

 $\begin{array}{c} & \text{CS147} \\ & & \text{CS147} \\$

The tabular method for errors is as follows: after computing the effects, multiply the effects by the sign table to get the estimated response. Enter that into the table and then subtractfrom each measured response to get errors.

Example of 2^2r Factorial Design With Replications

- Same parallel system as before, but with 4 replications at each point (r = 4)
- No DLM, 8 nodes: 820, 822, 813, 809
- DLM, 8 nodes: 776, 798, 750, 755
- No DLM, 64 nodes: 217, 228, 215, 221
- DLM, 64 nodes: 197, 180, 220, 185

R^kr Designs Effect

2²*r* Factorial Example Analysis Matrix

I	А	В	AB	У	Mean
1	-1	-1	1	(820,822,813,809)	816.00
1	1	-1	-1	(217,228,215,221)	220.25
1	-1	1	-1	(776,798,750,755)	769.75
1	1	1	1	(197,180,220,185)	195.50
2001.5	-1170.0	-71.00	21.5		Total
500.4	-292.5	-17.75	5.4		Total/4

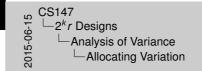
$$q_0 = 500.40$$
 $q_A = -292.5$
 $q_B = -17.75$ $q_{AB} = 5.4$

CS147

$$2^{k}r$$
 Designs
 $-2^{k}r$ Factorial Example Analysis Matrix
 $\frac{1}{2^{2}r}$ Factorial Example Analysis Matrix

Estimation of Errors for 2^2r Factorial Example

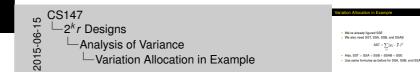
 Figure differences between predicted and observed values for each replication:


$$egin{array}{rcl} egin{array}{rcl} egin{arra$$

► Now calculate SSE:

$$SSE = \sum_{i=1}^{2^2} \sum_{j=1}^r e_{ij}^2 = 2606$$

Allocating Variation


We can determine percentace of variation due to each

ocating Variation

- factor's impact Just like 2ⁿ designs without replication
- Just ske 2* designs without replication
 But we can also isolate variation due to experimental errors
- Methods are similar to other regression techniques for allocating variation

- We can determine percentage of variation due to each factor's impact
 - ▶ Just like 2^k designs without replication
- But we can also isolate variation due to experimental errors
- Methods are similar to other regression techniques for allocating variation

Variation Allocation in Example

 $SST = \sum (y_{ij} - \overline{y}_{.})^2$


- We've already figured SSE
- ▶ We also need SST, SSA, SSB, and SSAB

$$\mathsf{SST} = \sum_{i,j} (y_{ij} - \overline{y}_{..})^2$$

- \blacktriangleright Also, SST = SSA + SSB + SSAB + SSE
- Use same formulae as before for SSA, SSB, and SSAB

Sums of Squares for Example

- ► SST = SSY SS0 = 1,377,009.75
- ▶ SSA = 1,368,900
- ▶ SSB = 5041
- ▶ SSAB = 462.25
- Percentage of variation for A is 99.4%
- Percentage of variation for B is 0.4%
- Percentage of variation for A/B interaction is 0.03%
- And 0.2% (approx.) is due to experimental errors

12/44

Sums of Squares for Example
SST = SSY - SS0 = 1,377,009.75
 SSA = 1,368,900
 SSB = 5041
 SSAB = 462.25
 Percentage of variation for A is 99.4%
Descentaria education for D is 0 Mil

Confidence Intervals for Effects

- Computed effects are random variables
- Thus would like to specify how confident we are that they are correct
- Usual confidence-interval methods
- First, must figure Mean Square of Errors

$$s_e^2 = \frac{SSE}{2^2(r-1)}$$

r − 1 is because errors add up to zero
 ⇒ Only r − 1 can be chosen independently

Calculating Variances of Effects

 $s_{0_1}^2 = s_{0_2}^2 = s_{0_3}^2 = s_{0_3}^2 = \frac{s_0^2}{2T}$

Variance (due to errors) of all effects is the same:

$$s_{q_0}^2 = s_{q_A}^2 = s_{q_B}^2 = s_{q_A B}^2 = \frac{s_e^2}{2^2 r}$$


- So standard deviation is also the same
- ▶ In calculations, use t- or z-value for $2^2(r-1)$ degrees of freedom

Calculating Confidence Intervals for Example

- ▶ At 90% level, using *t*-value for 12 degrees of freedom, 1.782
- Standard deviation of effects is 3.68
- Confidence intervals are $q_i \mp (1.782)(3.68)$
- ▶ *q*⁰ is (493.8,506.9)
- ▶ *q*_A is (-299.1,-285.9)
- ▶ *q_B* is (-24.3,-11.2)
- ▶ q_{AB} is (-1.2,11.9)

Predicted Responses

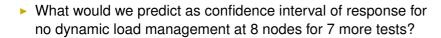


 We already have predicted all the means we can predict from this kind of model

- We measured four, we can "predict" four
- However, we can predict how close we would get to true sample mean if we ran m more experiments

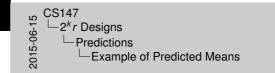
- We already have predicted all the means we can predict from this kind of model
- We measured four, we can "predict" four
- However, we can predict how close we would get to true sample mean if we ran m more experiments

Formula for Predicted Means


► For m future experiments, predicted mean is

$$\hat{y} \equiv t_{[1-\alpha/2;2^2(r-1)]}s_{\hat{y}_m}$$

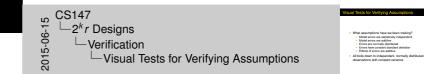
Where


 $s_{y_{\hat{y}_m}} = s_e \left(\frac{1}{n_{\text{eff}}} + \frac{1}{m}\right)^{1/2}$ Total number of runs 1 + sum of DFs of parameters used in \hat{y}

Example of Predicted Means

$$\hat{s}^{\hat{y}_7} = 3.68 \left(\frac{1}{16/5} + \frac{1}{7} \right)^{1/2} = 2.49$$

- 90% confidence interval is (811.6,820.4)
- We're 90% confident that mean would be in this range


cample of Predicted Means

What would we predict as confidence interval of response for no dynamic load management at 8 nodes for 7 more tests?

$$^{b} = 3.68 \left(\frac{1}{16/5} + \frac{1}{7} \right)^{5} = 2.49$$

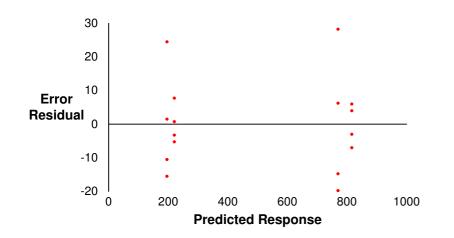
90% confidence interval is (811.6,820.4)
 We're 90% confident that mean would be in this range

Visual Tests for Verifying Assumptions

- What assumptions have we been making?
 - Model errors are statistically independent
 - Model errors are additive
 - Errors are normally distributed
 - Errors have constant standard deviation
 - Effects of errors are additive
- All boils down to independent, normally distributed observations with constant variance

Testing for Independent Errors

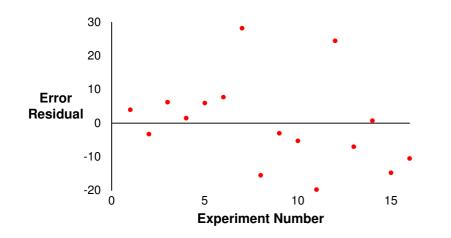
Compute residuals and make scatter plot
 Tends indicate dependence of errors on factor levels


sting for Independent Errors

- But if residuals order of magnitude below predicted respon trends can be ignored
- Usually good idea to plot residuals vs. experiment number

- Compute residuals and make scatter plot
- Trends indicate dependence of errors on factor levels
 - But if residuals order of magnitude below predicted response, trends can be ignored
- Usually good idea to plot residuals vs. experiment number

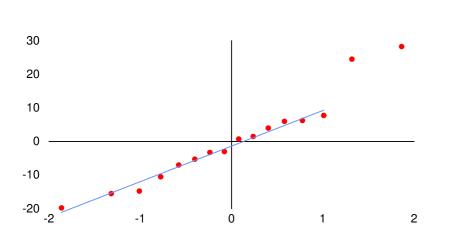
2^k r Designs Verificatio

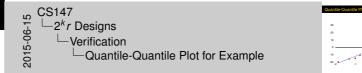

Example Plot of Residuals vs. Predicted Response

2^kr Designs Verificatio

Example Plot of Residuals vs. Experiment Number

2^k r Designs Verification


Testing for Normally Distributed Errors



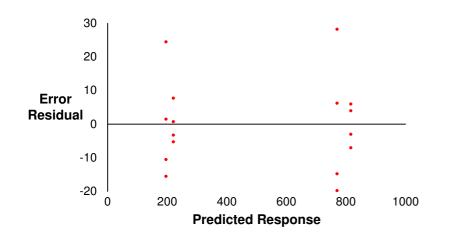
- As usual, do quantile-quantile chart against normal distribution
- If close to linear, normality assumption is good

R^kr Designs Verification

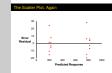
Quantile-Quantile Plot for Example

-

Assumption of Constant Variance


 Checking homoscedasticity
 Go back to scatter plot of residuals vs. prediction and check for even spread

sumption of Constant Variance


- Checking homoscedasticity
- Go back to scatter plot of residuals vs. prediction and check for even spread

^kr Designs Verification

The Scatter Plot, Again

Multiplicative Models for 2^2r Experiments

- Assumptions of additive models
- Example of a multiplicative situation
- Handling a multiplicative model
- When to choose multiplicative model
- Multiplicative example

Assumptions of Additive Models

- Previous analysis used additive model:
 - $\flat \ y_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$
- Assumes all effects are additive:
 - Factors
 - Interactions
 - Errors
- ▶ This assumption *must* be validated!

Example of a Multiplicative Situation

- CS147 ple of a Multiplicative Situati ß --Multiplicative Models 2015-06-Most common multiplicative case Consider 2 processors, 2 workloads Use 2²r design -Example of a Multiplicative Situation requires v. seconds/instruction Without interactions, time is $v_i = v_i w$
 - Testing processors with different workloads Response is time to execute w instructions on processor that

- Testing processors with different workloads
- Most common multiplicative case
- Consider 2 processors, 2 workloads
 - Use $2^2 r$ design
- Response is time to execute w_i instructions on processor that requires v_i seconds/instruction
- Without interactions, time is $y_{ij} = v_i w_j$

Handling a Multiplicative Model

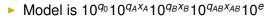
Take logarithm of both sides:

 $y_i j = v_i w_j$

so $\log y_{ij} = \log v_i + \log w_j$

- Now easy to solve using previous methods
- Resulting model is:

 $y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_{AB} x_{AB}} 10^e$


GCS147 → Multiplicative Models → Handling a Multiplicative Model

Hand	fing a Multiplicative Model
	Take logarithm of both sides:
	$y_i j = v_i w_j$
	so $\log y_{ij} = \log v_i + \log w_j$

 $\nu = 10^{q_0} 10^{q_0 x_0} 10^{q_0 x_0} 10^{q_{00} x_{00}} 10^{q_{00} x_{00}} 10^{q_{00} x_{00}}$

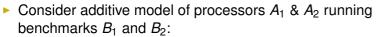
Resulting model is:

Meaning of a Multiplicative Model

- ► Here, $\mu_A = 10^{q_A}$ is inverse of ratio of MIPS ratings of processors; $\mu_B = 10^{q_B}$ is ratio of workload sizes
- Antilog of q₀ is geometric mean of responses:

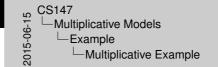
 $\dot{y}=10^{q_0}=\sqrt[n]{y_1y_2\cdots y_n}$

where $n = 2^2 r$


CS147 Multiplicative Models Meaning of a Multiplicative Model Meaning of a Multiplicative Model

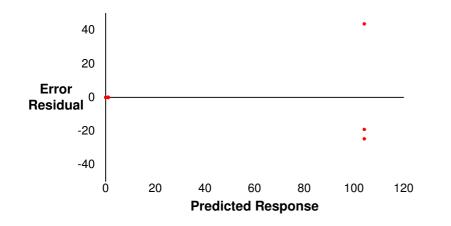
When to Choose a Multiplicative Model?

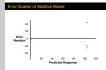
- Physical considerations (see previous slides)
- Range of y is large
 - Making arithmetic mean unreasonable
 - Calling for log transformation
- Plot of residuals shows large values and increasing spread
- Quantile-quantile plot doesn't look like normal distribution


CS147 - Multiplicative Models - When to Choose a Multiplicative Model? - When to Choose a Multiplicative Model?

Multiplicative Example

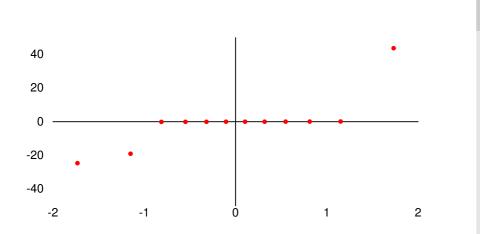
<i>Y</i> ₁ <i>Y</i> ₂ <i>Y</i> ₃	Mean	I	Α	В	AB
85.1 79.5147.91	04.167	1	-1	-1	1
0.8911.0471.072	1.003	1	1	-1	-1
0.9550.9331.122	1.003	1	-1	1	-1
0.0150.0130.012	0.013	1	1	1	1
Total		106.19-	104.15	-104.15	102.17
Total/4		26.55	-26.04	-26.04	25.54

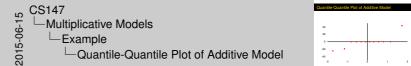

Note large range of y values



Multiplicat	live Exam	ple				
	der additive		f proce	ssors A	& A ₂ n	nn
bend	marks B ₁ an	nd B ₂ : Mean		۵	в	
85.1	79.5147.9	104.167	1	-1	-1	-
0.891	1.0471.072	1.003	1	1	-1	
0.955	0.9331.122	1.003	1	-1	1	
0.015	0.0130.012	0.013	1	1	1	
	Total		106.19	104.15	104.15	103
	Total/4		26.55	-26.04	-26.04	25
 Note 	arge range o	of v valu	-			

Multiplicative Models Exan


Error Scatter of Additive Model

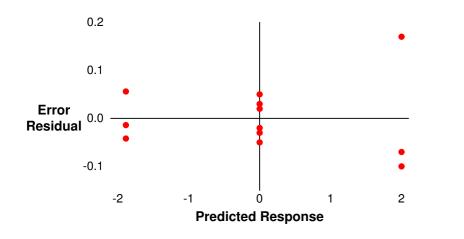


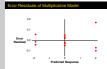
Multiplicative Models Exan

Quantile-Quantile Plot of Additive Model

Multiplicative Model

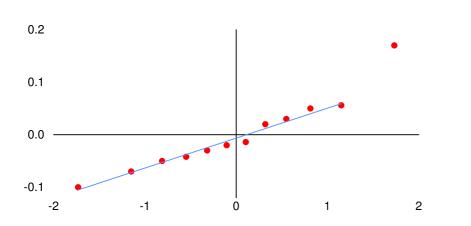
-15	CS147 Multiplicative Models Example
g	
<u> </u>	Example
i2	
-0	Multiplicative Model
N N	,


 Takir 							
		d everyti	ing, the m	iodel i:	8		
¥1	¥2	12	Mean	1	A	в	
1.93		2.17	2.000	1	-1	-1	_
-0.05	0.02	0.0302	0.000	1	-1	-1	
-0.03	-0.03	0.05	0.000	-1	1	-1	
-1.83	-1.9	-1.928	-1.886 1	1	1	1	
-1.0.	-1.9	-1.9400 Total	-1.000 1	0.11	-3.89	-3.89	6
		Total/4		0.03	-0.97		ň


	Taking	logs of	everything,	the	model is:	
--	--------	---------	-------------	-----	-----------	--

<i>Y</i> ₁	<i>Y</i> 2	y 3	Mean	I	Α	В	AB
1.93	1.9	2.17	2.000	1	-1	-1	1
-0.05	0.02	0.0302	0.000	1	-1	-1	
-0.02	-0.03	0.05	0.000	-1	1	-1	
-1.83	-1.9	-1.928	-1.886 1	1	1	1	
		Total		0.11	-3.89	-3.89	0.11
		Total/4		0.03	-0.97	-0.97	0.03

Multiplicative Models Exam


Error Residuals of Multiplicative Model

Multiplicative Models Exam

Quantile-Quantile Plot for Multiplicative Model

Multiplicative Models Example

Summary of the Two Models

L	CS147
Ŧ	CS147 Multiplicative Models Example
č	Example
015	Summary of the Two Models
C	N

		Aritian	Mandari		Miplicativ		
Factor	Effect	Pct of Variation	Confidence Interval	Pct of Effect Variation		Confidence Interval	
—	25.55		16.35 36.74	0.03		-0.02	0.0
A	-25.04	30.15	-35.23 -15.85	-0.97	49.85	-1.02	-0.9
в	-25.04	30.15	-35.23 -15.85	-0.97	49.86	-1.02	-0.9
AB	25.54		15.35 35.74	0.03		-0.02	0.0
		10.69			0.25		

Summary of the Two Models

		Additive I	Model	Multiplicative Model			
			Confidence		Pct of		
Factor	Effect	Variation	Interval	Effect	Variation	Inte	rval
Ι	26.55		16.35 36.74	0.03		-0.02	0.07
Α	-26.04	30.15	-36.23 -15.85	-0.97	49.85	-1.02	-0.93
В	-26.04	30.15	-36.23 -15.85	-0.97	49.86	-1.02	-0.93
AB	25.54	29.01	15.35 35.74	0.03	0.04	-0.02	0.07
е		10.69			0.25		

General 2^kr Factorial Design

 $\begin{array}{c} & \text{CS147} \\ & -\text{General } 2^k r \text{ Designs} \\ & &$

eneral 2^kr Factorial Design

Simple extension of 2³ r
 See Box 18.1 in book for summary
 Always do visual tests
 Remember to consider multiplicative model as alternative

- Simple extension of 2^2r
- See Box 18.1 in book for summary
- Always do visual tests
- Remember to consider multiplicative model as alternative

Example of 2^kr Factorial Design

Consider a 2³3 design:

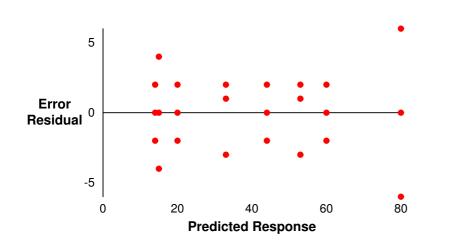
y1 y2	уЗ	Mean	I	Α	В	С	AB	AC	BC	ABC
14 16	12	14	1	-1	-1	-1	1	1	1	-1
22 18	20	20	1	1	-1	-1	-1	-1	1	1
11 15	19	15	1	-1	1	-1	-1	1	-1	1
34 30	35	33	1	1	1	-1	1	-1	-1	-1
46 42	44	44	1	-1	-1	1	1	-1	-1	1
58 62	60	60	1	1	-1	1	-1	1	-1	-1
50 55	54	53	1	-1	1	1	-1	-1	1	-1
86 80	74	80	1	1	1	1	1	1	1	1
Total			319	67	43	155	23	19	15	-1
Total/	В		39.88	8.38	5.38	19.38	2.88	2.38	1.88	-0.13

ANOVA for 2³3 Design

OVA	for	213	Des	ign					
 Pen 	Derr	t vari	ation e	oxplain	ed:				
	А	в	С	AB	AC	BC	ABC	Error	
14	.1	5.8	75.3	1.7	1.1	0.7	Ű	1.3	7
• 90%	- ci	nfide	nce in	tervals					
	i.	A	в	С	AB	AC	BC	ABC	
38	.7	7.2	4.2	18.2	1.7	1.2	0.7		
								1.0	

Percent variation explained:

Α	В	С	AB	AC	BC	ABC	Errors
14.1	5.8	75.3	1.7	1.1	0.7	0	1.37

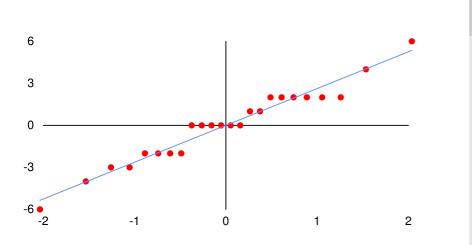

▶ 90% confidence intervals

-

I	Α	В	С	AB	AC	BC	ABC
38.7	7.2	4.2	18.2	1.7	1.2	0.7	-1.3
41.0	9.5	6.5	20.5	4.0	3.5	3.0	1.0

General 2^k r Designs

Error Residuals for 2³3 Design



 $\begin{array}{c} \text{CS147} \\ -\text{General } 2^{k}r \text{ Designs} \\ \\ \frac{1}{20} \\ -\frac{1}{20} \\ -$

Error Residu	als for 233 D	esign		
5				•
	1.			
Error 0 Residual		÷ :	÷.	•
-6	•	•	•	
ė	20 Pres	40 dicted Respo	60 mae	80

General 2^k r Design

Quantile-Quantile Plot for 2³3 Design

 $\begin{array}{c} \text{CS147} \\ -\text{General } 2^{k}r \text{ Designs} \\ & -\text{Quantile-Quantile Plot for } 2^{3}3 \text{ Design} \end{array}$