CS 147:

Computer Systems Performance Analysis
Fractional Factorial Designs
2^{k-p} Designs
Example
Preparing the Sign Table
Confounding
Algebra of Confounding
Design Resolution

Introductory Example of a 2^{k-p} Design

Exploring 7 factors in only 8 experiments:

Run	A	B	C	D	E	F	G
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Analysis of 2^{7-4} Design

```
CSS147
N%
```

- Column sums are zero: $\sum_{i} x_{i j}=0$ $\forall j$
- Sum of 2-column product is zero:

$$
\sum_{i} x_{i j} x_{i l}=0 \quad \forall j \neq I
$$

- Sum of column squares is $2^{7-4}=8$
- Orthogonality allows easy calculation of effects:

$$
q_{A}=\frac{-y_{1}+y_{2}-y_{3}+y_{4}-y_{5}+y_{6}-y_{7}+y_{8}}{8}
$$

etc.

Effects and Confidence Intervals for 2^{k-p} Designs

```
CS147
*)
```

- Effects are as in 2^{k} designs:

$$
q_{\alpha}=\frac{1}{2^{k-p}} \sum_{i} y_{i} x_{\alpha i}
$$

- \% variation proportional to squared effects
- For standard deviations \& confidence intervals:
- Use formulas from full-factorial designs
- Replace 2^{k} with 2^{k-p}

Preparing the Sign Table for a 2^{k-p} Design

```
CS147
¢
O}L\mathrm{ Preparing the Sign Table
~~
```

- Prepare sign table for $k-p$ factors
- Assign remaining factors

2^{k-p} Designs \quad Preparing the Sign Table

Sign Table for $k-p$ Factors

```
CS147
-2 2-p}\mathrm{ Designs
OLPPreparing the Sign Table
```

Same as table for experiment with $k-p$ factors

- I.e., $2^{(k-p)}$ table
- 2^{k-p} rows and 2^{k-p} columns
- First $k-p$ columns get $k-p$ chosen factors
- Rest are interactions (products of previous columns)
- "l" column can be included or omitted as desired

Assigning Remaining Factors

```
CS147
-2}\mp@subsup{2}{}{k-p}\mathrm{ Designs
&- Lreparing the Sign Table
```

Mone

- $2^{k-p}-(k-p)-1$ interaction (product) columns will remain
- Choose any p columns
- Assign remaining p factors to them
- Any others stay as-is, measuring interactions

Example of Preparing a Sign Table

A 2^{4-1} design:

Run	A	B	C
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

Example of Preparing a Sign Table

A 2^{4-1} design:

Run	A	B	C	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

${ }^{\circ}$ CS147
L-90-910Z 2^{k-p} Designs
-Preparing the Sign Table

- Example of Preparing a Sign Table

Example of Preparing a Sign Table

```
A 2 2-1 design:
```

Run	A	B	C	AB	AC	BC	D
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Why did we choose the ABC column to rename as D? In one sense, the choice is completely arbitrary. But in reality, this leads to a discussion of confounding.

Confounding

- The confounding problem
- An example of confounding
- Confounding notation
- Choices in fractional factorial design

The Confounding Problem

```
CS147
-2k-p}\mathrm{ Designs
%-LConfounding
~~
```

- Fundamental to fractional factorial designs
- Some effects produce combined influences
- Limited experiments means only combination can be counted
- Problem of combined influence is confounding
- Inseparable effects called confounded

An Example of Confounding

CS147


```
-2k-p}\mathrm{ Designs
    Confounding
    LAn Example of Confounding
```

There is an animation on this slide

An Example of Confounding

There is an animation on this slide

Analyzing the Confounding Example

There is an animation on this slide

- Formula for q_{C} really gives combined effect:

$$
q_{C}+q_{A B}=\left(y_{1}-y_{2}-y_{3}+y_{4}\right) / 4
$$

Analyzing the Confounding Example

There is an animation on this slide

$$
\begin{aligned}
& q_{C}=\left(y_{1}-y_{2}-y_{3}+y_{4}\right) / 4 \\
& q_{A B}=\left(y_{1}-y_{2}-y_{3}+y_{4}\right) / 4
\end{aligned}
$$

- Formula for q_{C} really gives combined effect:

$$
q_{C}+q_{A B}=\left(y_{1}-y_{2}-y_{3}+y_{4}\right) / 4
$$

- No way to separate q_{C} from $q_{A B}$
- Not problem if $q_{A B}$ is known to be small

Confounding Notation

```
CS147
-2 }\mp@subsup{}{}{k-p}\mathrm{ Designs
&&
~
```

- Previous confounding is denoted by equating confounded effects: $C=A B$
- Other effects are also confounded in this design: $A=B C$, $B=A C, C=A B, I=A B C$
- Last entry indicates $A B C$ is confounded with overall mean, or q_{0}

Choices in Fractional Factorial Design

```
CS147
-2 2-p Designs
2015-06-
&Algebra of Confounding
    LChoices in Fractional Factorial Design
```

- Many fractional factorial designs possible
- Chosen when assigning remaining p signs
- 2^{p} different designs exist for 2^{k-p} experiments
- Some designs better than others
- Desirable to confound significant effects with insignificant ones
- Usually means low-order with high-order
- Particular design can be characterized by single confounding
- Traditionally, use $I=w x y z \ldots$ confounding
- Others can be found by multiplying by various terms
$-I$ acts as unity (e.g., $I \times A=A$)
- Squared terms disappear ($A B^{2} C$ becomes $A C$)

Example: 2^{3-1} Confoundings

```
\curvearrowleftCS147
!
    LAlgebra of Confounding
    Example: 2 }\mp@subsup{2}{}{3-1}\mathrm{ Confoundings
```

- Design is characterized by $I=A B C$
- Multiplying by A gives $A=A^{2} B C=B C$
- Multiplying by $B, C, A B, A C, B C$, and $A B C$:

$$
\begin{aligned}
& B=A B^{2} C=A C \\
& C=A B C^{2}=A B \\
& A B=A^{2} B^{2} C=C \\
& A C=A^{2} B C^{2}=B \\
& B C=A B^{2} C^{2}=A \\
& A B C=A^{2} B^{2} C^{2}=1
\end{aligned}
$$

- Note that only first two lines are unique in this case

Generator Polynomials

```
CS147
-2}\mp@subsup{2}{}{k-p}\mathrm{ Designs
% LAlgebra of Confounding
~
```

- Polynomial $I=w x y z \ldots$ is called generator polynomial for the confounding
- A 2^{k-p} design confounds 2^{p} effects together
- So generator polynomial has 2^{p} terms
- Can be found by considering interactions replaced in sign table

Example of Finding Generator Polynomial

```
CS147
-2 2-p}\mathrm{ Designs
&Algebra of Confounding
    LExample of Finding Generator Polynomial
```

- Consider 2^{7-4} design
- Sign table has $2^{3}=8$ rows and columns
- First 3 columns represent A, B, and C
- Columns for D, E, F, and G replace $A B, A C, B C$, and $A B C$ columns respectively
- So confoundings are necessarily: $D=A B, E=A C, F=B C$, and $G=A B C$

Turning Basic Terms into Generator Polynomial

ぃ CS147
$\stackrel{\text { ¢́ }}{ }-2^{k-p}$ Designs
2015
-Algebra of Confounding
-Turning Basic Terms into Generator Polynomial

ABO-ACE- -GCF-ABC

- Basic confoundings are $D=A B, E=A C, F=B C$, and $G=A B C$
- Multiply each equation by left side: $I=A B D, I=A C E$, $I=B C F$, and $I=A B C G$
or
$I=A B D=A C E=B C F=A B C G$

Finishing Generator Polynomial

```
CS147
-2k-p}\mathrm{ Designs
&- LAlgebra of Confounding
⿳亠丷厂巾
```

－Any subset of above terms also multiplies out to I －E．g．，$A B D \times A C E=A^{2} B C D E=B C D E$
－Expanding all possible combinations gives 16－term generator （book may be wrong）：$I=A B D=A C E=B C F=A B C G=$ $B C D E=A C D F=C D G=A B E F=B E G=A F G=D E F=$ $A D E G=B D F G=C E F G=A B C D E F G$

Design Resolution

CS147
$\bar{\circ}-2^{k-p}$ Designs
$\stackrel{\stackrel{1}{\circ}}{\stackrel{1}{\mathrm{~N}}}$
-Design Resolution
-Design Resolution

- Definitions leading to resolution
- Definition of resolution
- Finding resolution
- Choosing a resolution

Definitions Leading to Resolution

```
CS147
-2}\mp@subsup{2}{}{k-p}\mathrm{ Designs
    Lesign Resolution
    Lefinitions Leading to Resolution
```

 Obill

- Design is characterized by its resolution
- Resolution measured by order of confounded effects
- Order of effect is number of factors in it
- E.g., l is order $0, A B C D$ is order 4
- Order of a confounding is sum of effect orders
- E.g., $A B=C D E$ would be of order 5

Definition of Resolution

CS147
-2^{k-p} Designs
\llcorner Design Resolution
-Definition of Resolution

- Resolution is minimum order of any confounding in design
- Denoted by uppercase Roman numerals
- E.g, 2^{5-1} with resolution of 3 is called $R_{\text {III }}$
- Or more compactly, 2|II

Finding Resolution

- Find minimum order of effects confounded with mean
- I.e., search generator polynomial
- Consider earlier example: $I=A B D=A C E=B C F=$ $A B C G=B C D E=A C D F=C D G=A B E F=B E G=A F G=$ $D E F=A D E G=B D F G=A B D G=C E F G=A B C D E F G$
- So it's an $R_{\text {III }}$ design

Choosing a Resolution

```
CS147
-2}\mp@subsup{2}{}{k-p}\mathrm{ Designs
    Lesign Resolution
    LChoosing a Resolution
```

- Generally, higher resolution is better
- Because usually higher-order interactions are smaller
- Exception: when low-order interactions are known to be small
- Then choose design that confounds those with important interactions
- Even if resolution is lower

