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Useful if there’s only one important categorical factor with
more than two interesting alternatives

Methods reduce to 2' factorial designs if only two choices

If single variable isn’t categorical, should use regression
instead

Method allows multiple replications
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LComparing Truly Comparable Options

Evaluating single workload on multiple machines
Trying different options for single component
Applying single suite of programs to different compilers



Introduction

When to Avoid [t

Incomparable “factors”
E.g., measuring vastly different workloads on single system
Numerical factors

Won't predict any untested levels
Regression usually better choice

Related entries across level
Use two-factor design instead

CS147
L Introduction

L_When to Avoid It
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Choosing authentication server for single-sized messages
Four different servers are available

Performance measured by response time
Lower is better
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Yi=p+oj+ €

yijis i" response with factor set at level j
i IS mean response

aj is effect of alternative j

> =0
gj is error term

Ze/jzo
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L One-Factor Experiments With Replications
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Initially, assume r replications at each alternative of factor
Assuming a alternatives, we have a total of ar observations
Model is thus

ZZy,/_aerrZajJrZZe,j

i=1 j=1 i=1 j=1
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LSample Data for Our Example
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Four alternatives, with four replications each (measured in
seconds)

A B C D
0.96 0.75 1.01 0.93
1.05 122 0.89 1.02
0.82 1.13 0.94 1.06
0.94 098 138 1.21



The Model Finding Effects

Computing Effects

Need to figure out 1 and «;
We have various yj's
Errors should add to zero:

r a
> e =0

i=1 j=1

Similarly, effects should add to zero:

a
Zaj =0
j=1

10/42
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The Model Finding Effects

Calculating

By definition, sum of errors and sum of effects are both zero:

r a
Y yj=arp+0+0

i=1 j=1

And thus, u is equal to grand mean of all responses

1 r a
Mzgzzyijzy.

i=1 j=1
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LFinding Effects
L Calculating 1
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The Model Finding Effects

Calculating p for Our Example

Thus,

= 1.018
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The Model Finding Effects
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LFinding Effects
LCalculating a;

2015-06-1

a; is vector of responses
One for each alternative of the factor

To find vector, find column means

_ 1
y-/Z;Zyi/
i=1

Separate mean for each j
Can calculate directly from observations
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We know that y; is defined to be

Yi=p+oj+ e
So,

r

1
i=1

r
(ru+raj+2e,'j>

i=1

N =

14/42




The Model Finding Effects

Calculating Parameters

Sum of errors for any given row is zero, so

1

So we can solve for «;:

=y —p=Yy;—Yy.

o CS147
LThe Model
LFinding Effects
LCaIcuIating Parameters
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The Model Finding Effects
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LFinding Effects
L_Parameters for Our Example
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Server A B C D
Col. Mean .9425 1.02 1.055 1.055

Subtract i from column means to get
parameters:

Parameters -.076 .002 .037 .037
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The Model Calculating Errors
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LCalculating Errors
LEstimating Experimental Errors
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Estimated response is y; = 1 + «;
But we measured actual responses
Multiple responses per alternative
So we can estimate amount of error in estimated response

Use methods similar to those used in other types of
experiment designs
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LCalculating Errors
L_Sum of Squared Errors
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SSE estimates variance of the errors:
r a
2
SSE=) ") €
i=1 j=1

We can calculate SSE directly from model and observations

Also can find indirectly from its relationship to other error
terms
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The Model Calculating Errors

SSE for Our Example o CS147

Calculated directly:

SSE =

LThe Model
LCalculating Errors
L-SSE for Our Example
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(.96 — (1.018 — .076))?
+ (1.05 — (1.018 — .076))2 + . ..
+ (.75 — (1.018 + .002))?
+(1.22 - (1.018 +.002))2 + ...
+ (.93 — (1.018 +.037))?
3425
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ANOVA Allocation
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L_Allocation
LAIIocating Variation
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To allocate variation for model, start by squaring both sides of
model equation

y,/2 = Mz + 0112 + eﬁ + 2,uozj + 2/16,'/' + 204/6,'/'
2 2 2 2
DVE o= D) of+) 6
i i i i

+ cross-products

Cross-product terms add up to zero
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ANOVA Allocation

Variation In Sum of Squares Terms y GEIET

= L_ANOVA

2 —Allocation

= Variation In Sum of Squares Terms
AN

Gives anoher way to caclato SSE

SSY = SS0+ SSA + SSE
SSY = ) yi

r a
SS0 = > Y pP=ary?

i=1 j*1

SSA ZZQ _rZaZ

i=1 j=1

Gives another way to calculate SSE
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ANOVA Allocation

Sum of Squares Terms for Our Example o CS147

% —ANOVA

2 L Allocation

= Sum of Squares Terms for Our Example
(aV]

SSY =16.9615
SS0 = 16.58256
SSA = .03377

So SSE must equal 16.9615-16.58256-.03377
=0.3425
Matches our earlier SSE calculation
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L Allocation
Assigning Variation
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SST is total variation

SST = SSY — SS0 = SSA + SSE

Part of total variation comes from model
Part comes from experimental errors

A good model explains a lot of variation
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Assigning Variation in Our Example o CS147

% —ANOVA
2 L Allocation
§ Assigning Variation in Our Example

SST = SSY — SS0 = 0.376244

SSA = .03377

SSE = .3425

Percentage of variation explained by server choice:

.03377

=100 x —=55

=8.97%
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ANOVA Analysis

Analysis of Variance

Percentage of variation explained can be large or small

Regardless of size, may or may not be statistically significant
To determine significance, use ANOVA procedure
Assumes normally distributed errors

» CS147
L-ANOVA
L Analysis
LAnallysis of Variance
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ANOVA Analysis

Running ANOVA o CS147

L_ANOVA
L Analysis
L—Running ANOVA
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Easiest to set up tabular method
Like method used in regression models
Only slight differences
Basically, determine ratio of Mean Squared of A (parameters)
to Mean Squared Errors

Then check against F-table value for number of degrees of
freedom
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ANOVA Analysis

ANOVA Table for One-Factor Experiments o O A
©
2 Analysis
= L ANOVA Table for One-Factor Experiments
(9]
% of Degrees F-

Com- Sum of Varia-  of Free- Mean Com- F-

ponent Squares tion dom Square puted Table

y SSY =3 y,j? N

Y. SS0 = Np? 1

y—Yy.. SST=S8SY-SS0 100 N—1

FI
A SSA=rya? ¥ a-1 MsA=S M 1T
SSE SSE N-= a]
e SSE = SST — SSA SeT N-—a MSE = 7>

N = ar Se = VMSE
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ANOVA Procedure for Our Example w0 GS147
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L Analysis
L-ANOVA Procedure for Our Example
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Com- % of  Degrees F-

po- Sum of Varia- of Free- Mean Com- F-
nent Squares tion dom Square puted Table
y 16.96 16

Y. 16.58 1

y—Jy. 0.376 100 15

A .034 9.0 3 .011 0.394 261
e .342 91.0 12 .028
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L Analysis
LInterpretaltion of Sample ANOVA
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Done at 90% level

F-computed is .394

Table entry at 90% level with n =3 and m =12 is 2.61
Thus, servers are not significantly different
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One-Factor Experiment Assumptions

L One-Factor Experiment Assumptions
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Analysis of one-factor experiments makes the usual
assumptions:

Effects of factors are additive

Errors are additive

Errors are independent of factor alternatives

Errors are normally distributed

Errors have same variance at all alternatives

How do we tell if these are correct?
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Similar to those done before

Residuals vs. predicted response
Normal quantile-quantile plot
Residuals vs. experiment number

31/42




Verifying Assumptions

Residuals vs. Predicted for Example 0 GS147 .
5 Verifying Assumptions
o
g L Residuals vs. Predicted for Example
AN
0.4
°
0.2 °
°
° °
0.0 $ o
° 0
° L4
°
-0.2
°
0.9 1.0 1.1
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Verifying Assumptions

Residuals vs. Predicted, Slightly Revised 2 T\ eitying Assumptons : R
2' L Residuals vs. Predicted, Slightly Revised ‘,l' ?
04 . In the alternate rendering, the
predictions for server D are shown in
0.2 . . blue so they can be distinguished from
. . server C.
0.0 x =
° ]
° (]
[
-0.2
[

0.9 1.0 1.1
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L_What Does The Plot Tell Us?

2015-06-15

Analysis assumed size of errors was unrelated to factor
alternatives
Plot tells us something entirely different

Very different spread of residuals for different factors
Thus, one-factor analysis is not appropriate for this data

Compare individual alternatives instead
Use pairwise confidence intervals

34/42
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L_Could We Have Figured This Out Sooner?
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Yes!

Look at original data

Look at calculated parameters

Model says C & D are identical

Even cursory examination of data suggests otherwise
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LLooking Back at the Data

A B C D
096 0.75 1.01 0.93
1.05 1.22 0.89 1.02
0.82 1.13 0.94 1.06
094 098 1.38 1.21

Parameters:
-076 .002 .037 .037
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Quantile-Quantile Plot for Example
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0.4

0.2

37/42



Verifying Assumptions

L Verifying Assumptions

What Does This Plot Tell Us?

L_What Does This Plot Tell Us?
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Overall, errors are normally distributed

If we only did quantile-quantile plot, we'd think everything was
fine

The lesson: test ALL assumptions, not just one or two
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Verifying Assumptions

One-Factor Confidence Intervals

Estimated parameters are random variables
Thus, can compute confidence intervals

Basic method is same as for confidence intervals on 2&r
design effects
Find standard deviation of parameters

Use that to calculate confidence intervals
Possible typo in book, p. 336, example 20.6, in formula for

calculating «;
Also might be typo on p. 335: degrees of freedom is a(r — 1),

notr(a—1)
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Verifying Assumptions

Confidence Intervals For Example Parameters

Se = .158

Standard deviation of © = .040

Standard deviation of o; = .069

95% confidence interval for . = (.932,1.10)

95% Cl for oy = (—.225,.074

95% Cl for ap = (—.148,.151

95% Cl for ag = (—.113,.186
(

)
)
)
95% Cl for ays = (—.113,.186)
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L_Confidence Intervals For Example
Parameters
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Don’t really need identical replications for all alternatives
Only slight extra difficulty
See book example for full details
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LChalnges To Handle Unequal Sample Sizes
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Model is the same
Effects are weighted by number of replications for that

alternative: 5
> 13 =0
j=1

Slightly different formulas for degrees of freedom

42/42
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