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Introduction

Characteristics of One-Factor Experiments

I Useful if there’s only one important categorical factor with
more than two interesting alternatives

I Methods reduce to 21 factorial designs if only two choices
I If single variable isn’t categorical, should use regression

instead
I Method allows multiple replications
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Introduction

Comparing Truly Comparable Options

I Evaluating single workload on multiple machines
I Trying different options for single component
I Applying single suite of programs to different compilers
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Introduction

When to Avoid It

I Incomparable “factors”
I E.g., measuring vastly different workloads on single system

I Numerical factors
I Won’t predict any untested levels
I Regression usually better choice

I Related entries across level
I Use two-factor design instead
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The Model

An Example One-Factor Experiment

I Choosing authentication server for single-sized messages
I Four different servers are available
I Performance measured by response time

I Lower is better
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The Model

The One-Factor Model

I yij = µ+ αj + eij

I yij is i th response with factor set at level j
I µ is mean response
I αj is effect of alternative j ∑

αj = 0

I eij is error term ∑
eij = 0
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The Model

One-Factor Experiments With Replications

I Initially, assume r replications at each alternative of factor
I Assuming a alternatives, we have a total of ar observations
I Model is thus

r∑
i=1

a∑
j=1

yij = arµ+ r
a∑

j=1

αj +
r∑

i=1

a∑
j=1

eij
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The Model

Sample Data for Our Example

I Four alternatives, with four replications each (measured in
seconds)

A B C D
0.96 0.75 1.01 0.93
1.05 1.22 0.89 1.02
0.82 1.13 0.94 1.06
0.94 0.98 1.38 1.21
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The Model Finding Effects

Computing Effects

I Need to figure out µ and αj

I We have various yij ’s
I Errors should add to zero:

r∑
i=1

a∑
j=1

eij = 0

I Similarly, effects should add to zero:

a∑
j=1

αj = 0
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The Model Finding Effects

Calculating µ

I By definition, sum of errors and sum of effects are both zero:

r∑
i=1

a∑
j=1

yij = arµ+ 0 + 0

I And thus, µ is equal to grand mean of all responses

µ =
1
ar

r∑
i=1

a∑
j=1

yij = y ··
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The Model Finding Effects

Calculating µ for Our Example

Thus,

µ =
1

4 × 4

4∑
i=1

4∑
j=1

yij

=
1

16
× 16.29

= 1.018
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The Model Finding Effects

Calculating αj

I αj is vector of responses
I One for each alternative of the factor

I To find vector, find column means

y ·j =
1
r

r∑
i=1

yij

I Separate mean for each j
I Can calculate directly from observations
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Calculating Column Mean
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The Model Finding Effects

Calculating Parameters

I Sum of errors for any given row is zero, so

y ·j =
1
r
(rµ+ rαj + 0)

= µ+ αj

I So we can solve for αj :

αj = y ·j − µ = y ·j − y ··
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The Model Finding Effects

Parameters for Our Example

Server A B C D
Col. Mean .9425 1.02 1.055 1.055

Subtract µ from column means to get
parameters:

Parameters -.076 .002 .037 .037
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The Model Calculating Errors

Estimating Experimental Errors

I Estimated response is ŷij = µ+ αij
I But we measured actual responses

I Multiple responses per alternative
I So we can estimate amount of error in estimated response
I Use methods similar to those used in other types of

experiment designs
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The Model Calculating Errors

Sum of Squared Errors

I SSE estimates variance of the errors:

SSE =
r∑

i=1

a∑
j=1

e2
ij

I We can calculate SSE directly from model and observations
I Also can find indirectly from its relationship to other error

terms
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The Model Calculating Errors

SSE for Our Example

Calculated directly:

SSE = (.96 − (1.018 − .076))2

+ (1.05 − (1.018 − .076))2 + . . .

+ (.75 − (1.018 + .002))2

+ (1.22 − (1.018 + .002))2 + . . .

+ (.93 − (1.018 + .037))2

= .3425
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ANOVA Allocation

Allocating Variation

I To allocate variation for model, start by squaring both sides of
model equation

y2
ij = µ2 + α2

j + e2
ij + 2µαj + 2µeij + 2αjeij∑

i,j

y2
ij =

∑
i,j

µ2 +
∑
i,j

α2
j +

∑
i,j

e2
ij

+ cross-products

I Cross-product terms add up to zero
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ANOVA Allocation

Variation In Sum of Squares Terms

SSY = SS0 + SSA + SSE
SSY =

∑
i,j

y2
ij

SS0 =
r∑

i=1

a∑
j=1

µ2 = arµ2

SSA =
r∑

i=1

a∑
j=1

α2
j = r

a∑
j=1

α2
j

Gives another way to calculate SSE
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ANOVA Allocation

Sum of Squares Terms for Our Example

I SSY = 16.9615
I SS0 = 16.58256
I SSA = .03377
I So SSE must equal 16.9615-16.58256-.03377

I = 0.3425
I Matches our earlier SSE calculation
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ANOVA Allocation

Assigning Variation

I SST is total variation
I SST = SSY − SS0 = SSA + SSE
I Part of total variation comes from model
I Part comes from experimental errors
I A good model explains a lot of variation
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ANOVA Allocation

Assigning Variation in Our Example

I SST = SSY − SS0 = 0.376244
I SSA = .03377
I SSE = .3425
I Percentage of variation explained by server choice:

= 100 × .03377
.3762

= 8.97%
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ANOVA Analysis

Analysis of Variance

I Percentage of variation explained can be large or small
I Regardless of size, may or may not be statistically significant
I To determine significance, use ANOVA procedure

I Assumes normally distributed errors
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ANOVA Analysis

Running ANOVA

I Easiest to set up tabular method
I Like method used in regression models

I Only slight differences
I Basically, determine ratio of Mean Squared of A (parameters)

to Mean Squared Errors
I Then check against F-table value for number of degrees of

freedom
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ANOVA Analysis

ANOVA Table for One-Factor Experiments

Com-
ponent

Sum of
Squares

% of
Varia-
tion

Degrees
of Free-

dom
Mean

Square

F-
Com-
puted

F-
Table

y SSY =
∑

y2
ij N

y ·· SS0 = Nµ2 1
y − y ·· SST = SSY− SS0 100 N − 1

A SSA = r
∑
α2

j
SSA
SST a− 1 MSA = SSA

a−1
MSA
MSE

F[
1− α;
a − 1,
N − a]

e SSE = SST− SSA SSE
SST N − a MSE = SSE

N−a

N = ar se =
√

MSE
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ANOVA Analysis

ANOVA Procedure for Our Example

Com-
po-
nent

Sum of
Squares

% of
Varia-
tion

Degrees
of Free-

dom
Mean

Square

F-
Com-
puted

F-
Table

y 16.96 16
y ·· 16.58 1
y − y ·· 0.376 100 15
A .034 9.0 3 .011 0.394 2.61
e .342 91.0 12 .028
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ANOVA Analysis

Interpretation of Sample ANOVA

I Done at 90% level
I F-computed is .394
I Table entry at 90% level with n = 3 and m = 12 is 2.61
I Thus, servers are not significantly different
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Verifying Assumptions

One-Factor Experiment Assumptions

I Analysis of one-factor experiments makes the usual
assumptions:

I Effects of factors are additive
I Errors are additive
I Errors are independent of factor alternatives
I Errors are normally distributed
I Errors have same variance at all alternatives

I How do we tell if these are correct?
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Verifying Assumptions

Visual Diagnostic Tests

I Similar to those done before
I Residuals vs. predicted response
I Normal quantile-quantile plot
I Residuals vs. experiment number
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Verifying Assumptions

Residuals vs. Predicted for Example
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Verifying Assumptions

Residuals vs. Predicted, Slightly Revised
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In the alternate rendering, the
predictions for server D are shown in
blue so they can be distinguished from
server C.



Verifying Assumptions

What Does The Plot Tell Us?

I Analysis assumed size of errors was unrelated to factor
alternatives

I Plot tells us something entirely different
I Very different spread of residuals for different factors

I Thus, one-factor analysis is not appropriate for this data
I Compare individual alternatives instead
I Use pairwise confidence intervals
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Verifying Assumptions

Could We Have Figured This Out Sooner?

I Yes!
I Look at original data
I Look at calculated parameters
I Model says C & D are identical
I Even cursory examination of data suggests otherwise
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Verifying Assumptions

Looking Back at the Data

A B C D
0.96 0.75 1.01 0.93
1.05 1.22 0.89 1.02
0.82 1.13 0.94 1.06
0.94 0.98 1.38 1.21

Parameters:
-.076 .002 .037 .037
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Verifying Assumptions

Quantile-Quantile Plot for Example
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Verifying Assumptions

What Does This Plot Tell Us?

I Overall, errors are normally distributed
I If we only did quantile-quantile plot, we’d think everything was

fine
I The lesson: test ALL assumptions, not just one or two
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Verifying Assumptions

One-Factor Confidence Intervals

I Estimated parameters are random variables
I Thus, can compute confidence intervals

I Basic method is same as for confidence intervals on 2k r
design effects

I Find standard deviation of parameters
I Use that to calculate confidence intervals
I Possible typo in book, p. 336, example 20.6, in formula for

calculating αj
I Also might be typo on p. 335: degrees of freedom is a(r − 1),

not r(a − 1)
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Verifying Assumptions

Confidence Intervals For Example Parameters

I se = .158
I Standard deviation of µ = .040
I Standard deviation of αj = .069
I 95% confidence interval for µ = (.932,1.10)
I 95% CI for α1 = (−.225, .074)
I 95% CI for α2 = (−.148, .151)
I 95% CI for α3 = (−.113, .186)
I 95% CI for α4 = (−.113, .186)

40 / 42

Confidence Intervals For Example Parameters

I se = .158
I Standard deviation of µ = .040
I Standard deviation of αj = .069
I 95% confidence interval for µ = (.932,1.10)
I 95% CI for α1 = (−.225, .074)
I 95% CI for α2 = (−.148, .151)
I 95% CI for α3 = (−.113, .186)
I 95% CI for α4 = (−.113, .186)20

15
-0

6-
15

CS147
Verifying Assumptions

Confidence Intervals For Example
Parameters



Unequal Sample Sizes

Unequal Sample Sizes in One-Factor Experiments

I Don’t really need identical replications for all alternatives
I Only slight extra difficulty
I See book example for full details
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Unequal Sample Sizes

Changes To Handle Unequal Sample Sizes

I Model is the same
I Effects are weighted by number of replications for that

alternative:
a∑

j=1

rjaj = 0

I Slightly different formulas for degrees of freedom
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