CS147 90-5102

CS 147: Computer Systems Performance Analysis One-Factor Experiments

CS 147: Computer Systems Performance Analysis One-Factor Experiments Overview

Introduction

The Model

Finding Effects Calculating Errors

ANOVA

Allocation Analysis

Verifying Assumptions

Unequal Sample Sizes

Characteristics of One-Factor Experiments

- Useful if there's only one important categorical factor with more than two interesting alternatives
 - Methods reduce to 2¹ factorial designs if only two choices
- If single variable isn't categorical, should use regression instead
- Method allows multiple replications

Comparing Truly Comparable Options

- Evaluating single workload on multiple machines
- Trying different options for single component
- Applying single suite of programs to different compilers

When to Avoid It

CS147 - Introduction - When to Avoid It - When to Avoid It

- Incomparable "factors"
 - E.g., measuring vastly different workloads on single system
- Numerical factors
 - Won't predict any untested levels
 - Regression usually better choice
- Related entries across level
 - Use two-factor design instead

An Example One-Factor Experiment

- Choosing authentication server for single-sized messages
- Four different servers are available
- Performance measured by response time
 - Lower is better

The One-Factor Model

- $\blacktriangleright \mathbf{y}_{ij} = \mu + \alpha_j + \mathbf{e}_{ij}$
- y_{ij} is i^{th} response with factor set at level j
- $\blacktriangleright \mu$ is mean response
- α_i is effect of alternative *j*

$$\sum \alpha_j = \mathbf{0}$$

► *e_{ij}* is error term

$$\sum m{e}_{ij}=0$$

One-Factor Experiments With Replications

- Initially, assume r replications at each alternative of factor
- Assuming a alternatives, we have a total of ar observations
- Model is thus

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_j + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}$$

Sample Data for Our Example

CS147	Sample Data for Our Example
Sample Data for Our Example	 Four alternatives, with Nor replications active (measured in seconds) 8 C 0.08 1.75 1.01 0.23 0.08 1.02 1.01 0.24 1.05 0.28 1.13 0.94 1.05 0.94 0.98 1.21

 Four alternatives, with four replications each (measured in seconds)

Α	В	С	D
0.96	0.75	1.01	0.93
1.05	1.22	0.89	1.02
0.82	1.13	0.94	1.06
0.94	0.98	1.38	1.21

Computing Effects

- Need to figure out μ and α_j
- ▶ We have various y_{ij}'s
- Errors should add to zero:

$$\sum_{i=1}^r \sum_{j=1}^a e_{ij} = 0$$

Similarly, effects should add to zero:

$$\sum_{j=1}^{a} \alpha_j = 0$$

CS147 The Model Finding Effects Computing Effects

 $\begin{array}{l} \quad \text{ organization Effection}\\ \text{ and } n_{i} & \text{ the have various } p_{i}^{in}\\ \text{ and } more should add to zero: \\ \quad \sum_{i=1}^{r}\sum_{j=1}^{n}n_{ij}^{i}=0\\ \text{ and should add to zero: }\\ \quad \text{ Similarly, effects should add to zero: }\\ \quad \sum_{j=1}^{n}n_{j}^{i}=0 \end{array}$

The Model Finding Effects

Calculating μ

> By definition, sum of errors and sum of effects are both zero:

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + 0 + 0$$

> And thus, μ is equal to grand mean of all responses

$$\mu = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = \overline{y}_{..}$$

The Model Finding Effects

Calculating μ for Our Example

CS147 alculating *u* for Our Example 2015-06-15 The Model Thus, -Finding Effects \Box Calculating μ for Our Example

 $\begin{array}{rcl} \mu & = & \displaystyle \frac{1}{4 \times 4} \sum_{i=1}^{4} \sum_{j=1}^{4} y_{ij} \\ & = & \displaystyle \frac{1}{16} \times 16.29 \\ & = & 1.018 \end{array}$

Thus,

Calculating α_j

• a_i is vector of responses • One for each aternative of the factor • To find vector, find column means $\overline{y}_i = \frac{1}{r} \sum_{i=1}^{r} y_i$ • Separate mean for each j

Can calculate directly from observations

- α_j is vector of responses
 - One for each alternative of the factor
- ► To find vector, find column means

$$\overline{y}_{\cdot j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}$$

- Separate mean for each j
- Can calculate directly from observations

Calculating Column Mean

We know that y_{ij} is defined to be

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

► So,

$$\overline{\mathbf{y}}_{.j} = \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + \mathbf{e}_{ij})$$
$$= \frac{1}{r} \left(r \mu + r \alpha_j + \sum_{i=1}^{r} \mathbf{e}_{ij} \right)$$

alculating Column Mean

Calculating Parameters

Sum of errors for any given row is zero, so

$$\overline{\mathbf{y}}_{\cdot j} = \frac{1}{r}(r\mu + r\alpha_j + \mathbf{0})$$
$$= \mu + \alpha_j$$

So we can solve for α_j :

$$\alpha_j = \overline{\mathbf{y}}_{\cdot j} - \mu = \overline{\mathbf{y}}_{\cdot j} - \overline{\mathbf{y}}_{\cdot i}$$

The Model

Parameters for Our Example

4 B C D

Parametera - 076 .002 .037 .03

9425 1.02 1.055 1.05

Col Mean

parameters:

Server	А	В	С	D
Col. Mean	.9425	1.02	1.055	1.055

Subtract μ from column means to get parameters:

Parameters -.076 .002 .037 .037

Estimating Experimental Errors

Estimating Experimental Errors • Estimated response is $\hat{y}_j = \mu + \alpha_j$ • Extrem measured schaft responses • May request a particular responses • Use restricts similar to these used is other types of • Use restrict schaft in these used is other types of

- Estimated response is $\hat{y}_{ij} = \mu + \alpha_{ij}$
- But we measured actual responses
 - Multiple responses per alternative
- So we can estimate amount of error in estimated response
- Use methods similar to those used in other types of experiment designs

Sum of Squared Errors

SSE estimates variance of the errors:

 $\mathsf{SSE} = \sum_{i=1}^r \sum_{j=1}^a e_{ij}^2$

- We can calculate SSE directly from model and observations
- Also can find indirectly from its relationship to other error terms

SSE for Our Example

Calculated directly:

$$SSE = (.96 - (1.018 - .076))^{2} + (1.05 - (1.018 - .076))^{2} + ... + (.75 - (1.018 + .002))^{2} + (1.22 - (1.018 + .002))^{2} + ... + (.93 - (1.018 + .037))^{2} = .3425$$

		0	-	
5E -	100	our		10 H

= .3425

Allocating Variation

 To allocate variation for model, start by squaring both sides of model equation

$$y_{ij}^2 = \mu^2 + \alpha_j^2 + e_{ij}^2 + 2\mu\alpha_j + 2\mu e_{ij} + 2\alpha_j e_{ij}$$
$$\sum_{i,j} y_{ij}^2 = \sum_{i,j} \mu^2 + \sum_{i,j} \alpha_j^2 + \sum_{i,j} e_{ij}^2$$
$$+ \text{cross-products}$$

Cross-product terms add up to zero

► To allocate variation for model, start by squaring both sides of model equation $y_{d}^{2} = \mu^{2} + o_{t}^{2} + \theta_{t}^{2} + 2\mu o_{t} + 2\nu_{t} e_{t} + 2\nu_{t} e_{t}$

VOVA Allocation

Variation In Sum of Squares Terms

$$\begin{array}{c} \mathsf{CS147} \\ \mathsf{L} \\ \mathsf{ANOVA} \\ \mathsf{L} \\ \mathsf{Allocation} \\ \mathsf{L} \\ \mathsf{Variation In Sum of Squares Terms} \end{array} \xrightarrow{\mathsf{CS147}} \\ \begin{array}{c} \mathsf{Sw} = \mathsf{Sw} + \mathsf{Sw} + \mathsf{Sw} \\ \mathsf{Sw} = \sum_{i=1}^{V} \mathsf{s}^{i} \\$$

$$SSY = SS0 + SSA + SSE$$

$$SSY = \sum_{i,j} y_{ij}^{2}$$

$$SS0 = \sum_{i=1}^{r} \sum_{j=1}^{a} \mu^{2} = ar\mu^{2}$$

$$SSA = \sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_{j}^{2} = r \sum_{j=1}^{a} \alpha_{j}^{2}$$

Gives another way to calculate SSE

Sum of Squares Terms for Our Example

- ► SSY = 16.9615
- ▶ SS0 = 16.58256
- ► SSA = .03377
- So SSE must equal 16.9615-16.58256-.03377
 - ► = 0.3425
 - Matches our earlier SSE calculation

CS147 ANOVA Allocation Sum of Squares Terms for Our Example

Assigning Variation

CS147 -ANOVA -Allocation -SC -Assigning Variation

- Assigning Variation
- SST is total variation
- SST = SSY SS0 = SSA + SSE
 Part of total variation comes from more
- Part or total variation comes from into
 Part comes from experimental errors
 A good model explains a lot of variation

- SST is total variation
 - $\blacktriangleright SST = SSY SS0 = SSA + SSE$
 - Part of total variation comes from model
 - Part comes from experimental errors
 - A good model explains a lot of variation

NOVA Allocation

Assigning Variation in Our Example

CS147 ANOVA Allocation CS147 Allocation CS147 Allocation CS147 C

- ▶ SST = SSY SS0 = 0.376244
- ▶ SSA = .03377
- ▶ SSE = .3425
- Percentage of variation explained by server choice:

$$=100\times\frac{.03377}{.3762}=8.97\%$$

Analysis of Variance

Percentage of variation explained can be large or small
 Regardless of size, may or may not be statistically significant
 To determine significance, use ANOVA procedure
 Assume normaly detributed encore

Analysis of Variance

- Percentage of variation explained can be large or small
- Regardless of size, may or may not be statistically significant
- ▶ To determine significance, use ANOVA procedure
 - Assumes normally distributed errors

Running ANOVA

- Running ANOVA
- Easiest to set up tabular method
 Like method used in regression models
 Only sight differences
- Basically, determine ratio of Mean Squared of A (parameters)
- to Mean Squared Errors
 - Then check against F-table value for number of degrees of treadum

- Easiest to set up tabular method
- Like method used in regression models
 - Only slight differences
- Basically, determine ratio of Mean Squared of A (parameters) to Mean Squared Errors
- Then check against F-table value for number of degrees of freedom

NOVA Analysis

ANOVA Table for One-Factor Experiments

		% of	Degrees		F-	
Com-	Sum of	Varia-	of Free-	Mean	Com-	F-
ponent	Squares	tion	dom	Square	puted	Table
у	$SSY = \sum y_{ij}^2$		Ν			
<u>y</u>	$SS0 = N\mu^2$		1			
$y - \overline{y}_{}$	SST = SSY - SS0	100	<i>N</i> – 1			
						F[
Α	$SSA = r \sum \alpha_i^2$	SSA SST	<i>a</i> – 1	$MSA = \frac{SSA}{a-1}$	MSA	$1 - \alpha;$
	,	001		a - 1	MOL	a — 1, N — al
е	SSE=SST-SSA	SSE SST	N – a	$MSE = \frac{SSE}{N-a}$, . uj
		N — ar	$s = \sqrt{M^2}$	<u>SE</u>		
		v = a	$3_{\theta} - \sqrt{100}$			

NOVA Analysis

ANOVA Procedure for Our Example

Com-		% of	Degrees		F-	
po-	Sum of	Varia-	of Free-	Mean	Com-	F-
nent	Squares	tion	dom	Square	puted	Table
V	16.96		16			
$\frac{y}{y}$	16.58		1			
$\overline{y} - \overline{y}_{}$	0.376	100	15			
A	.034	9.0	3	.011	0.394	2.61
е	.342	91.0	12	.028		

Interpretation of Sample ANOVA

Done at 90% level
 F-computed is .394

erpretation of Sample ANOVA

Table entry at 90% level with n = 3 and m = 12 is 2.61
 Thus, servers are not significantly different

- Done at 90% level
- ► F-computed is .394
- Table entry at 90% level with n = 3 and m = 12 is 2.61
- Thus, servers are not significantly different

One-Factor Experiment Assumptions

- Analysis of one-factor experiments makes the usual assumptions:
 - Effects of factors are additive
 - Errors are additive
 - Errors are independent of factor alternatives
 - Errors are normally distributed
 - Errors have same variance at all alternatives
- How do we tell if these are correct?

Visual Diagnostic Tests

/isual Diagnostic Tests

Similar to those done before • Residuals vs. predicted response • Normal quantile-quantile plot • Residuals vs. experiment number

- Similar to those done before
 - Residuals vs. predicted response
 - Normal quantile-quantile plot
 - Residuals vs. experiment number

Verifying Assumptions

Residuals vs. Predicted for Example

Verifying Assumptions

Residuals vs. Predicted, Slightly Revised

CS147 Verifying Assumptions

In the alternate rendering, the predictions for server D are shown in blue so they can be distinguished from server C.

What Does The Plot Tell Us?

- Analysis assumed size of errors was unrelated to factor alternatives
- Plot tells us something entirely different
 - Very different spread of residuals for different factors
- Thus, one-factor analysis is not appropriate for this data
 - Compare individual alternatives instead
 - Use pairwise confidence intervals

- hat Does The Plot Tell Us?
- Analysis assumed size of errors was unrelated to factor
- alternatives Piot tells us something entirely different
- Very different spread of residuals for different factor
- Thus, one-factor analysis is not appropriate for this data
 Compare individual alternatives instead

Could We Have Figured This Out Sooner?

Yes!

- Look at original data
- Look at calculated parameters
- Model says C & D are identical
- Even cursory examination of data suggests otherwise

CS147 Verifying Assumptions Could We Have Figured This Out Sooner? Verifying Assumptions

Looking Back at the Data

	CS147	Looking Back at the B	ata			
10	03147					
÷	Varifying Accumptions					
, ch	- veniging Assumptions	A	в	с	D	
e	, , , ,	0.96	0.75	1.01	0.93	
Ļ		1.05	1.13	0.89	1.02	
ιÒ		0.94	0.98	1.38	1.21	
<u>~</u>	L ooking Back at the Data	Paran	neters:		007	
Ö	LOOKING DACK ALLINE DALA	076	.002	.037	.037	
Ň						

А	В	С	D
0.96	0.75	1.01	0.93
1.05	1.22	0.89	1.02
0.82	1.13	0.94	1.06
0.94	0.98	1.38	1.21

Parameters:

-.076 .002 .037 .037

Verifying Assumptions

Quantile-Quantile Plot for Example

CS147 Verifying Assumptions Quantile-Quantile Plot for Example

What Does This Plot Tell Us?

Coverall, errors are normally distributed
 If we only did quantile quartile plot, we'd think everything we
fine
 The leason: test ALL assumptions. not list one or two

What Does This Plot Tell Us?

The least of the second s

- Overall, errors are normally distributed
- If we only did quantile-quantile plot, we'd think everything was fine
- The lesson: test ALL assumptions, not just one or two

One-Factor Confidence Intervals

- Estimated parameters are random variables
 - Thus, can compute confidence intervals
- Basic method is same as for confidence intervals on 2^kr design effects
- Find standard deviation of parameters
 - Use that to calculate confidence intervals
 - Possible typo in book, p. 336, example 20.6, in formula for calculating α_i
 - ► Also might be typo on p. 335: degrees of freedom is a(r 1), not r(a 1)

 Estimated parameters are random variables Thus, can compute confidence intervals
 Basic method is same as for confidence intervals on 2^kr
design effects
 Find standard deviation of parameters
 Possible typo in book, p. 336, example 20.6, in formula for policy of the policy of the

calculating o_{γ} Also might be typo on p. 335: degrees of freedom is a(r - not r(a - 1))

Confidence Intervals For Example Parameters

- ▶ *s*_e = .158
- Standard deviation of $\mu = .040$
- Standard deviation of $\alpha_i = .069$
- ▶ 95% confidence interval for $\mu = (.932, 1.10)$
- ▶ 95% CI for $\alpha_1 = (-.225, .074)$
- ▶ 95% CI for $\alpha_2 = (-.148, .151)$
- ▶ 95% CI for $\alpha_3 = (-.113, .186)$
- ▶ 95% CI for $\alpha_4 = (-.113, .186)$

CS147 Verifying Assumptions Confidence Intervals For Example Parameters

Unequal Sample Sizes in One-Factor Experiments

- > Don't really need identical replications for all alternatives
- Only slight extra difficulty
- See book example for full details

Changes To Handle Unequal Sample Sizes

- Model is the same
- Effects are weighted by number of replications for that alternative:

$$\sum_{j=1}^{a} r_j a_j = 0$$

Slightly different formulas for degrees of freedom

