CS 147:

Computer Systems Performance Analysis
One-Factor Experiments

Overview

Introduction
The Model
Finding Effects
Calculating Errors

ANOVA

Allocation
Analysis
Verifying Assumptions
Unequal Sample Sizes
$=$

Characteristics of One-Factor Experiments

- Useful if there's only one important categorical factor with more than two interesting alternatives
- Methods reduce to 2^{1} factorial designs if only two choices
- If single variable isn't categorical, should use regression instead
- Method allows multiple replications

Comparing Truly Comparable Options

```
CS147
¢`.
~
LComparing Truly Comparable Options
```

- Evaluating single workload on multiple machines
- Trying different options for single component
- Applying single suite of programs to different compilers

When to Avoid It

```
CS147
    LIntroduction
N
When to Avoid It
```

- Incomparable "factors"
- E.g., measuring vastly different workloads on single system
- Numerical factors
- Won't predict any untested levels

Regression usually better choice

- Related entries across level
- Use two-factor design instead

An Example One-Factor Experiment

```
CS147
    -The Model
%
&An Example One-Factor Experiment
```


- Choosing authentication server for single-sized messages
- Four different servers are available
- Performance measured by response time
- Lower is better

The One-Factor Model

```
~CS147
\overleftarrow{\circ}
```

- $y_{i j}=\mu+\alpha_{j}+\boldsymbol{e}_{i j}$
- $y_{i j}$ is $i^{\text {th }}$ response with factor set at level j
- μ is mean response
- α_{j} is effect of alternative j

$$
\sum \alpha_{j}=0
$$

- $e_{i j}$ is error term

$$
\sum e_{i j}=0
$$

One-Factor Experiments With Replications

```
CS147
    The Model
\stackrel{\circ}{\circ}

- Initially, assume \(r\) replications at each alternative of factor
- Assuming a alternatives, we have a total of ar observations
- Model is thus
\[
\sum_{i=1}^{r} \sum_{j=1}^{a} y_{i j}=\operatorname{ar} \mu+r \sum_{j=1}^{a} \alpha_{j}+\sum_{i=1}^{r} \sum_{j=1}^{a} e_{i j}
\]

\section*{Sample Data for Our Example}
```

~CS147
The Model
\stackrel{@}{~}

```
- Four alternatives, with four replications each (measured in seconds)

A B C D
\(\begin{array}{llll}0.96 & 0.75 & 1.01 & 0.93\end{array}\)
\(\begin{array}{llll}1.05 & 1.22 & 0.89 & 1.02\end{array}\)
\(\begin{array}{llll}0.82 & 1.13 & 0.94 & 1.06\end{array}\)
\(\begin{array}{llll}0.94 & 0.98 & 1.38 & 1.21\end{array}\)

\section*{Computing Effects}
```

\curvearrowleftCS147
¢
O-LFinding Effects
~

```
\(\square\)
\(=\)
\(=\)

- Need to figure out \(\mu\) and \(\alpha_{j}\)
- We have various \(y_{i j}\) 's
- Errors should add to zero:
\[
\sum_{i=1}^{r} \sum_{j=1}^{a} e_{i j}=0
\]
- Similarly, effects should add to zero:
\[
\sum_{j=1}^{a} \alpha_{j}=0
\]
- By definition, sum of errors and sum of effects are both zero:
\[
\sum_{i=1}^{r} \sum_{j=1}^{a} y_{i j}=a r \mu+0+0
\]
- And thus, \(\mu\) is equal to grand mean of all responses
\[
\mu=\frac{1}{a r} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{i j}=\bar{y} . .
\]

Thus,
\[
\begin{aligned}
\mu & =\frac{1}{4 \times 4} \sum_{i=1}^{4} \sum_{j=1}^{4} y_{i j} \\
& =\frac{1}{16} \times 16.29 \\
& =1.018
\end{aligned}
\]

- \(\alpha_{j}\) is vector of responses
- One for each alternative of the factor
- To find vector, find column means
\[
\bar{y}_{\cdot j}=\frac{1}{r} \sum_{i=1}^{r} y_{i j}
\]
- Separate mean for each \(j\)
- Can calculate directly from observations

\section*{Calculating Column Mean}
```

~CS147

```

```

\&-% Linding Effects
~

```
- We know that \(y_{i j}\) is defined to be
\[
y_{i j}=\mu+\alpha_{j}+\boldsymbol{e}_{i j}
\]
- So,
\[
\begin{aligned}
\bar{y}_{\cdot j} & =\frac{1}{r} \sum_{i=1}^{r}\left(\mu+\alpha_{j}+e_{i j}\right) \\
& =\frac{1}{r}\left(r \mu+r \alpha_{j}+\sum_{i=1}^{r} e_{i j}\right)
\end{aligned}
\]
- Sum of errors for any given row is zero, so
\[
\begin{aligned}
\bar{y}_{\cdot j} & =\frac{1}{r}\left(r \mu+r \alpha_{j}+0\right) \\
& =\mu+\alpha_{i}
\end{aligned}
\]
- So we can solve for \(\alpha_{j}\) :
\[
\alpha_{j}=\bar{y}_{. j}-\mu=\bar{y}_{\cdot j}-\bar{y}_{. .}
\]

\section*{Parameters for Our Example}
```

~CS147
¢
O
~
LParameters for Our Example

```

Server A B C D
Col. Mean \(\quad .9425 \quad 1.02 \quad 1.055 \quad 1.055\)
Subtract \(\mu\) from column means to get parameters:

Parameters -. 076 . 002 . 037 . 037

\section*{Estimating Experimental Errors}
```

CS147
¢
O- Calculating Errors
⿳亠丷厂巾

```
－Estimated response is \(\hat{y}_{i j}=\mu+\alpha_{i j}\)
－But we measured actual responses
－Multiple responses per alternative
－So we can estimate amount of error in estimated response
－Use methods similar to those used in other types of experiment designs

\section*{Sum of Squared Errors}
```

CS147
¢`%-The Model
% Calculating Errors
~~

```
- SSE estimates variance of the errors:
\[
\mathrm{SSE}=\sum_{i=1}^{r} \sum_{j=1}^{a} e_{i j}^{2}
\]
- We can calculate SSE directly from model and observations
- Also can find indirectly from its relationship to other error terms

\section*{SSE for Our Example}

Calculated directly:
\[
\begin{aligned}
\text { SSE }= & (.96-(1.018-.076))^{2} \\
& +(1.05-(1.018-.076))^{2}+\ldots \\
& +(.75-(1.018+.002))^{2} \\
& +(1.22-(1.018+.002))^{2}+\ldots \\
& +(.93-(1.018+.037))^{2}
\end{aligned}
\]
\(=.3425\)

\section*{Allocating Variation}
```

CCS147
\doteqdot. LANOVA
\&-LAllocation
~

- To allocate variation for model, start by squaring both sides of model equation

$$
\begin{aligned}
y_{i j}^{2}= & \mu^{2}+\alpha_{j}^{2}+e_{i j}^{2}+2 \mu \alpha_{j}+2 \mu e_{i j}+2 \alpha_{j} e_{i j} \\
\sum_{i, j} y_{i j}^{2}= & \sum_{i, j} \mu^{2}+\sum_{i, j} \alpha_{j}^{2}+\sum_{i, j} e_{i j}^{2} \\
& + \text { cross-products }
\end{aligned}
$$

- Cross-product terms add up to zero

Variation In Sum of Squares Terms

$$
\begin{aligned}
& \mathrm{SSY}=\mathrm{SS} 0+\mathrm{SSA}+\mathrm{SSE} \\
& \mathrm{SSY}=\sum_{i, j} y_{i j}^{2} \\
& \mathrm{SSO}=\sum_{i=1}^{r} \sum_{j=1}^{a} \mu^{2}=\operatorname{ar} \mu^{2} \\
& \mathrm{SSA}=\sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_{j}^{2}=r \sum_{j=1}^{a} \alpha_{j}^{2}
\end{aligned}
$$

Gives another way to calculate SSE

- SSY = 16.9615
- $S S 0=16.58256$
- SSA = . 03377
- So SSE must equal 16.9615-16.58256-.03377
- $=0.3425$
- Matches our earlier SSE calculation

Assigning Variation

CS147

$\stackrel{\curvearrowleft}{\circ}$ LANOVA
© L Allocation $\stackrel{\stackrel{\sim}{\sim}}{\sim}$

- SST is total variation
- SST = SSY - SSO = SSA + SSE
- Part of total variation comes from model
- Part comes from experimental errors
- A good model explains a lot of variation

Assigning Variation in Our Example

```
CCS147
\doteqdot`.LANOVA
O
\stackrel{N}{N}
\(\left\llcorner_{\text {Assigning Variation in Our Example }}\right.\)
```

$-1000 \times \frac{0337}{3720}$

- SST $=$ SSY $-S S O=0.376244$
- SSA $=.03377$
- SSE $=.3425$
- Percentage of variation explained by server choice:

$$
=100 \times \frac{.03377}{.3762}=8.97 \%
$$

Analysis of Variance

```
CS147
\doteqdot`.LANOVA
O-
2015
```

- Percentage of variation explained can be large or small
- Regardless of size, may or may not be statistically significant
- To determine significance, use ANOVA procedure
- Assumes normally distributed errors

```
CS147
¢
O-
~~
```

- Easiest to set up tabular method
- Like method used in regression models
- Only slight differences
- Basically, determine ratio of Mean Squared of A (parameters) to Mean Squared Errors
- Then check against F-table value for number of degrees of freedom

ANOVA Table for One-Factor Experiments

```
@CS147
¢
O-L
\stackrel{N}{N}-ANOVA Table for One-Factor Experiments
```


Component	Sum of Squares	\% of Variation	Degrees of Freedom	Mean Square	F-Computed	FTable
y	SSY $=\sum y_{i j}^{2}$		N			
\bar{y}.	SS0 $=N \mu^{2}$		1			
$y-\bar{y}$.	SST $=$ SSY - SSO	100	$N-1$			
A	$\mathrm{SSA}=r \sum \alpha_{j}^{2}$	SSA	$a-1$	MSA $=\frac{\text { SSA }}{\text { a-1 }}$	MSA	$\begin{aligned} & \mathrm{F}[\\ & 1-\alpha ; \\ & a-1, \end{aligned}$
e	SSE $=$ SST - SSA	SSE	$N-a$	MSE $=\frac{\text { SSE }}{N-a}$		

ANOVA Procedure for Our Example

```
CCS147
¢
O-GAnalysis
\stackrel{N}{N}
-ANOVA Procedure for Our Example
\begin{tabular}{lrrrrrr}
\begin{tabular}{c} 
Com- \\
po- \\
nent
\end{tabular} & \begin{tabular}{c} 
Sum of \\
Squares
\end{tabular} & \begin{tabular}{c} 
Varia- \\
Vion \\
tion
\end{tabular} & \begin{tabular}{c} 
Degrees \\
of Free- \\
dom
\end{tabular} & \begin{tabular}{c} 
Mean \\
Square
\end{tabular} & \begin{tabular}{c} 
F- \\
Com- \\
puted
\end{tabular} & \begin{tabular}{c} 
F- \\
Table
\end{tabular} \\
\hline\(y\) & 16.96 & & 16 & & & \\
\(\bar{y}_{. .}\) & 16.58 & & 1 & & & \\
\(y-\bar{y}_{. .}\) & 0.376 & 100 & 15 & & & \\
\(A\) & .034 & 9.0 & 3 & .011 & 0.394 & 2.61 \\
\(e\) & .342 & 91.0 & 12 & .028 & &
\end{tabular}
- Done at \(90 \%\) level
- F-computed is .394
- Table entry at \(90 \%\) level with \(n=3\) and \(m=12\) is 2.61
- Thus, servers are not significantly different

\section*{One-Factor Experiment Assumptions}
```

CS147
!
2015
-One-Factor Experiment Assumptions

```
- Analysis of one-factor experiments makes the usual assumptions:
- Effects of factors are additive
- Errors are additive
- Errors are independent of factor alternatives
- Errors are normally distributed
- Errors have same variance at all alternatives
- How do we tell if these are correct?

\section*{Visual Diagnostic Tests}

\author{
© CS147 \\ -Verifying Assumptions \\ \(\stackrel{\stackrel{i}{\circ}}{\stackrel{\circ}{\circ}}\) \\ LVisual Diagnostic Tests
}
- Similar to those done before
- Residuals vs. predicted response
- Normal quantile-quantile plot
- Residuals vs. experiment number

\section*{Residuals vs. Predicted for Example}


\section*{Residuals vs. Predicted, Slightly Revised}


CS147
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ}\)
\(\stackrel{i}{2}\)
\(\stackrel{i}{2}\)
-Verifying Assumptions
Residuals vs. Predicted, Slightly Revised
In the alternate rendering, the predictions for server D are shown in blue so they can be distinguished from server C.

\section*{What Does The Plot Tell Us?}
```

CS147
Lerifying Assumptions
2015-06-
-What Does The Plot Tell Us?

```
- Analysis assumed size of errors was unrelated to factor alternatives
- Plot tells us something entirely different
- Very different spread of residuals for different factors
- Thus, one-factor analysis is not appropriate for this data
- Compare individual alternatives instead
- Use pairwise confidence intervals

- Yes!
- Look at original data
- Look at calculated parameters
- Model says C \& D are identical
- Even cursory examination of data suggests otherwise

Verifying Assumptions

\section*{Looking Back at the Data}

A B C D
\(\begin{array}{llll}0.96 & 0.75 & 1.01 & 0.93\end{array}\)
\(\begin{array}{llll}1.05 & 1.22 & 0.89 & 1.02\end{array}\)
\(\begin{array}{llll}0.82 & 1.13 & 0.94 & 1.06\end{array}\)
\(\begin{array}{llll}0.94 & 0.98 & 1.38 & 1.21\end{array}\)
Parameters:
-. 076 . 002.037 . 037

\section*{Quantile-Quantile Plot for Example}

\section*{๓ CS147 \\ \(\underset{\overleftarrow{\circ}}{\curvearrowleft}\) LVerifying Assumptions \\ \(\stackrel{\stackrel{i}{\circ}}{\stackrel{\circ}{\circ}}\) \\ ६Quantile-Quantile Plot for Example}


\section*{What Does This Plot Tell Us?}
```

CS147
-Verifying Assumptions
\stackrel{\circ}{\circ}
What Does This Plot Tell Us?

```
- Overall, errors are normally distributed
- If we only did quantile-quantile plot, we'd think everything was fine
- The lesson: test ALL assumptions, not just one or two

\section*{One-Factor Confidence Intervals}
```

CS147
-Verifying Assumptions
<

```
- Estimated parameters are random variables
- Thus, can compute confidence intervals
- Basic method is same as for confidence intervals on \(2^{k} r\) design effects
- Find standard deviation of parameters
- Use that to calculate confidence intervals
- Possible typo in book, p. 336, example 20.6, in formula for calculating \(\alpha_{j}\)
- Also might be typo on p. 335: degrees of freedom is \(a(r-1)\), not \(r(a-1)\)
\({ }^{-} s_{e}=.158\)
- Standard deviation of \(\mu=.040\)
- Standard deviation of \(\alpha_{j}=.069\)
- \(95 \%\) confidence interval for \(\mu=(.932,1.10)\)
\(-95 \% \mathrm{Cl}\) for \(\alpha_{1}=(-.225, .074)\)
\(-95 \% \mathrm{Cl}\) for \(\alpha_{2}=(-.148, .151)\)
\(-95 \% \mathrm{Cl}\) for \(\alpha_{3}=(-.113, .186)\)
\(-95 \% \mathrm{Cl}\) for \(\alpha_{4}=(-.113, .186)\)
- Don't really need identical replications for all alternatives
- Only slight extra difficulty
- See book example for full details

\section*{Changes To Handle Unequal Sample Sizes}
 \(\sum_{n=1000}^{n}\)
- Model is the same
- Effects are weighted by number of replications for that alternative:
\[
\sum_{j=1}^{a} r_{j} a_{j}=0
\]
- Slightly different formulas for degrees of freedom```

