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Two-Factor Designs No Replications

Two-Factor Design Without Replications

I Used when only two parameters, but multiple levels for each
I Test all combinations of levels of the two parameters
I One replication (observation) per combination
I For factors A and B with a and b levels, ab experiments

required
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Two-Factor Designs No Replications

When to Use This Design?

I System has two important factors
I Factors are categorical
I More than two levels for at least one factor
I Examples:

I Performance of different processors under different workloads
I Characteristics of different compilers for different benchmarks
I Performance of different Web browsers on different sites
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Two-Factor Designs No Replications

When to Avoid This Design?

I Systems with more than two important factors
I Use general factorial design

I Non-categorical variables
I Use regression

I Only two levels per factor
I Use 22 designs
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Two-Factor Designs No Replications

Model For This Design

I yij = µ+ αj + βi + eij

I yij is observation
I µ is mean response
I αj is effect of factor A at level j
I βi is effect of factor B at level i
I eij is error term
I Sums of αj ’s and βi ’s are both zero
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Two-Factor Designs No Replications

Assumptions of the Model

I Factors are additive
I Errors are additive
I Typical assumptions about errors:

I Distributed independently of factor levels
I Normally distributed

I Remember to check these assumptions!
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Two-Factor Designs No Replications

Computing Effects

I Need to figure out µ, αj , and βi
I Arrange observations in two-dimensional matrix

I b rows, a columns
I Compute effects such that error has zero mean

I Sum of error terms across all rows and columns is zero
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Two-Factor Designs No Replications

Two-Factor Full Factorial Example

I Want to expand functionality of a file system to allow
automatic compression

I Examine three choices:
I Library substitution of file system calls
I New VFS
I Stackable layers

I Three different benchmarks
I Metric: response time
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Two-Factor Designs No Replications

Data for Example

Library VFS Layers
Compile
Benchmark

94.3 89.5 96.2

Email
Benchmark 224.9 231.8 247.2

Web Server
Benchmark 733.5 702.1 797.4
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Two-Factor Designs No Replications

Computing µ

I Averaging the j th column,

y ·j = µ+ αj +
1
b

∑
i

βi +
1
b

∑
i

eij

I By assumption, error terms add to zero
I Also, the βj ’s add to zero, so y ·j = µ+ αj

I Averaging rows produces y i· = µ+ βi

I Averaging everything produces y ·· = µ
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Two-Factor Designs No Replications

Model Parameters

Using same techniques as for one-factor designs, parameters are:

I y ·· = µ

I αj = y ·j − y ··
I βi = y i· − y ··
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Two-Factor Designs No Replications

Calculating Parameters for the Example

I µ = grand mean = 357.4
I αj = (−6.5,−16.3,22.8)
I βi = (−264.1,−122.8,386.9)
I So, for example, the model predicts that the email benchmark

using a special-purpose VFS will take
357.4− 16.3− 122.8 = 218.3 seconds
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Two-Factor Designs No Replications

Estimating Experimental Errors

I Similar to estimation of errors in previous designs
I Take difference between model’s predictions and

observations
I Calculate Sum of Squared Errors
I Then allocate variation
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Two-Factor Designs No Replications

Allocating Variation

I Use same kind of procedure as on other models
I SSY = SS0 + SSA + SSB + SSE
I SST = SSY− SS0
I Can then divide total variation between SSA, SSB, and SSE
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Two-Factor Designs No Replications

Calculating SS0, SSA, SSB

I SS0 = abµ2

I SSA = b
∑

j α
2
j

I SSB = a
∑

i β
2
i

I Recall that a and b are numbers of levels for the factors
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Two-Factor Designs No Replications

Allocation of Variation for Example

I SSE = 2512
I SSY = 1,858,390
I SS0 = 1,149,827
I SSA = 2489
I SSB = 703,561
I SST = 708,562
I Percent variation due to A: 0.35%
I Percent variation due to B: 99.3%
I Percent variation due to errors: 0.35%
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Two-Factor Designs No Replications

Analysis of Variation

I Again, similar to previous models, with slight modifications
I As before, use an ANOVA procedure

I Need extra row for second factor
I Minor changes in degrees of freedom

I End steps are the same
I Compare F-computed to F-table
I Compare for each factor

18 / 34

Analysis of Variation

I Again, similar to previous models, with slight modifications
I As before, use an ANOVA procedure

I Need extra row for second factor
I Minor changes in degrees of freedom

I End steps are the same
I Compare F-computed to F-table
I Compare for each factor

20
15

-0
6-

15

CS147
Two-Factor Designs

No Replications
Analysis of Variation



Two-Factor Designs No Replications

Analysis of Variation for Our Example

I MSE = SSE/[(a− 1)(b − 1)] = 2512/[(2)(2)] = 628
I MSA = SSA/(a− 1) = 2489/2 = 1244
I MSB = SSB/(b − 1) = 703,561/2 = 351,780
I F-computed for A = MSA/MSE = 1.98
I F-computed for B = MSB/MSE = 560
I 95% F-table value for A & B is 6.94
I So A is not significant, but B is
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Two-Factor Designs No Replications

Checking Our Results with Visual Tests

I As always, check if assumptions made in the analysis are
correct

I Use residuals vs. predicted and quantile-quantile plots
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Two-Factor Designs No Replications

Residuals vs. Predicted Response for Example
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Two-Factor Designs No Replications

What Does the Chart Reveal?

I Do we or don’t we see a trend in errors?
I Clearly they’re higher at highest level of the predictors
I But is that alone enough to call a trend?

I Perhaps not, but we should take a close look at both factors to
see if there’s reason to look further

I Maybe take results with a grain of salt

22 / 34

What Does the Chart Reveal?

I Do we or don’t we see a trend in errors?
I Clearly they’re higher at highest level of the predictors
I But is that alone enough to call a trend?

I Perhaps not, but we should take a close look at both factors to
see if there’s reason to look further

I Maybe take results with a grain of salt

20
15

-0
6-

15

CS147
Two-Factor Designs

No Replications
What Does the Chart Reveal?



Two-Factor Designs No Replications

Quantile-Quantile Plot for Example
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Two-Factor Designs No Replications

Confidence Intervals for Effects

I Need to determine standard deviation for data as a whole
I Then can derive standard deviations for effects

I Use different degrees of freedom for each
I Complete table in Jain, p. 351
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Two-Factor Designs No Replications

Standard Deviations for Example

I se = 25
I Standard deviation of µ:

sµ = se/
√

ab = 25/
√

3× 3 = 8.3

I Standard deviation of αj :

sαj = se
√
(a− 1)/ab = 25

√
2/9 = 11.8

I Standard deviation of βi :

sβi = se
√

(b − 1)/ab = 25
√

2/9 = 11.8
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Two-Factor Designs No Replications

Calculating Confidence Intervals for Example

I Only file system alternatives shown here
I We’ll use 95% level
I 4 degrees of freedom
I CI for library solution: (−39,26)
I CI for VFS solution: (−49,16)
I CI for layered solution: (−10,55)
I So none of the solutions are significantly different from mean

at 95% confidence
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Two-Factor Designs No Replications

Looking a Little Closer

I Do zero CI’s mean that none of the alternatives for adding
functionality are different?

I Not necessarily
I Use contrasts to check (see Section 18.5 & p. 366)
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Two-Factor Designs No Replications

Comparing Contrasts

I Is library approach significantly better than layers?
I Define a contrast: u =

∑a
j=1 hjαj where hj ’s are chosen so

that
∑a

j=1 hj = 0
I To compare library vs. layers, set h = (1,0,−1)
I Contrast mean =

∑a
j=1 hjy ·j = 350.9− 380.267 = −29.367

I Contrast variance = s2
e(
∑a

j=1 h2
j )/b = 25× 2/3 = 16.667, so

contrast s.d. = 4.082
I Using t[1−α/2;(a−1)(b−1)] = t[.975;4] = 2.776, confidence interval

is −29.367∓ 4.082× 2.776 = (−40.7,−18.0)
I So library approach is better, at 95%
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Two-Factor Designs No Replications

Missing Observations

I Sometimes experiments go awry
I You don’t want to discard an entire study away just because

one observation got lost
I Solution:

I Calculate row/column means and standard deviations based
on actual observation count

I Degrees of freedom in SS* also must be adjusted
I See book for example

I Alternatives exist but are controversial
I If lots of missing values in a column or row, throw it out

entirely
I Best is to have only 1–2 missing values
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Two-Factor Designs Adding Replications

Replicated Two-Factor Designs

I For r replications of each experiment, model becomes

yijk = µ+ αj + βi + γij + eijk

I γij represents interaction between factor A at level j and B at
level i

I As before, effect sums
∑
αj and

∑
βi are zero

I Interactions are zero for both row and column sums:

∀i
a∑

j=1

γij = 0 ∀j
b∑

i=1

γij = 0

I Per-experiment errors add to zero:

∀i , j
r∑

k=1

eijk = 0
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Two-Factor Designs Adding Replications

Calculating Effects

Same as usual:
I Calculate grand mean y ···, row and column means y i·· and y ·j·

and per-experiment means y ij·
I µ = y ···
I αj = y ·j· − µ
I βi = y i·· − µ
I γij = y ij· − αj − βi − µ
I eijk = yijk − y ij·
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Two-Factor Designs Adding Replications

Analysis of Variance

I Again, extension of earlier models
I See Table 22.5, p. 375, for formulas
I As usual, must do visual tests
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Two-Factor Designs Adding Replications

Why Can We Find Interactions?

I Without replications, two-factor model didn’t give interactions
I Why not?

I Insufficient data
I Variation from predictions was attributed to errors, not

interaction
I Interaction is confounded with errors

I Now, we have more info
I For given A, B setting, errors are assumed to cause variation

in r replicated experiments
I Any remaining variation must therefore be interaction
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This slide has animations.

In unreplicated experiment, we could
have assumed no experimental errors
and attributed variation to interaction
instead (but that wouldn’t be wise).
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Two-Factor Designs Adding Replications

General Full Factorial Designs

I Straightforward extension of two-factor designs
I Average along axes to get effects
I Must consider all interactions (various axis combinations)
I Regression possible for quantitative effects

I But should have more than three data points
I If no replications, errors confounded with highest-level

interaction
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