CS 147:

Computer Systems Performance Analysis
Two-Factor Designs

Two-Factor Designs
No Replications Adding Replications

Two-Factor Design Without Replications

- Used when only two parameters, but multiple levels for each
- Test all combinations of levels of the two parameters
- One replication (observation) per combination
- For factors A and B with a and b levels, $a b$ experiments required

When to Use This Design?

```
CS147
\varrho` LTwo-Factor Designs
%-No Replications
\stackrel{N}{~}
```

- System has two important factors
- Factors are categorical
- More than two levels for at least one factor
- Examples:
- Performance of different processors under different workloads
- Characteristics of different compilers for different benchmarks
- Performance of different Web browsers on different sites
- Systems with more than two important factors
- Use general factorial design
- Non-categorical variables
- Use regression
- Only two levels per factor
- Use 2^{2} designs
- $\boldsymbol{y}_{i j}=\mu+\alpha_{j}+\beta_{i}+\boldsymbol{e}_{i j}$
- $y_{i j}$ is observation
- μ is mean response
- α_{j} is effect of factor \boldsymbol{A} at level j
- β_{i} is effect of factor B at level i
- $e_{i j}$ is error term
- Sums of α_{j} 's and β_{i} 's are both zero

Assumptions of the Model

```
~CS147
ढ! LTwo-Factor Designs
%
~
```

- Factors are additive
- Errors are additive
- Typical assumptions about errors:
- Distributed independently of factor levels
- Normally distributed
- Remember to check these assumptions!

Computing Effects

```
CS147
¢ LTwo-Factor Designs
O}\mathrm{ - No Replications
\stackrel{N}{N}
```

Need to figure out μ, α_{j}, and β_{i}

- Arrange observations in two-dimensional matrix
- b rows, a columns
- Compute effects such that error has zero mean
- Sum of error terms across all rows and columns is zero
- Want to expand functionality of a file system to allow automatic compression
- Examine three choices:
- Library substitution of file system calls
- New VFS
- Stackable layers
- Three different benchmarks
- Metric: response time

Data for Example

Compile
Library VFS Layers
Benchmar
$\begin{array}{lll}94.3 & 89.5 & 96.2\end{array}$
Email
$224.9 \quad 231.8 \quad 247.2$
$\begin{array}{llll}\text { Web Server } & 733.5 & 702.1 & 797.4\end{array}$

- Averaging the $j^{\text {th }}$ column,

$$
\bar{y}_{\cdot j}=\mu+\alpha_{j}+\frac{1}{b} \sum_{i} \beta_{i}+\frac{1}{b} \sum_{i} e_{i j}
$$

- By assumption, error terms add to zero
- Also, the β_{j} 's add to zero, so $\bar{y}_{. j}=\mu+\alpha_{j}$
- Averaging rows produces $\bar{y}_{i .}=\mu+\beta_{i}$
- Averaging everything produces $\bar{y}_{. .}=\mu$

Using same techniques as for one-factor designs, parameters are:

- $\bar{y}_{. .}=\mu$
- $\alpha_{j}=\bar{y}_{. j}-\bar{y}$.
- $\beta_{i}=\bar{y}_{i} .-\bar{y}$.

Calculating Parameters for the Example

```
CS147
\varrho`.LTwo-Factor Designs
O% LNo Replications
\stackrel{N}{~}
Calculating Parameters for the Example
```

- $\mu=$ grand mean $=357.4$
- $\alpha_{j}=(-6.5,-16.3,22.8)$
- $\beta_{i}=(-264.1,-122.8,386.9)$
- So, for example, the model predicts that the email benchmark using a special-purpose VFS will take $357.4-16.3-122.8=218.3$ seconds

Estimating Experimental Errors

```
CS147
¢ ¢Two-Factor Designs
O
⿳亠丷厂巾
```


citan
－Similar to estimation of errors in previous designs
－Take difference between model＇s predictions and observations
－Calculate Sum of Squared Errors
－Then allocate variation

Allocating Variation

```
CS147
¢ -Two-Factor Designs
%-LNo Replications
\stackrel{~}{~}
```

- Use same kind of procedure as on other models
- SSY = SSO + SSA + SSB + SSE
- SST = SSY - SSO
- Can then divide total variation between SSA, SSB, and SSE

Calculating SSO, SSA, SSB

```
\curvearrowleftCS147
¢
% LNo Replications
\stackrel{N}{~}
```

- $\mathrm{SSO}=a b \mu^{2}$
- SSA $=b \sum_{j} \alpha_{j}^{2}$
- $\operatorname{SSB}=a \sum_{i} \beta_{i}^{2}$
- Recall that a and b are numbers of levels for the factors

Allocation of Variation for Example

```
CS147
¢
O}\mathrm{ LNo Replications
\stackrel{N}{~}
Allocation of Variation for Example
```

- $\operatorname{SSE}=2512$
- $S S Y=1,858,390$
- $S S 0=1,149,827$
- SSA $=2489$
- $\operatorname{SSB}=703,561$
- SST $=708,562$
- Percent variation due to A: 0.35\%
- Percent variation due to B: 99.3\%
- Percent variation due to errors: 0.35\%

Analysis of Variation

```
CS147
\varrho-T
%-No Replications
2015
```

\qquad

uns ation momentanases

- Again, similar to previous models, with slight modifications
- As before, use an ANOVA procedure
- Need extra row for second factor
- Minor changes in degrees of freedom
- End steps are the same
- Compare F-computed to F-table
- Compare for each factor
- MSE $=$ SSE $/[(a-1)(b-1)]=2512 /[(2)(2)]=628$
- MSA $=$ SSA $/(a-1)=2489 / 2=1244$
- $\mathrm{MSB}=\mathrm{SSB} /(b-1)=703,561 / 2=351,780$
- F -computed for $\mathrm{A}=\mathrm{MSA} / \mathrm{MSE}=1.98$
- F -computed for $\mathrm{B}=\mathrm{MSB} / \mathrm{MSE}=560$
- 95% F-table value for $A \& B$ is 6.94
- So A is not significant, but B is
- As always, check if assumptions made in the analysis are correct
- Use residuals vs. predicted and quantile-quantile plots

Residuals vs. Predicted Response for Example

๓ CS147
$\stackrel{\varrho}{\dot{\circ}}$ LTwo-Factor Designs
$\stackrel{\circ}{\circ}$-No Replications
$\stackrel{\Gamma}{2}$
-Residuals vs. Predicted Response for Example

What Does the Chart Reveal?

```
CS147
\varrho-T
O
2015
LWhat Does the Chart Reveal?
```

\qquad and

- Do we or don't we see a trend in errors?
- Clearly they're higher at highest level of the predictors
- But is that alone enough to call a trend?
- Perhaps not, but we should take a close look at both factors to see if there's reason to look further
- Maybe take results with a grain of salt

Two-Factor Designs No Replications

Quantile-Quantile Plot for Example

```
@ CS147
ढ! LTwo-Factor Designs
O-LNo Replications
\stackrel{~}{~}
\(\left\llcorner_{\text {Quantile-Quantile Plot for Example }}\right.\)
```


- Need to determine standard deviation for data as a whole
- Then can derive standard deviations for effects
- Use different degrees of freedom for each
- Complete table in Jain, p. 351

Standard Deviations for Example

- $s_{e}=25$
- Standard deviation of μ :

$$
s_{\mu}=s_{e} / \sqrt{a b}=25 / \sqrt{3 \times 3}=8.3
$$

- Standard deviation of α_{j} :

$$
s_{\alpha_{j}}=s_{e} \sqrt{(a-1) / a b}=25 \sqrt{2 / 9}=11.8
$$

- Standard deviation of β_{i} :

$$
s_{\beta_{i}}=s_{e} \sqrt{(b-1) / a b}=25 \sqrt{2 / 9}=11.8
$$

```
CS147
ढ! LTwo-Factor Designs
    LNo Replications
    LStandard Deviations for Example
- Only file system alternatives shown here
- We'll use \(95 \%\) level
- 4 degrees of freedom
- CI for library solution: \((-39,26)\)
- CI for VFS solution: \((-49,16)\)
- CI for layered solution: \((-10,55)\)
- So none of the solutions are significantly different from mean at \(95 \%\) confidence

\section*{Looking a Little Closer}
```

~CS147

```

```

O
~े LLooking a Little Closer

```
- Do zero Cl's mean that none of the alternatives for adding functionality are different?
- Not necessarily
- Use contrasts to check (see Section 18.5 \& p. 366)

\section*{Comparing Contrasts}
- Is library approach significantly better than layers?
- Define a contrast: \(u=\sum_{j=1}^{a} h_{j} \alpha_{j}\) where \(h_{j}\) 's are chosen so that \(\sum_{j=1}^{a} h_{j}=0\)
- To compare library vs. layers, set \(h=(1,0,-1)\)
- Contrast mean \(=\sum_{j=1}^{a} h_{j} \bar{y}_{. j}=350.9-380.267=-29.367\)
- Contrast variance \(=s_{e}^{2}\left(\sum_{j=1}^{a} h_{j}^{2}\right) / b=25 \times 2 / 3=16.667\), so contrast s.d. \(=4.082\)
- Using \(t_{[1-\alpha / 2 ;(a-1)(b-1)]}=t_{[.975 ; 4]}=2.776\), confidence interval is \(-29.367 \mp 4.082 \times 2.776=(-40.7,-18.0)\)
- So library approach is better, at \(95 \%\)

\section*{Missing Observations}
- Sometimes experiments go awry
- You don't want to discard an entire study away just because one observation got lost
- Solution:
- Calculate row/column means and standard deviations based on actual observation count
- Degrees of freedom in \(\mathrm{SS}^{\star}\) also must be adjusted
- See book for example
- Alternatives exist but are controversial
- If lots of missing values in a column or row, throw it out entirely
- Best is to have only 1-2 missing values
```

CS147
LTwo-Factor Designs
LNo Replications
Missing Observations
$\left\llcorner_{\text {Missing Observations }}\right.$

Replicated Two-Factor Designs

```
CS147
LTwo-Factor Designs
O-LAdding Replications
```

For r replications of each experiment, model becomes

$$
y_{i j k}=\mu+\alpha_{j}+\beta_{i}+\gamma_{i j}+e_{i j k}
$$

- $\gamma_{i j}$ represents interaction between factor A at level j and B at level i
- As before, effect sums $\sum \alpha_{j}$ and $\sum \beta_{i}$ are zero
- Interactions are zero for both row and column sums:

$$
\forall i \quad \sum_{j=1}^{a} \gamma_{i j}=0 \quad \forall j \quad \sum_{i=1}^{b} \gamma_{i j}=0
$$

- Per-experiment errors add to zero:

$$
\forall i, j \quad \sum_{k=1}^{r} e_{i j k}=0
$$

Calculating Effects

```
~CS147
¢ -Two-Factor Designs
O-LAdding Replications
\stackrel{N}{~}
Calculating Effects
```


Same as usual:

- Calculate grand mean \bar{y}_{\ldots}, row and column means $\bar{y}_{i . .}$ and $\bar{y}_{. j}$ and per-experiment means $\bar{y}_{i j}$.
- $\mu=\bar{y}$.
- $\alpha_{j}=\bar{y}_{. j .}-\mu$
$-\beta_{i}=\bar{y}_{i . .}-\mu$
$\Rightarrow \gamma_{i j}=\bar{y}_{i j}-\alpha_{j}-\beta_{i}-\mu$
- $e_{i j k}=y_{i j k}-\bar{y}_{i j}$.

Analysis of Variance

- Again, extension of earlier models
- See Table 22.5, p. 375, for formulas
- As usual, must do visual tests
- Without replications, two-factor model didn't give interactions
- Why not?

This slide has animations.
In unreplicated experiment, we could have assumed no experimental errors and attributed variation to interaction instead (but that wouldn't be wise).

This slide has animations.
In unreplicated experiment, we could have assumed no experimental errors and attributed variation to interaction instead (but that wouldn't be wise).

- Straightforward extension of two-factor designs
- Average along axes to get effects
- Must consider all interactions (various axis combinations)
- Regression possible for quantitative effects
- But should have more than three data points
- If no replications, errors confounded with highest-level interaction

