CS147 90-5102

CS 147: Computer Systems Performance Analysis Two-Factor Designs

CS 147: Computer Systems Performance Analysis Two-Factor Designs

Overview

Two-Factor Designs No Replications

Adding Replications

Two-Factor Design Without Replications

CS147 - Two-Factor Designs - No Replications - Two-Factor Design Without Replications - Two-Factor Design Without Replications

- Used when only two parameters, but multiple levels for each
- Test all combinations of levels of the two parameters
- One replication (observation) per combination
- ► For factors *A* and *B* with *a* and *b* levels, *ab* experiments required

When to Use This Design?

- System has two important factors
- Factors are categorical
- More than two levels for at least one factor
- Examples:
 - Performance of different processors under different workloads
 - Characteristics of different compilers for different benchmarks
 - Performance of different Web browsers on different sites

When to Use This Design'

- System has two important factors
- Factors are categorical
 More than two levels for at least one facto
- More than two levers for at less
 Examples:
- Performance of different processors under different workload
 Characteristics of different compilers for different benchmark
 Performance of different Web browsers on different altes

When to Avoid This Design?

- Systems with more than two important factors
 - Use general factorial design
- Non-categorical variables
 - Use regression
- Only two levels per factor
 - ▶ Use 2² designs

Model For This Design

- $\blacktriangleright y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}$
- ▶ y_{ij} is observation
- \blacktriangleright μ is mean response
- α_i is effect of factor A at level j
- > β_i is effect of factor *B* at level *i*
- ► *e_{ij}* is error term
- Sums of α_i 's and β_i 's are both zero

- Model For This Design • $y_i = \mu + \alpha_i + \beta_i + \mathbf{e}_i$
 - y_i is observation
 µ is mean response
 - α_j is effect of factor A at level j
 β_j is effect of factor B at level j
 - B) is effect of factor B at level i
 e_g is error term
 - Sums of oy's and p's are both zero

Assumptions of the Model

- Factors are additive
- Errors are additive
- Typical assumptions about errors:
 - Distributed independently of factor levels
 - Normally distributed
- Remember to check these assumptions!

- sumptions of the Mode
- Factors are additive
 Errors are additive
 Typical assumptions about errors:
 Distributed independently of factor levels
 Normally distributed
 Remember to check these assumptional

Computing Effects

Computing Effects

- ▶ Need to figure out μ , α_i , and β_i
- Arrange observations in two-dimensional matrix
 - b rows, a columns
- Compute effects such that error has zero mean
 - Sum of error terms across all rows and columns is zero

Two-Factor Full Factorial Example

- Want to expand functionality of a file system to allow automatic compression
- Examine three choices:
 - Library substitution of file system calls
 - New VFS
 - Stackable layers
- Three different benchmarks
- Metric: response time

Data for Example

Lo CS147	Data for E
💥 🖵 Two-Factor Designs	
No Replications	
Data for Example	
N	

Library VFS Layers 94.3 89.5 96.2

Email Benchmark 224.9 231.8 247.2 Web Server Benchmark 733.5 702.1 797.4

Compile Benchmark Email Benchmark

	Library	VFS	Layers	
Compile Benchmark	94.3	89.5	96.2	
Email Benchmark	224.9	231.8	247.2	
Web Server Benchmark	733.5	702.1	797.4	

Computing μ

Averaging the jth column,

$$\overline{\mathbf{y}}_{\cdot j} = \mu + \alpha_j + \frac{1}{b} \sum_i \beta_i + \frac{1}{b} \sum_i \mathbf{e}_{ij}$$

- By assumption, error terms add to zero
- Also, the β_j 's add to zero, so $\overline{y}_{.j} = \mu + \alpha_j$
- Averaging rows produces $\overline{y}_{i.} = \mu + \beta_i$
- Averaging everything produces $\overline{y}_{..} = \mu$

Model Parameters

Using same techniques as for one-factor designs, parameters are:

$$\overline{\mathbf{y}}_{..} = \mu$$

$$\mathbf{a}_i = \overline{\mathbf{y}}_{.i} - \overline{\mathbf{y}}_{..}$$

$$\boldsymbol{\beta}_{i} = \overline{\boldsymbol{y}}_{i} - \overline{\boldsymbol{y}}_{..}$$

Two-Factor Designs No Replication:

Calculating Parameters for the Example

CS147 - Two-Factor Designs - No Replications - Calculating Parameters for the Example

- \blacktriangleright μ = grand mean = 357.4
- ► $\alpha_j = (-6.5, -16.3, 22.8)$
- ▶ $\beta_i = (-264.1, -122.8, 386.9)$
- So, for example, the model predicts that the email benchmark using a special-purpose VFS will take 357.4 - 16.3 - 122.8 = 218.3 seconds

Estimating Experimental Errors

- Estimating Experimental Errors

 Similar to estimation of errors in previous designs

 Take difference between models predictions and
 cbaevations
 Calculate Sum of Spurard Errors
- Calculate Sum of Squared Er
 Then allocate variation

- Similar to estimation of errors in previous designs
- Take difference between model's predictions and observations
- Calculate Sum of Squared Errors
- Then allocate variation

Allocating Variation

Allocating Variation

Use same kind of procedure as on other models
 SST = SS0 + SSA + SSB + SSE
 SST = SSY - SS0
 Can then divide total variation between SSA, SSB, and SSE

- ▶ Use same kind of procedure as on other models
- $\blacktriangleright SSY = SS0 + SSA + SSB + SSE$
- $\blacktriangleright SST = SSY SS0$
- Can then divide total variation between SSA, SSB, and SSE

Two-Factor Designs No Replication

Calculating SS0, SSA, SSB

CS147 - Two-Factor Designs - No Replications - Calculating SS0, SSA, SSB

- ► SS0 = $ab\mu^2$
- SSA = $b \sum_j \alpha_j^2$
- ► SSB = $a \sum_i \beta_i^2$
- Recall that a and b are numbers of levels for the factors

Allocation of Variation for Example

- ▶ SSE = 2512
- ▶ SSY = 1,858,390
- ▶ SS0 = 1, 149, 827
- ▶ SSA = 2489
- ▶ SSB = 703,561
- $\blacktriangleright \ SST = 708,562$
- Percent variation due to A: 0.35%
- Percent variation due to B: 99.3%
- Percent variation due to errors: 0.35%

CS147 Two-Factor Designs → No Replications → Allocation of Variation for Example

Analysis of Variation

 Again, similar to previous models, with slight modifications As before, use an ANXMA procedure Need etch and for a second text Monor charges in degrees of freedom End staga are the same Compare the same Compare the second to Pade Compare the second text

nalvsis of Variation

- > Again, similar to previous models, with slight modifications
- ► As before, use an ANOVA procedure
 - Need extra row for second factor
 - Minor changes in degrees of freedom
- End steps are the same
 - Compare F-computed to F-table
 - Compare for each factor

Analysis of Variation for Our Example

- ▶ MSE = SSE/[(*a* − 1)(*b* − 1)] = 2512/[(2)(2)] = 628
- ▶ MSA = SSA/(*a* − 1) = 2489/2 = 1244
- MSB = SSB/(b-1) = 703,561/2 = 351,780
- F-computed for A = MSA/MSE = 1.98
- ► F-computed for B = MSB/MSE = 560
- ▶ 95% F-table value for A & B is 6.94
- ▶ So A is not significant, but B is

Two-Factor Designs No Replication:

Checking Our Results with Visual Tests

- As always, check if assumptions made in the analysis are correct
- Use residuals vs. predicted and quantile-quantile plots

vo-Factor Designs No Replications

Residuals vs. Predicted Response for Example

What Does the Chart Reveal?

Do we or don't we see a trend in errors?
 Clearly they're higher at highest level of the predictor
 But is the alone enough to call a trend?

hat Does the Chart Reveal?

 Perhaps not, but we should take a close look at both factors to see if there's reason to look further
 Maybe take results with a grain of salt

- Do we or don't we see a trend in errors?
- Clearly they're higher at highest level of the predictors
- But is that alone enough to call a trend?
 - Perhaps not, but we should take a close look at both factors to see if there's reason to look further
 - Maybe take results with a grain of salt

vo-Factor Designs No Replications

Quantile-Quantile Plot for Example

CS147 Two-Factor Designs No Replications Quantile-Quantile Plot for Example

Confidence Intervals for Effects

Need to determine standard deviation for data as a whole
 Then can derive standard deviations for effects
 Use different degrees of freedom for each
 Complete table in Jain, p. 351

fidence Intervals for Effects

- Need to determine standard deviation for data as a whole
- Then can derive standard deviations for effects
 - Use different degrees of freedom for each
- Complete table in Jain, p. 351

Standard Deviations for Example

► *s*_e = 25

Standard deviation of μ :

$$s_{\mu}=s_{e}/\sqrt{ab}=25/\sqrt{3 imes3}=8.3$$

Standard deviation of α_i :

$$s_{lpha_j} = s_e \sqrt{(a-1)/ab} = 25\sqrt{2/9} = 11.8$$

Standard deviation of β_i :

$$s_{\beta_i} = s_e \sqrt{(b-1)/ab} = 25\sqrt{2/9} = 11.8$$

Calculating Confidence Intervals for Example

- Only file system alternatives shown here
- We'll use 95% level
- 4 degrees of freedom
- ► CI for library solution: (-39,26)
- ► CI for VFS solution: (-49, 16)
- ► CI for layered solution: (-10,55)
- So none of the solutions are significantly different from mean at 95% confidence

Looking a Little Closer

 Do zero Cfs mean that none of the alternatives for adding functionality are different?
 Not necessarily
 Use contrasts to check (see Section 18.5 & p. 368)

ooking a Little Close

- Do zero CI's mean that none of the alternatives for adding functionality are different?
- Not necessarily
- Use contrasts to check (see Section 18.5 & p. 366)

Comparing Contrasts

- Is library approach significantly better than layers?
- ► Define a contrast: $u = \sum_{j=1}^{a} h_j \alpha_j$ where h_j 's are chosen so that $\sum_{j=1}^{a} h_j = 0$
- ▶ To compare library vs. layers, set h = (1, 0, -1)
- Contrast mean = $\sum_{j=1}^{a} h_j \overline{y}_{.j} = 350.9 380.267 = -29.367$
- Contrast variance $= s_e^2 (\sum_{j=1}^a h_j^2)/b = 25 \times 2/3 = 16.667$, so contrast s.d. = 4.082
- Using t_[1-α/2;(a-1)(b-1)] = t_[.975;4] = 2.776, confidence interval is -29.367 ∓ 4.082 × 2.776 = (-40.7, -18.0)
- ► So library approach is better, at 95%

Comparing Contrasts
Is library approach significantly better than layers?
 Define a contrast: u = ∑^a_{j=1} h_j n_j where h_j's are chosen so that ∑^a_{j=1} h_j = 0
To compare library vs. layers, set h = (1,0,-1)
 Contrast mean = ∑^a_{i=1} h_j y_i = 350.9 - 380.267 = -29.367
 Contrast variance = s₀²(∑_{j=1}^d h_j²)/b = 25 × 2/3 = 16.667, so contrast s.d. = 4.082
 Using t_{1→2(2(p-1)(2-1)} = t_{1875,4} = 2.776, confidence interval is -29.367 = 4.082 × 2.776 = (-40.7, -18.0)
 So library approach is better, at 95%

Missing Observations

- Sometimes experiments go awry
- You don't want to discard an entire study away just because one observation got lost
- Solution:
 - Calculate row/column means and standard deviations based on actual observation count
 - Degrees of freedom in SS* also must be adjusted
 - See book for example
- Alternatives exist but are controversial
- If lots of missing values in a column or row, throw it out entirely
 - Best is to have only 1–2 missing values

issing Observations

```
    Sondinare appelments (p) area:

    wu contrivents to face also and/or allow panely just becaus

    ore observation opt to all

    Sources:

    Calculate revolutions means and standard deviations have

    Depared freedom https://www.mail.org/state

    See both the sample

    Alternatives and that are controversial

    Biog of meaning values in a contrary or my, threw it out

    the sample of the sample of the sample of the sample of the sample

    Biog of meaning values in a controversial

    Biog of the sample of
```

Replicated Two-Factor Designs

▶ For *r* replications of each experiment, model becomes

 $\mathbf{y}_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + \mathbf{e}_{ijk}$

- γ_{ij} represents interaction between factor A at level j and B at level i
- As before, effect sums $\sum \alpha_j$ and $\sum \beta_i$ are zero
- Interactions are zero for both row and column sums:

$$\forall i \quad \sum_{j=1}^{a} \gamma_{ij} = 0 \qquad \forall j \quad \sum_{i=1}^{b} \gamma_{ij} = 0$$

Per-experiment errors add to zero:

$$\forall i,j \quad \sum_{k=1}^r e_{ijk} = 0$$

 $\begin{array}{c} CS147 \\ - Two-Factor Designs \\ - Adding Replications \\ - Replicated Two-Factor Designs \\ - Replicated$

Calculating Effects

Same as usual:

- ► Calculate grand mean $\overline{y}_{...}$, row and column means $\overline{y}_{j...}$ and $\overline{y}_{.j.}$ and per-experiment means $\overline{y}_{jj...}$
- ► $\mu = \overline{y}_{...}$
- $\triangleright \ \alpha_j = \overline{\mathbf{y}}_{\cdot j \cdot} \mu$
- $\triangleright \ \beta_i = \overline{\mathbf{y}}_{i\cdots} \mu$
- $\succ \gamma_{ij} = \overline{\mathbf{y}}_{ij} \alpha_j \beta_i \mu$
- $\triangleright e_{ijk} = y_{ijk} \overline{y}_{ij}$

ilating	Effects	

Same as usual: • Calculate grand means \overline{y}_{+} , new and column means \overline{y}_{+} and \overline{y}_{+} $\mu = \overline{p}_{-}$ • $\mu = \overline{p}_{-}$ • $\mu = \overline{p}_{-}$ • $\eta = \overline{p}_{-} - \mu$ • $\eta = \overline{p}_{-} - \mu$ • $\eta = \overline{p}_{-} - \mu$ • $\eta = \overline{p}_{-} - \eta_{-} - \mu$

Analysis of Variance

Analysis of Variance

Again, extension of earlier models
 See Table 22.5, p. 375, for formulas
 As usual, must do visual tests

- Again, extension of earlier models
- ▶ See Table 22.5, p. 375, for formulas
- As usual, must do visual tests

Why Can We Find Interactions?

- Without replications, two-factor model didn't give interactions
- ▶ Why not?

This slide has animations.

In unreplicated experiment, we could have assumed no experimental errors and attributed variation to interaction instead (but that wouldn't be wise).

Why Can We Find Interactions?

- Without replications, two-factor model didn't give interactions
- Why not?
- Insufficient data
- Variation from predictions was attributed to errors, not interaction
 - Interaction is confounded with errors
- Now, we have more info
 - For given A, B setting, errors are assumed to cause variation in r replicated experiments
 - Any remaining variation must therefore be interaction

CS147 - Two-Factor Designs - Adding Replications - Why Can We Find Interactions? - Why Can We Find Interactions?

This slide has animations.

In unreplicated experiment, we could have assumed no experimental errors and attributed variation to interaction instead (but that wouldn't be wise).

General Full Factorial Designs

- Straightforward extension of two-factor designs
- Average along axes to get effects
- Must consider all interactions (various axis combinations)
- Regression possible for quantitative effects
 - But should have more than three data points
- If no replications, errors confounded with highest-level interaction

- Straightforward extension of two-factor designs
- Average along axes to get effects
 Must consider all interactions (various axis combination)
- Musit consider all interactions (various axis combined in the section of the sectio
- But should have more than three data points
 - If no replications, errors confounded with highest-level interaction