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Introduction and Terminology

What is a Queueing System?

I A queueing system is any system in which things arrive, hang
around for a while, and leave

I Examples
I A bank
I A freeway
I A (computer) network
I A beehive

I The things that arrive and leave are customers or jobs
I Customers leave after receiving service
I Most queueing systems have (surprise!) a queue that can

store (delay) customers awaiting service
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Introduction and Terminology

Parameters of a Queueing System

Arrival Process Injects customers into system
I Usually statistical
I Convenient to specify in terms of interarrival time

distribution
I Most common is Poisson arrivals

Service Time Also statistical
Number of Servers Often 1
System Capacity Equals number of servers plus queue capacity.

Often assumed infinite for convenience
Population Maximum number of customers. Often assumed

infinite
Service Discipline How next customer is chosen for service.

Often FCFS or priority
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Introduction and Terminology

Arrival and Service Distributions

I Customer arrivals are random variables
I Next disk request from many processes
I Next packet hitting Google
I Next call to Chipotle

I Same is true for service times
I What distribution describes it?

I May be complicated (fractal, Zipf)
I We often use Poisson for tractability
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Introduction and Terminology Poisson Distributions

The Poisson Distribution

I Probability of exactly k arrivals in (0, t) is Pk (t) = (λt)keλt/k !
I λ is arrival rate parameter

I More useful formulation is Poisson arrival distribution:
I PDF A(t) = P[next arrival takes time ≤ t ] = 1− e−λt

I pdf a(t) = λe−λt

I Also known as exponential or memoryless distribution
I Mean = standard deviation = λ

I Poisson distribution is memoryless
I Assume P[arrival within 1 second] at time t0 = x
I Then P[arrival within 1 second] at time t1 > t0 is also x

I I.e., no memory that time has passed
I Often true in real world

I E.g., when I go to Von’s doesn’t affect when you go
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Introduction and Terminology Poisson Distributions

Splitting and Merging Poisson Processes

I Merging streams of Poisson events (e.g., arrivals) is Poisson

λ =
k∑

i=1

λi

I Splitting a Poisson stream randomly gives Poisson streams; if
stream i has probability pi , then

λi = piλ
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Introduction and Terminology Poisson Distributions

Kendall’s Notation

A/S/m/B/K/D defines a (single) queueing system compactly:
A Denotes arrival distribution, as follows:

M Exponential (Memoryless)
Ek Erlang with parameter k
D Deterministic
G Completely general (very hard to

analyze!)
S Service distribution, same as arrival
m Number of servers
B System capacity;∞ if omitted
K Population size;∞ if omitted
D Service discipline, FCFS if omitted
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Introduction and Terminology Poisson Distributions

Examples of Kendall’s Notation

D/D/1 Arrivals on clock tick, fixed service times, one server
M/M/m Memoryless arrivals, memoryless service, multiple

servers (good model of a bank)
M/M/m/m Customers go away rather than wait in line

G/G/1 Modern disk drive
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Introduction and Terminology Poisson Distributions

Common Variables

τ Interarrival time. Usually varies per customer, e.g.,
τ1, τ2, . . .

λ Mean arrival rate: 1/τ
si Service time for job i , sometimes called xi

µ Mean service rate per server, 1/s
ρ Traffic intensity or system load = λ/mµ. This is the

most important parameter in most queueing systems
wi Waiting time, or time in queue: interval between

arrival and beginning of service
ri Response time = wi + si
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Fundamental Results Stability

Stability

I A system is stable iff λ < mµ ≡ ρ < 1
I Otherwise, system can’t keep up and queue grows to∞
I Exception: in D/D/m, ρ = 1 is OK
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Fundamental Results Little’s Law

Little’s Law

I Let n = Number of jobs in system
I Then n = λr
I Likewise, if nq = Number of jobs in queue, then nq = λw
I True regardless of distributions, queueing disciplines, etc., as

long as system is in equilibrium
I May seem obvious:

I If ten people are ahead of you in line, and each takes about 1
minute for service, you’re going to be stuck there for 10
minutes

I Not proved until 1961
I Often useful for calculating queue lengths:

I Packet takes 2s to arrive, you’re sending 100 pps
⇒ Mean queue length = 100 pkt/s× 2s = 200 pkts
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Fundamental Results Little’s Law

Deriving Little’s Law

I Define arr(t) = # of arrivals in interval(0, t)
I Define dep(t) = # of departures in interval(0, t)
I Clearly, N(t) = # in system at timet = arr(t)− dep(t)
I Area between curves = spent(t) = total time spent in system

by all customers (measured in customer-seconds)
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Fundamental Results Little’s Law

Deriving Little’s Law (continued)

I Define average arrival rate during interval t , in
customers/second, as λt = arr(t)/t

I Define Tt as system time/customer, averaged over all
customers in (0, t)

I Since spent(t) = accumulated customer-seconds, divide by
arrivals up to that point to get Tt = spent(t)/arr(t)

I Mean tasks in system over (0, t) is accumulated
customer-seconds divided by seconds:
Mean-taskst = spent(t)/t

I Above three equations give us:

Mean-taskst = spent(t)/t
= Ttarr(t)/t
= λtTt
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Fundamental Results Little’s Law

Deriving Little’s Law (continued)

I We’ve shown that Mean-taskst = λtTt

I Assuming limits of λt and Tt exist, limit of mean-taskst also
exists and gives Little’s result:

Mean tasks in system = arrival rate×mean time in system

15 / 27

Deriving Little’s Law (continued)

I We’ve shown that Mean-taskst = λtTt

I Assuming limits of λt and Tt exist, limit of mean-taskst also
exists and gives Little’s result:

Mean tasks in system = arrival rate×mean time in system

20
15

-0
6-

15

CS147
Fundamental Results

Little’s Law
Deriving Little’s Law (continued)



M/M/* M/M/1

The M/M/1 Queue

I Remember this one if you don’t remember anything else
I Assumptions are sometimes realistic, sometimes not

I Never infinite customers or capacity
I Service times aren’t truly Poisson
I Interarrival times more likely to be Poisson

I Still provides surprisingly good analysis
I M/M/1’s characteristics are clue to many other queues
I Primary results (in equilibrium):

I Mean number in system n = ρ/(1− ρ)
I Mean time in system

r = (1/µ)/(1− ρ) = 1/µ(1− ρ) = s/(1− ρ)
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Nearly all useful results in queueing
theory apply only to systems in
equilibrium.
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The Nastiness of High Load
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The system breaks down completely at
ρ > 0.95.

The reason for the breakdown is
variance: at high load, a burst fills the
queue and it takes a long time to drain,
giving plenty of time for another burst to
arrive.



M/M/* M/M/1

More M/M/1 Results

I Variance is ρ/(1− ρ)2, so standard deviation is
√
ρ/(1− ρ)

I q-percentile of time in system is r ln[100/(100− q)]
I 90th percentile is 2.3r

I Mean waiting time is w = 1
µ

ρ
1−ρ

I q-percentile of waiting time is

max
(

0,
w
ρ

ln[100ρ/(100− q)]
)

I Mean jobs served in a busy period: 1/(1− ρ)
I Probability of n jobs in system pn = (1− ρ)ρn

I Probability of > n jobs in system: ρn
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M/M/* M/M/1

M/M/1 Example

I Web server gets 1200 requests/hour w/ Poisson arrivals
I Typical request takes 1s to serve
I ρ = 1200/3600 = 0.33
I Mean requests in service = 0.33/0.67 = 0.5
I Mean response time r = (1/1)/(1− 0.33) = 1.5s
I 90th percentile response time = 3.4s

I But if Slashdot hits. . .
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This slide has animations.
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M/M/1 Example (cont’d)

I Suppose Slashdot raises request rate to 3500/hr
I Now ρ = 3500/3600 = 0.972
I Mean requests in service = 0.972/(1− 0.972) = 34.7
I r = 1/0.028 = 35.7 seconds
I 90th percentile response time = 82.8s

I And don’t even think about 4000 requests/hr
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M/M/m

I Multiple servers, one queue
I ρ = λ/(mµ)
I We’ll need probability of empty system:

p0 =
1

(mρ)m

m!(1− ρ)
+

m−1∑
k=0

(mρ)k

k !

I Probability of queueing:

% = P(≥ m jobs) =
(mρ)m

m!(1− ρ)
p0
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For m = 1, % = ρ
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M/M/m (cont’d)

I Mean jobs in system: n = mρ+ ρ%/(1− ρ)
I Mean time in system:

r =
1
µ

(
1 +

%

m(1− ρ)

)
I Mean waiting time: w = %/[mµ(1− ρ)]
I q-percentile of waiting time:

max
(

0,
w
%

ln
100%

100− q

)
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M/M/* M/M/m

m×M/M/1 vs. M/M/m

I For m separate M/M/1 queues, each queue sees arrival rate
of λM/M/1 = λ/m

I But ρ is unchanged

I rm×M/M/1 = 1
µ

(
1

1−ρ

)
?
> rM/M/m = 1

µ

(
1 + %

m(1−ρ)

)
I 1

?
> 1− ρ+ %

m

I ρ
?
> p0

(mρ)m

m!m(1−ρ)

I 1
?
> p0

(mρ)m−1

m!(1−ρ)

I 1
?
>

(
1

(mρ)m
m!(1−ρ)+

∑m−1
k=0

(mρ)k
k!

)
(mρ)m−1

m!(1−ρ)

I (mρ)m

m!(1−ρ) +
∑m−1

k=0
(mρ)k

k! > (mρ)m−1

m!(1−ρ)
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This slide has animations.
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I rm×M/M/1 = 1
µ
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Running Some Numbers

I Assume 5 servers, ρ = 0.5, µ = 1
I Then rm×M/M/1 = 1/(1− ρ) = 2

I % = (mρ)m

m!(1−ρ)p0 = (2.5)5

5!(0.5)p0 = 97.7
60 p0 = 1.63p0

I p0 = 1
(mρ)m

m!(1−ρ)+
∑m−1

k=0
(mρ)k

k!

= 1
1.63+1+ 2.51

1 + 2.52
2 + 2.53

3! + 2.54
4!

I p0 = 1
1.63+1+2.5+3.13+2.60+1.63 = 1

12.49 = 0.08
I So % = 1.63(0.08) = 0.13
I And rm/M/m = 1 + %

m(1−ρ) = 1 + 0.13
5(1−0.5) = 1 + 0.13

2.5 = 1.05
I In terms of previous slide’s inequality,

97.7
60 +1+2.5+3.13+2.60+1.63 = 12.49 > 2.54

5!(0.5) =
39.1
60 = 0.65
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m×M/M/1 vs. M/M/m (cont’d)

I A similar result holds for variance
I Conclusion: single queue, multiple server is always better

than one queue per server
I Question 1: When is this false? (hint: multiple cores)
I Question 2: Why do so many movie theaters have multiple

lines for popcorn?
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M/M/m/B

I Real systems have finite capacity
I Previous analysis applies only under light loads (relative to

capacity)
I Considering limit has several effects:

I Lost jobs (obviously)
I Loss rate pB becomes important parameter
I Mean response time drops compared to M/M/m/∞ (Why?)
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More General Queues

Extending the Results

I Unsurprisingly, generality equates to (mathematical)
complexity

I Many special cases have been analyzed (e.g., Erlang
distributions)

I Little’s Law always applies
I Important cases:

I M/G/1
I M/D/1
I G/G/m (but mostly intractable)
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