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Types of Networks

Networks of Queues

I Many systems consist of interconnected queueing systems
I CPU→disk→network
I Web client→Web server→Web client
I Network of freeways

I Fortunate property: M/M/m queues have Poisson departures
⇒ Next queue is M/*/m
I Usually, we assume Poisson service times to make everything

simple
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Types of Networks

Open and Closed Networks

I Closed network recirculates jobs
I Open network has external arrivals and departures

I May also allow recycling
I Mixed networks also possible
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An Example Closed Network
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An Example Closed Network

A closed network can be converted into
an open one by cutting any arbitrary
flow path; see next slide.



Types of Networks

An Example Closed Network

CPU

Disk

Network

OutIn

5 / 18

An Example Closed Network

CPU

Disk

Network

OutIn

20
15

-0
6-

15

CS147
Types of Networks

An Example Closed Network

A closed network can be considered as
an open network in which jobs leaving
“Out” immediately reenter “In”, i.e., an
equilibrium network in which µOut = λIn.



Types of Networks

Product-Form Networks

I We are interested in P(n1,n2, . . . ,nk ), i.e., the probability that
there are n1 customers in the first queue, n2 in the second,
etc.

I Consider simple linear network:

µ µ
k

µ
21

...

I Arrival rate for each queue is λ (why?)
I Utilization ρi = λ/µi

I P(ni jobs in i th queue = pi(ni) = (1− ρi)ρ
ni
i

I P(n1,n2, . . . ,nk ) = p1(n1)p2(n2) · · · pk (nk )
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Types of Networks

Generalizing Product-Form Networks

I General form of equilibrium probability:

P(n1,n2, . . . ,nk ) =
1

G(N)

∏
i=1

kfi(ni)

I G(N) is normalizing constant, function of total jobs in system
I fi(ni) is function of (only) system parameters and ni

I Not always true that each queue behaves as M/M/1
. . . But analysis of each queue is separable

I Surprisingly large classes of networks are product-form
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Queues in Computer Systems

Computer Systems as Queueing Networks

Three general types of queues appear in computer systems:
Fixed-capacity service center Service time doesn’t depend on

number of jobs; i.e., single server with queueing
Delay center Service time is random but no queueing; i.e. infinite

number of servers (sometimes called IS)
Load-dependent service center Service rate depends on load;

e.g., M/M/m with m > 1 (runs faster as more servers
used)
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Queues in Computer Systems Operational Quantities

Operational Quantities

I An operational quantity is something that can be observed
I Necessarily over some period of time
I If period is long enough, approximates a system parameter

I Examples:

I Arrival rate λi =
number of arrivals

time
=

Ai

T
≈ λ

I Throughput Xi =
number of completions

time
=

Ci

T
≈ λ

I Utilization Ui =
busy time
total time

=
Bi

T
≈ ρ

I Mean service time Si =
total time served
number served

=
Bi

Ci
≈ µ
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Queues in Computer Systems Operational Quantities

Other Useful Quantities

I Number of devices M
I Visits per job Vi = Number of requests each job makes for

device i (can be fractional)
I Demand Di = Seconds of service needed from device i by

each job = ViSi

I Overall system throughput X = jobs completed
total time = C0

T
I Queue length at i : Qi

I Response time at i : Ri

I Think time in interactive systems: Z

10 / 18

Other Useful Quantities

I Number of devices M
I Visits per job Vi = Number of requests each job makes for

device i (can be fractional)
I Demand Di = Seconds of service needed from device i by

each job = ViSi

I Overall system throughput X = jobs completed
total time = C0

T
I Queue length at i : Qi

I Response time at i : Ri

I Think time in interactive systems: Z20
15

-0
6-

15

CS147
Queues in Computer Systems

Operational Quantities
Other Useful Quantities



Queues in Computer Systems Operational Laws

Operational Laws

Utilization Law Ui =
Bi
T = Ci

T ×
Bi
Ci

= XiSi

Forced Flow Law Xi = XVi

I In other words, device i ’s throughput had better
be Vi times the system throughput or it won’t be
able to handle the load

Little’s Law Qi = XiRi

General Response Time Law R =
M∑

i=1

RiVi

Interactive Response Time Law For N users, R = (N/X )− Z
I Not very profound, since R includes queueing

effects: response time is round trip minus what
you wasted on your own
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Queues in Computer Systems Bottleneck Analysis

Bottleneck Analysis

I Note that device demands Di are total seconds of service
needed from device i

I Some device (or devices) will be the max: Dmax
I This device is the bottleneck device

I Improving other device performances can still improve
response time, but most benefit will happen at bottleneck

I Asymptotic bounds on performance, as functions of N:

X (N) ≤ min
{

1
Dmax

,
N

D + Z

}
R(N) ≥ max {D,NDmax − Z}

where D =
∑

Di
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Queues in Computer Systems Bottleneck Analysis

Asymptotic Bounds on Throughput

N*

Number of Users

Throughput

1/Dmax

Bounds

Knee

Slope = 1/(D+Z)
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Queues in Computer Systems Bottleneck Analysis

Asymptotic Bounds on Response Time

N*

Number of Users

D

Response

Time

Bounds

Knee

Intercept = -Z

Slope = Dmax
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Tricks for Solving Networks Mean Value Analysis

Mean Value Analysis

I Iterative procedure for calculating per-device parameters
(response time, queue length, etc.)

I Basic approach:
I Assume queue length = 0 for all devices
I For increasing user counts, calculate response times, then

new queue lengths
I Complexity is O(MN) for M devices, N maximum users

I Approximations exist for reducing complexity
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Tricks for Solving Networks Hierarchical Decomposition

Hierarchical Decomposition

I Large networks are hard to deal with
I Stems comes to the rescue!

I In a queueing network, a complex subsystem with one input
and one output can be replaced by a single queue tuned to the
same behavior

I In particular, if you’re interested in device i , the entire rest of
the network has just one input and output

I Techniques are similar to things used in Stems
I Advantage: easy to study lots of settings for one device
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Tricks for Solving Networks Hierarchical Decomposition

Studying One Device

1. Pick a device to study (also works for subnetwork)
2. Set device’s service times to zero, solve remaining network
3. Replace remaining network with single load-dependent

queue, using solved parameters
4. Reset device’s service time and solve result
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Limitations

Limitations of Queueing Theory

Queueing theory is useful but has limitations:
I Nonexponential service times
I Self-similar (“train”) arrivals
I Load-dependent arrivals
I Response-dependent arrivals (e.g., retransmissions)
I Defections after joining queue
I Transient analysis generally not possible
I Fork and join make jobs interdependent
I Contention for resources
I Holding multiple resources
I Mutual exclusion among jobs
I Blocking of other devices
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