CS 147: Computer Systems Performance Analysi

CS 147: Computer Systems Performance Analysis Networks of Queues Overview

Types of Networks

Queues in Computer Systems

Operational Quantities Operational Laws Bottleneck Analysis

Tricks for Solving Networks

Mean Value Analysis Hierarchical Decomposition

Limitations

Networks of Queues

- Many systems consist of interconnected queueing systems
 - ► CPU→disk→network
 - ▶ Web client→Web server→Web client
 - Network of freeways
- Fortunate property: M/M/m queues have Poisson departures
 - \Rightarrow Next queue is M/*/m
 - Usually, we assume Poisson service times to make everything simple

etworks of Queues				
ADMORRS OF CODE FOR MARK				
		on -		10000

Mary systems consist of Interconnected queueing systems

 CPLI-disk-network
 Work clean-t-Web server-Wile cleant
 Network of theremysis

 Fortunate property: MMIm queues have Poisson departures

 Net queue is M/m
 Usually use assume Poisson service times to make everything ample

Open and Closed Networks

Open and Closed Networks

Closed network recirculates jobs
 Opan network has external anivals and departures

 May also allow recycling
 Mixed networks also possible

- Closed network recirculates jobs
- Open network has external arrivals and departures
 - May also allow recycling
- Mixed networks also possible

Types of Networks

An Example Closed Network

CS147 └─Types of Networks └─An Example Closed Network

A closed network can be converted into an open one by cutting any arbitrary flow path; see next slide. Types of Networks

An Example Closed Network


```
CS147

└─Types of Networks

└─An Example Closed Network
```


A closed network can be considered as an open network in which jobs leaving "Out" immediately reenter "In", i.e., an equilibrium network in which $\mu_{Out} = \lambda_{In}$.

Product-Form Networks

- ► We are interested in P(n₁, n₂,..., n_k), i.e., the probability that there are n₁ customers in the first queue, n₂ in the second, etc.
- Consider simple linear network:

- Arrival rate for each queue is \(\lambda\) (why?)
- Utilization $\rho_i = \lambda/\mu_i$
- $P(n_i \text{ jobs in } i^{\text{th}} \text{ queue} = p_i(n_i) = (1 \rho_i)\rho_i^{n_i}$
- $P(n_1, n_2, ..., n_k) = p_1(n_1)p_2(n_2)\cdots p_k(n_k)$

Product-Form Networks
 We are interested in P(n₁, n₂,, n_k), i.e., the probability that there are n₁ customers in the first queue, n₂ in the second, etc.
Consider simple linear network:
 Arrival rate for each queue is λ (why?) Utilization μ₀ = λ/μ₁ P(α₁ jobs in P⁰ queue = β₁(α₁) = (1 − μ₁)μ₁⁰ P(α₂, α₂,, α₂) = p₁(α₂)(α₁(α₂) ···· α₂(α₂)
• $P(n_1, n_2,, n_k) = \rho_1(n_1)\rho_2(n_2) \cdots \rho_k(n_k)$

Generalizing Product-Form Networks

General form of equilibrium probability:

$$P(n_1, n_2, \ldots, n_k) = \frac{1}{G(N)} \prod_{i=1} k f_i(n_i)$$

- G(N) is normalizing constant, function of total jobs in system
- $f_i(n_i)$ is function of (only) system parameters and n_i
- Not always true that each queue behaves as M/M/1
- ... But analysis of each queue is separable
- Surprisingly large classes of networks are product-form

Computer Systems as Queueing Networks

Three general types of queues appear in computer systems: *Fixed-capacity service center* Service time doesn't depend on number of jobs; i.e., single server with queueing

Delay center Service time is random but no queueing; i.e. infinite number of servers (sometimes called *IS*)

Load-dependent service center Service rate depends on load; e.g., M/M/m with m > 1 (runs faster as more servers used)

Operational Quantities

An operational quantity is something that can be observed

- Necessarily over some period of time
- If period is long enough, approximates a system parameter

Examples:

Op	rational Quantities
	An operational quantity is something that can be observed.
	 Necessarily over some period of time
	If period is long enough, approximates a system param
	Examples:
	Arrival rate λ _i = number of arrivals = A/2 = λ
	rumber of completions C
	 Throughput X_i =
	busy time B
	• Usidation $\omega = \frac{1}{10tal time} = \frac{1}{T} \approx \rho$
	 Mean service time S_i = total time served number served = B_i/C ≈ μ

Other Useful Quantities

- Number of devices M
- Visits per job V_i = Number of requests each job makes for device *i* (can be fractional)
- Demand D_i = Seconds of service needed from device i by each job = V_iS_i
- Overall system throughput $X = \frac{\text{jobs completed}}{\text{total time}} = \frac{C_0}{T}$
- Queue length at i: Q_i
- **•** Response time at $i: R_i$
- ► Think time in interactive systems: *Z*

ther Useful Quantiti

- Number of devices M
- Visits per job V_i = Number of requests each job makes for device i (can be fractional)
- Demand D_i = Seconds of service needed from device i by each job = V(S)
- Overall system throughput X = bits completed <u>bits completed</u> = <u>C</u>
- Queue length at i: Q;
- Response time at i: R
- Think time in interactive systems: Z

Operational Laws

Utilization Law $U_i = \frac{B_i}{T} = \frac{C_i}{T} \times \frac{B_i}{C_i} = X_i S_i$ Forced Flow Law $X_i = XV_i$

> In other words, device i's throughput had better be V_i times the system throughput or it won't be able to handle the load

Little's Law $Q_i = X_i R_i$

General Response Time Law $R = \sum_{i=1}^{M} R_i V_i$

Interactive Response Time Law For N users, R = (N/X) - Z

Not very profound, since R includes queueing effects: response time is round trip minus what you wasted on your own

Operational Laws
Utilization Law $U_i = \frac{n}{2} = \frac{c}{2} \times \frac{n}{2} = X_i S_i$ Frond Flow i are $X = XV_i$
 In other works, device i's throughput had better be V; times the system throughput or it won't be able to handle the load
Little's Law $Q_i = X_i R_i$
General Response Time Law $R = \sum_{i=1}^{n} R_i V_i$
Interactive Response Time Law For N users, $R = (N/X) - Z$
 Not very profound, since R includes queueing effects: response time is round trip minus what you wasted on your own

Queues in Computer Systems Bottleneck Analys

Bottleneck Analysis

- Note that device demands D_i are total seconds of service needed from device i
- Some device (or devices) will be the max: D_{max}
- This device is the bottleneck device
 - Improving other device performances can still improve response time, but most benefit will happen at bottleneck
- Asymptotic bounds on performance, as functions of N:

$$\begin{array}{ll} X(N) & \leq & \min\left\{\frac{1}{D_{\max}}, \frac{N}{D+Z}\right\} \\ R(N) & \geq & \max\left\{D, ND_{\max}-Z\right\} \end{array}$$

where $D = \sum D_i$

where $D = \sum D_i$

Asymptotic Bounds on Throughput

CS147 2015-06-15 Queues in Computer Systems -Bottleneck Analysis Asymptotic Bounds on Throughput

Asymptotic Bounds on Response Time

Mean Value Analysis

- Iterative procedure for calculating per-device parameters (response time, queue length, etc.)
- Basic approach:
 - Assume queue length = 0 for all devices
 - For increasing user counts, calculate response times, then new queue lengths
- Complexity is O(MN) for M devices, N maximum users
 - Approximations exist for reducing complexity

 Iterative procedure for calculating per-device parameter (response time, queue langth, etc.)
 Bails accreach:

ean Value Analysis

- Assume queue length = 0 for all devices
 For increasing user counts, calculate response times, the
- For increasing user counts, calculate response tim new queue lengths
 - Complexity is O(MN) for M devices, N maximum users
 Approximations exist for reducing complexity

Hierarchical Decomposition

-
- Large networks are hard to deal with
- Stems comes to the rescue!
 - In a queueing network, a complex subsystem with one input and one output can be replaced by a single queue tuned to the same behavior
 - In particular, if you're interested in device *i*, the entire rest of the network has just one input and output
- Techniques are similar to things used in Stems
- Advantage: easy to study lots of settings for one device

CLEAN DE L	24111144		
		_	

- Large networks are hard to deal with
 Stems comes to the rescuel
 In a quaving network, a complex subsystem with one input and one output can be replaced by a single queue tuned to the same behavior
 In particular, if you're interested in device, it due entire neat of the network has jutt one input and cutput
- Techniques are similar to things used in Stems
- Advantage: easy to study lots of settings for one device

Studying One Device

2015-06-1 -Hierarchical Decomposition -Studying One Device

ß

CS147

-Tricks for Solving Networks

- udving One Device
- Pick a device to study (also works for subnetwork
- Set device's service times to zero, solve remaining network Reniare remaining network with single load dependent
- queue, using solved parameters Reset device's service time and solve result

- 1. Pick a device to study (also works for subnetwork)
- 2. Set device's service times to zero, solve remaining network
- 3. Replace remaining network with single load-dependent queue, using solved parameters
- Reset device's service time and solve result 4

Limitations of Queueing Theory

Queueing theory is useful but has limitations:

- Nonexponential service times
- Self-similar ("train") arrivals
- Load-dependent arrivals
- Response-dependent arrivals (e.g., retransmissions)
- Defections after joining queue
- Transient analysis generally not possible
- Fork and join make jobs interdependent
- Contention for resources
- Holding multiple resources
- Mutual exclusion among jobs
- Blocking of other devices

CS147 Limitations

ations of Queueing Theor

- Queueing theory is useful but has limitations Nonexponential service times
- Nonexponential service time
 Self-similar ('train') arrivals
 - Load-dependent arrivals
 - Response-dependent arrivals (e.g., retransmissions)
 Defections after joining queue
 - Derections after joining queue
 Transient analysis generally not possible
 - Fork and join make jobs interdependent
 - Contention for resources
 - Holding multiple resources
 Mutual exclusion among jobs
 - Blocking of other devices