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Types of Networks

Networks of Queues

Many systems consist of interconnected queueing systems
CPU—disk—network
Web client—Web server—Web client
Network of freeways

Fortunate property: M/M/m queues have Poisson departures
Next queue is M/*/m
Usually, we assume Poisson service times to make everything
simple
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Types of Networks

Open and Closed Networks

Closed network recirculates jobs
Open network has external arrivals and departures
May also allow recycling

Mixed networks also possible
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Types of Networks
An Example Closed Network
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> Disk A closed network can be converted into
an open one by cutting any arbitrary
D flow path; see next slide.
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L-An Example Closed Network

n out > Disk A closed network can be considered as
an open network in which JObS leaving
h “Out” immediately reenter “In”, i.e., an

equilibrium network in which uom = An.
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L Product-Form Networks

We are interested in P(ny, no, ..., ng), i.e., the probability that
there are ny customers in the first queue, n. in the second,
etc.

Consider simple linear network:

I T

Arrival rate for each queue is A (why?)
Utilization p; = A/ u;

P(n; jobs in i queue = pi(n;) = (1 — pi)p]"
P(ny,na,...,nk) = p1(n1)p2(n2) - - - px(Nk)




Types of Networks
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LGeneralizing Product-Form Networks

General form of equilibrium probability:

P(ny,na,...,nk) = G(1N)i11kfi(ni)
G(N) is normalizing constant, function of total jobs in system
fi(n;) is function of (only) system parameters and n;
Not always true that each queue behaves as M/M/1
But analysis of each queue is separable
Surprisingly large classes of networks are product-form



Queues in Computer Systems
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Three general types of queues appear in computer systems:

Fixed-capacity service center Service time doesn’t depend on
number of jobs; i.e., single server with queueing

Delay center Service time is random but no queueing; i.e. infinite
number of servers (sometimes called 1S)

Load-dependent service center Service rate depends on load;
e.g., M/M/m with m > 1 (runs faster as more servers
used)



Queues in Computer Systems Operational Quantities
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An operational quantity is something that can be observed

Necessarily over some period of time
If period is long enough, approximates a system parameter

Examples:

. number of arrival A

Arrival rate \; = umbe oramvass _ 4
time T

number of completions  C;

Throughput X; =

ousy time "5
I usy time ;
Utilization Uj = ——— = = ~

"~ totaltime T 7
Mean service time S; = total time served _ 5 ~
"~ Tnumber served _ C;

~ A
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Queues in Computer Systems Operational Quantities
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Number of devices M

Visits per job V; = Number of requests each job makes for
device i (can be fractional)

Demand D; = Seconds of service needed from device i by
each job = V;S;

Overall system throughput X =
Queue length at i: Q;
Response time at i: R;

Think time in interactive systems: Z

jobs completed _ Cy
total time - T
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Queues in Computer Systems Operational Laws
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Utilization Law U; = 3 = ¢ x & = X;S;
Forced Flow Law X; = XV;
In other words, device i’s throughput had better
be V; times the system throughput or it won’t be
able to handle the load
Little’s Law Q; = X;R;
M
General Response Time Law R = Z RV,
i=1
Interactive Response Time Law For N users, R=(N/X)—-Z
Not very profound, since R includes queueing
effects: response time is round trip minus what
you wasted on your own
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Queues in Computer Systems Bottleneck Analysis
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Note that device demands D; are total seconds of service
needed from device i

Some device (or devices) will be the max: Dnax

This device is the bottleneck device

Improving other device performances can still improve
response time, but most benefit will happen at bottleneck

Asymptotic bounds on performance, as functions of N:

min {1 N}
Dmax’ D+ Z
max {D, NDnax — Z}

3 X
2 =2
VoA

where D = > D;
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Queues in Computer Systems Bottleneck Analysis

Asymptotic Bounds on Throughput o CS147
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Queues in Computer Systems Bottleneck Analysis
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Slope = Dmax

Response
Time

Number of Users
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Tricks for Solving Networks Mean Value Analysis

Mean Value Analysis

Iterative procedure for calculating per-device parameters
(response time, queue length, etc.)
Basic approach:

Assume queue length = 0 for all devices
For increasing user counts, calculate response times, then
new queue lengths

Complexity is O(MN) for M devices, N maximum users
Approximations exist for reducing complexity
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Tricks for Solving Networks Hierarchical Decomposition

Hierarchical Decomposition

Large networks are hard to deal with
Stems comes to the rescue!

In a queueing network, a complex subsystem with one input
and one output can be replaced by a single queue tuned to the
same behavior

In particular, if you're interested in device i, the entire rest of
the network has just one input and output

Techniques are similar to things used in Stems
Advantage: easy to study lots of settings for one device
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Tricks for Solving Networks Hierarchical Decomposition

Studying One Device

Pick a device to study (also works for subnetwork)
Set device’s service times to zero, solve remaining network

Replace remaining network with single load-dependent
queue, using solved parameters

Reset device’s service time and solve result
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Limitations

Limitations of Queueing Theory

Queueing theory is useful but has limitations:
Nonexponential service times
Self-similar (“train”) arrivals
Load-dependent arrivals
Response-dependent arrivals (e.g., retransmissions)
Defections after joining queue
Transient analysis generally not possible
Fork and join make jobs interdependent
Contention for resources
Holding multiple resources
Mutual exclusion among jobs
Blocking of other devices
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L Limitations of Queueing Theory
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