More Quantum Mechanics and Linear Algebera: Neutrinos and Other Subatmoic Particles

Itai Seggev
Mathematics Department
Knox College

Motivation

* Quantum mechanics first formulated as "matrix mechanics"
* Students enjoy tackling "real problems" even if they don't know all the details
* Can combine as many (or few) concepts as wanted in a single problem
* Gives a concrete interpretation to evalues

Truth in Advertising

* The class taught was "mathematical physics"
* All students were math or physics majors
* Multivariable calculus and DEs are corequisites; a few had taken linear algebra
* First half of the course was on linear algebra
* Material in this talk uses only linear algebra

Quantum Mechanics for the Ph.D. Mathematician

1. Physical states are represented by vectors in a complex Hilbert space
2. Physical observables are represented by self-adjoint operators, and measurements correspond to their spectral projectors
3. \exists 1-parameter unitary group of evolution operators. Its self-adjoint generator is called the Hamiltonian (eigenvectors are "energy levels", eigenvalues are "energies")

Quantum Mechanics for Linear Algebra Students

1. Physical states are represented by vectors in a complex vector space
2. Physical observables are represented by Hermitian operators
3. Time evolution is given by the Schrödinger equation:

$$
\psi(t)=e^{-\left(\frac{i H t}{\hbar}\right)} \psi(0)
$$

His called the Hamiltonian, and its eigenvalues are the energies of the system

Neutrino Oscillations

* From late 60's to late 90's, many fewer neutrinos observed than predicted
* "Solar Neutrino Problem"
* "Atmospheric Neutrino Problem"
* Finally resolved by several experiments (1998 to 2004)
* SuperKamiokande
* SNO

What's a Neutrino?

* Fundamental particle related to electron, μ, τ * First hypothesized by Fermi in nuclear decay
* 3 "Flavors" (sometimes "generations")
* Originally believed massless
\Rightarrow Oscillations indicate non-zero mass!

A Model for Oscillations

* Let $b_{1}=(1,0)$ represent the electron-type neutrino, $b_{2}=(0,1)$ the muon-type neutrino.
* The system has an effective Hamiltonian:

$$
H=\frac{1}{E_{0}}\left(\begin{array}{ll}
\cos ^{2}(\theta) m_{1}^{2}+\sin ^{2}(\theta) m_{2}^{2} & \cos (\theta) \sin (\theta)\left(m_{1}^{2}-m_{2}^{2}\right) \\
\cos (\theta) \sin (\theta)\left(m_{1}^{2}-m_{2}^{2}\right) & \sin ^{2}(\theta) m_{1}^{2}+\cos ^{2}(\theta) m_{2}^{2}
\end{array}\right)
$$

$$
\lambda \in\left\{\frac{m_{1}^{2}}{E_{0}}, \frac{m_{2}^{2}}{E_{0}}\right\}, v_{\lambda} \in\{(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)\}
$$

Observations

* The probability that an electron neutrino be detected as a muon neutrino is

$$
\begin{aligned}
P & =\left|b_{2}^{T}\left(e^{-i H t / \hbar}\right) b_{1}\right|^{2} \\
& =\sin ^{2}\left(\frac{\left(m_{1}^{2}-m_{2}^{2}\right) t}{2 E_{0} \hbar}\right) \sin ^{2}(2 \theta)
\end{aligned}
$$

Example Problem

(20 points) Over the past few years, the phenomenon of neutrino oscillations has been experimentally established. This refers to the fact "electron-type neutrinos" can turn into "muon-type neutrinos". One simple but very accurate model is as follows. Let $e_{1}=(1,0)$ represent the electron neutrino, and let $e_{2}=(0,1)$ represent the muon neutrino. The particles' evolution is then given by the Hamiltonian:

$$
\hat{H}=\left(\begin{array}{cc}
m_{1}^{2} \cos ^{2} \theta+m_{2}^{2} \sin ^{2} \theta & \Delta m^{2} \cos \theta \sin \theta \\
\Delta m^{2} \cos \theta \sin \theta & m_{2}^{2} \cos ^{2} \theta+m_{1}^{2} \sin ^{2} \theta
\end{array}\right)
$$

In the above m_{1} and m_{2} are two masses (the so-called "electroweak eigenstate masses"), $\Delta m^{2}=m_{1}^{2}-m_{2}^{2}$, and θ is the mixing angle which measures the tendency on one type of neutrino to turn into the other type. If at time $t=0$ an electron neutrino is created, find the probability that it will be a muon neutrino at a later time t. According to the rules of quantum mechanics, this is given by $P(t):=\left|\left\langle e_{2} \mid e^{-i H t} e_{1}\right\rangle\right|^{2}$.

Similar Systems

* Particle physics offers many similar systems of this type
* Cabibbo Angle/CKM Matrix
* Neutral Kaon system
* Isospin model of the nucleus
* Why? Particles are idealizations, not fundamental

Group Theory: A Proposal

* Symmetry plays a crucial role modern particle physics (also atomic/molecular)
* Orthogonal and unitary groups most important
* An advanced linear course could give students a systematic introduction.

Examples

* Isospin (SU(2) in fundamental rep)
* The Eight-Fold Way (SU(3) in adjoint and other reps)
* QCD (strong force, SU(3) in adjoint rep)
* Also classical examples: SO(3) in particle mechanics, SO(3,1) in relativity, more.

Why Would You Do Such A Thing?

* Attract more students to advanced linear
* Transition to/reinforce abstract algebra
* Give math students an introduction to continuous groups w/o all the hard topology/geometry
* Service to physics students

Student Response

* "ISchrödinger equation problems] are cool stuff"
* Students found the problems difficult at first but came to enjoy them

Further Reading

* Wikipedia
* Griffiths, David. Introduction to Elementary Particles, Wiley, New York (1987)
* iseggev@knox.edu

