
Generating Memorable Mnemonic Encodings of Numbers

Vincent Fiorentini and Megan Shao and Julie Medero
Harvey Mudd College

Claremont, CA
{vfiorentini,mshao,jmedero}@hmc.edu

Abstract

The major system is a mnemonic sys-
tem that can be used to memorize se-
quences of numbers. In this work, we
present a method to automatically gener-
ate sentences that encode a given num-
ber. We propose several encoding models
and compare the most promising ones in a
password memorability study. The results
of the study show that a model combining
part-of-speech sentence templates with an
n-gram language model produces the most
memorable password representations.

1 Introduction

The major system is a mnemonic device used
to help memorize numbers. The system works
by mapping each digit of a number to a conso-
nant phoneme and allowing for arbitrary inser-
tion of vowel phonemes to produce words (Fauvel-
Gouraud, 1845). For instance, the digit 1 maps to
<T>, and the digit 2 maps to <N>. The number
121 can then be encoded as the word tent by re-
placing both 1s with <T>s, replacing the 2 with
<N>, and inserting an <e>. The full major sys-
tem mapping is shown in Table 1.

The difficulty of generating a memorable se-
quence of words that encodes a number with the
major system stems from the constraint that the
sequence of words must encode exactly the given
digits. While there are many sequences of words
that correctly encode a given number, the vast ma-
jority of these sequences are incoherent and thus
difficult to remember. So, this task requires the use
of a language model that balances the encoding
constraints with syntactic plausibility and some
notion of memorability.

We have developed a system that automatically
produces a sequence of words to encode a se-

Digit Corresponding Phonemes
0 S, Z
1 T, D, TH, DH
2 N
3 M
4 R
5 L
6 CH, JH, SH, ZH
7 K, G
8 F, V
9 P, B
None NG, vowels

Table 1: The major system maps digits to Arpabet
consonant phonemes.

quence of digits. Each such encoding is a se-
quence of sentences that balance memorability
and length. We sample from a distribution of part-
of-speech (POS) templates to produce a syntacti-
cally plausible sentence, then use an n-gram lan-
guage model to fill each POS slot in the selected
template to produce an encoding.

A system like ours can be used to memorize
fairly short numbers, such as a numeric password,
a phone number, or an account number; or to
memorize arbitrarily long numbers, like digits of
π. One could use our system to encode a smart-
phone passcode as a short sentence. Thus, our
system can help improve the strength of security
practices.

To test the effectiveness of our system, we con-
ducted a study on password memorability. Partici-
pants were asked to memorize an eight-digit num-
ber representing a numeric password and a phrase
produced by our system to encode the same num-
ber. After seven days, participants remembered
the encoding produced by our final model better
than the number itself. Participants also stated a

ar
X

iv
:1

70
5.

02
70

0v
1 

 [
cs

.C
L

] 
 7

 M
ay

 2
01

7



strong preference for our final model’s encodings.
The rest of this paper is organized as follows.

Section 2 describes existing systems for automati-
cally generating encodings with the major system
and puts our work in the context of related aca-
demic problems. In Section 3, we describe the
different encoding models that we studied. Sec-
tion 4 gives results and analysis of our models. In
Section 5, we describe the password memorability
study we conducted. We describe possible exten-
sions to our work and conclude in Section 6.

2 Previous Work

Several tools are available online for generating
naive encodings of numbers using the major sys-
tem. In this section, we describe those tools and
identify the shortcomings in those implementa-
tions that are addressed by our work. We also put
our work into the context of previous studies on
password memorability.

2.1 Existing Tools

There are a number of existing tools that use the
major system to encode sequences of digits as se-
quences of words. However, all such tools we
found have considerable limitations. Most no-
tably, the majority of these tools simply return the
entire set of words that can individually encode the
given number.

Many mobile applications will generate encod-
ings, but their focus appears to be on helping
users learn the major system and not on generat-
ing memorable encodings automatically (Shichijo,
2014; Reindl, 2015; Vladislav, 2016; Scott, 2015a;
Pfeiffer, 2013; Buder, 2012). None of these
tools rank the multiple encodings they produce,
and none of them produce sentences. Most of
these tools only produce one- or two-word encod-
ings, greatly limiting the length of sequences they
can encode (Graaff, 2016; Rememberg, 2010; Ju-
rkowski, 2014).

Other tools produce encodings of longer se-
quences of digits by breaking the sequence into
chunks of a fixed length, often two digits per word,
and most do not combine the single-word encod-
ings into one sequence of words (Ströbele, 2013;
Scott, 2015b; Parcel, 2016; Got2Know, 2013).

Thus, these existing approaches are ill-suited
for the memorization of even moderately long se-
quences of digits. Since the most sophisticated
of these approaches are equivalent to our baseline

models, we do not empirically compare these tools
to our models.

2.2 Related Academic Work

We are only aware of two previous corpus-based
methods for generating mnemonic encodings. The
first presents a method to help remember text pass-
words by finding a newspaper headline from the
Reuters Corpus such that the first letters of each
word in the headline match the letters in the pass-
word (Jeyaraman and Topkara, 2005). However,
the restriction of using only newspaper headlines
means that only about 40% of seven-character
passwords are covered.

The second corpus-based method addresses the
related problem of memorizing random strings of
bits. Ghazvininejad and Knight (2015) created a
method to encode random 60-bit strings as mem-
orable sequences of words. However, their meth-
ods that create the most memorable passwords do
not allow the user to mentally convert their mem-
orized sequence of words to the original string. In
contrast, our use of the major system allows users
to easily convert any sequence of words into the
encoded number in their head.

Although these methods encode a sequence of
letters and a string of bits while our system en-
codes a sequence of digits, all aim to create mem-
orable sentences as output. Based on the results
of these two previous methods, our system favors
unique words and sentences of moderate length.
Because our system needs to encode any arbitrary
sequence of digits, we use a language model to
generate sentences instead of relying on a pre-
existing set of newspaper headlines.

Substantially more work has been done on the
memorability and security of passwords. For-
get and Biddle (2008) found that modifying user-
created passwords to increase security had the un-
intended consequence of reducing memorability.
Yan et al. (2004)’s work provides a possible means
of dealing with that tension between security and
memorability, showing that passwords based on
mnemonic phrases were as easy to remember as
naively created passwords and as strong as random
passwords. Their positive results for mnemonic-
based passwords are encouraging for our own
mnemonic-based system. Our system is further in-
formed by the work of Leiva and Sanchis-Trilles
(2014), who analyzed different methods of sam-
pling memorable sentences from corpora to use as



prompts in text entry research. They found that
prompts are more memorable when they are com-
plete phrases and have fewer words.

Our user study experiment evaluating the mem-
orability of the phrases generated by our systems
is informed by the existing work in this area.
The format of our human subjects experiment is
largely informed by the work of Vu et al. (2004).
They examined the use of passphrases created
by taking the first letter of each word in a sen-
tence. Their user study split participants into two
passphrase groups, the second of which had to
include a number and a special character in the
passphrase. The participants were not allowed to
write the passwords down. The researchers then
tested the participants’ recall after five minutes and
after a week. The results showed that the second
group produced much more secure passwords but
at the cost of memorability.

3 Methodology

In this section, we describe the data we used to
train our models and present the six mnemonic-
generating systems we considered. These mod-
els include two baseline models, three preliminary
models, and the final sentence encoder model. The
source code for these models is available online 1.

3.1 Data Sets

We use two data sets in our system. The first is the
Brown corpus, which contains about 56,000 types
and 1.2 million tokens (Francis and Kuera, 1964).
We use this corpus to train our n-gram models.
The corpus is also tagged with part-of-speech data,
which we use to train our part-of-speech n-gram
model and our sentence encoder model.

The second data set we use is the CMU Pro-
nouncing Dictionary (Lenzo, 2014). This data set
is a file of about 134,000 words, each labeled with
its pronunciation in the Arpabet phoneme set. We
work with the intersection of these two data sets,
which contains about 34,000 words. This ensures
that all the words produced by our language model
can be pronounced from the CMU Pronouncing
Dictionary. We pre-process both data sets to low-
ercase all words.

3.2 Baseline Models

We designed two baseline models to compare our
results against. Each of these baselines satisfies

1https://github.com/VinceFior/major-system

the requirement that the sequences of words pro-
duced encode exactly the input digits. Both base-
lines are greedy: they generate encodings one
word at a time. At each time step, they choose
a word from the set of words that encode the max-
imum number of digits possible. They differ in
how a word is chosen from that set:

Random Encoder: At each step, a word is se-
lected at random.

Unigram Encoder: At each step, the word with
the highest unigram probability is selected.

3.3 Preliminary Models
We also considered three models that were more
sophisticated than our baseline models. Unlike the
baseline models that greedily encode as many dig-
its per word as possible, these models consider all
words that can encode at least one digit.

n-gram Encoder: Words are generated one at a
time. At each step, the next word is chosen
using an n-gram language model with Stupid
Backoff (Brants et al., 2007). We tested dif-
ferent combinations of hyperparameters and
decided on default values of n = 3 and back-
off factor α = 0.1. An additional hyperpa-
rameter indicates if the model should select
the word with the highest n-gram probability
or sample from a weighted probability dis-
tribution based on n-gram probabilities, with
the former option as the default.

Part-of-Speech (POS) Encoder: Words are gen-
erated one at a time, but a POS trigram model
is used to restrict the set of possible words
at each step so that the generated phrases are
syntactically motivated. Each word is associ-
ated with the POS tag it most often has in the
Brown corpus. To select each word in the en-
coding, the most likely POS tag is identified
from the POS trigram model. From all words
with that POS, we choose the word that has
the greatest likelihood according to a word
trigram model.

Chunk Encoder: Instead of generating encod-
ings one word at a time, we generate one sen-
tence at a time. Each sentence must match a
fixed phrase template: <noun phrase><verb
phrase><noun phrase>. Additionally, each
chunk encodes exactly three digits. This en-
coder breaks the given number into chunks of

https://github.com/VinceFior/major-system


three digits and encodes each chunk as one or
two words that can be parsed as the desired
chunk type. For each chunk, the phrase that
has the greatest likelihood according to a bi-
gram language model is selected.

3.4 Final Model: Sentence Encoder

After examining the output of the three prelimi-
nary models, we combined the best elements of
each into a final model, which we call the Sentence
Encoder. This model aims to produce a variety of
sentence structures that are both adequately long
and reasonably likely to occur.

The sentence encoder trains a trigram model on
the Brown corpus and stores the 100 most fre-
quent sentence templates found in the corpus. A
sentence template is a sequence of part-of-speech
tags from the corpus’s simple “universal” tag set.
We filter these sentence templates to only con-
tain sentences that have a verb, do not have any
numbers or “other”-category words (like foreign
words), and are guaranteed to produce at least 5
words.

To encode a sequence of digits, the sentence en-
coder first samples a sentence template based on
the templates’ frequencies in the training corpus.
Then, for every part of speech in the template,
the encoder selects the word that encodes at least
the next digit with the most likely trigram score
based on the previous words. If the encoder is un-
able to find a word that matches the necessary part
of speech, it replaces the current sentence with a
different, newly sampled sentence template. This
process is repeated until all digits are encoded,
possibly resulting in the end of the last sentence
template being unused.

A few additional changes to this model greatly
improve its performance:

• We allow nouns in place of pronouns, since
there are more possible nouns than pronouns.

• We allow certain parts of speech - determin-
ers, adjectives, and adverbs - to be skipped if
no word is found that matches them.

• We weight the trigram score of each word
based on how many digits it encodes. We
do this by multiplying the score by the num-
ber of digits the word encodes raised to some
power, which is set to 10 by default. We pre-
viously found that the most likely sequences

of words tend to encode only one or two dig-
its per word, resulting in sentences that are
long and thus less memorable.

• We run a post-processing pass over the out-
put sentences. The post-processing pass it-
erates over each word, calculates the prob-
abilities for all possible words that encode
the exact same digits using a bigram lan-
guage model with the preceding and follow-
ing words, and replaces the original word
with the most likely word.

With these four changes, the sentence encoder is
able to encode all numbers as memorable, syntac-
tically plausible sentences of a reasonable length.

As an example, consider the number 86101521.
The sentence encoder first samples a sentence
template, such as “<verb> <noun> <conj>
<verb> <adv>.” Then, the sentence en-
coder finds a verb that encodes at least the
first digit, 8. The sentence encoder selects
the verb “officiate,” which has consonant sounds
“<F>,<SH>,<T>,” to represent 861. The re-
maining digits are 01521. The sentence encoder
then selects the noun “wasteland,” with consonant
sounds “<S>,<T>,<L>,<N>,<D>,” to repre-
sent 01521. So, 86101521 is encoded as “Officiate
wasteland.”

4 Model Output

For each model, we look at the encoding generated
for two numbers. The first number is a random
eight-digit number, and the second is the first fifty
digits of π.

The eight-digit number demonstrates each
model’s ability to encode fairly short sequences of
digits, such as a numeric password, a phone num-
ber, or an account number. Table 2 shows how
each model encoded the number 86101521.

The first fifty digits of π demonstrates
each model’s ability to encode an arbitrarily
long sequence of digits. Table 3 shows how
each model encoded the first fifty digits of π:
31415926535897932384626433832795028841971
693993751.

4.1 Comparison of Encodings

The random encoder generates mnemonic encod-
ings that use obscure words without any structure.
As such, the random encoder does not produce
memorable encodings.



Encoder Phrase
Random Vouching wits widely and
Unigram Fish this tell and
n-gram Of which the house to all. And
POS Wife age at sea with law in the
Chunk Half shut settle night.
Sentence Officiate wasteland.

Table 2: Encodings generated by each model for the 8-digit code 86101521.

Encoder Phrase
Random meeting rawhide yelping hunch alum levy bog boom annum ivory gin sharing meme

femme knock appeal sinning vivo readying bake twitch beaming pub hammock high-
lighting

Unigram made right help enjoy william life back p.m. name over john sure mama foam neck able
seen five right back touch p.m. baby make old

n-gram Him to hire youth all. Be in show all my life. Be echoing be my own home. Of our age
in which our. Him home of my own. Go up all his own. Of every day by god. Which by
him by be. Him go along with.

POS Matter with law by an age along mile of hope. Week by man among every age in age.
Year among aim of man. Week by law use in favor with pike with age by humming by
boy among week along the.

Chunk Matter would leap new jail. Home life book by money home. Average enjoy her home
movie. Human ego being less won five. Earth by god she poem by. Buy make lead.

Sentence Matter tell been shell among life. Pickup man moving or which nature. Mama of many
couples in favor. Tobacco touch pump by my cold.

Table 3: Encodings generated by each model for the first 50 digits of π.

The unigram encoder improves on the random
encoder by favoring more common words, which
tends to result in shorter encodings. However,
as neither model considers part-of-speech infor-
mation, the two baselines produce unrelated se-
quences of words, which are difficult to chunk and
to remember.

The n-gram encoder generates encodings that
tend to be long and unmemorable. The en-
coder often produces incoherent phrases of com-
mon words, such as “the of which by his own.”
The sentences produced by the other three non-
baseline models tend to be more memorable.

For example, the POS encoder generates
longer, more syntactically plausible sentences.
The biggest drawback of this model is the relative
lack of verbs in its generated sentences.

The chunk encoder produces encodings simi-
lar to those produced by the POS encoder but with
a noun-verb-noun pattern that results in relatively
short, simply structured sentences. However, the
chunk encoder has a slow running time due to the

relatively expensive process of parsing each possi-
ble noun phrase and verb phrase.

The sentence encoder produces words such
that each word encodes many digits and tends to
be distinctive. This means that fewer words and
thus fewer sentences are needed to encode a given
sequence of digits, making the mnemonic encod-
ings generated by the sentence encoder easy to
chunk and memorable. We hypothesize that the
sentence encoder generates more memorable sen-
tences. We tested that hypothesis through a user
study.

5 User Study

We conducted a user study to test the memorabil-
ity of the phrases generated by our models. The
study was presented as a study of password mem-
orability, in which each password was an 8-digit
number or its encoding from the n-gram encoder
or the sentence encoder. We compared the n-
gram model (which served as our baseline) to the
sentence model (which we hypothesized best bal-



ances all aspects of memorability) for four factors:

Short-Term Recall: How well can participants
remember the number or its encoding after
five minutes?

Long-Term Recall: How well can participants
remember the number or its encoding after
one week?

Long-Term Recognition: How well can partic-
ipants identify the number or its encoding
from a list of options after one week?

Subjective Comparison: How easy does each
number or its encoding seem to users? This
comparison may give an indication of how
likely users are to consider trying a particu-
lar mnemonic.

5.1 Study Overview

The study was comprised of two online surveys,
which together take about fifteen minutes to com-
plete. We recruited participants through emails
to a computer science summer research program
and through social media posts. Participants were
compensated with a five-dollar Amazon.com gift
card via email after completing the second survey.

While we had 167 participants complete both
surveys, we found in the second survey that 101 of
the respondents were fraudulent. These responses
shared a number of suspicious characteristics:

• They were completed consecutively, usually
with only a few seconds from one response
to the next, for both the first and the second
survey.

• None of them spent as much time on the sur-
vey tasks as other participants. The median
time spent on our distraction task, for exam-
ple, was 4 seconds for these participants. For
other participants, the median time spent on
the same task was 81 seconds.

• They appeared in groups of consecutive
email addresses from the same free email
provider.

• They all remembered the numeric code and
its encoding perfectly after one week.

Removing these participants left 67 responses to
the first survey and 66 responses to the second.

5.2 Study Design

Each participant was randomly assigned to one of
two groups, n-gram or sentence. Participants were
identified by the email address they entered in the
first survey, which we then used to send them a
link to the second survey and to identify their re-
sponses.

The first survey presented each participant with
an 8-digit sequence and a corresponding sequence
of words from either the n-gram encoder or the
sentence encoder that encoded the same 8-digit se-
quence. The participant was asked to remember
both the number and the encoding, without writ-
ing them down, and was informed that they would
be asked to recall both sequences at the end of
the first survey and on the second survey. After
entering both sequences to confirm initial memo-
rization, the participant was asked to read a page
of baking recipes for approximately five minutes.
This page, containing numbers and words, served
to clear the participant’s working memory. Next,
the participant was asked to enter both sequences,
with an “I forgot” button available if necessary.
Each correct or incorrect attempt was recorded, as
was the time spent on each page of the survey.

The second survey was sent to each participant
seven days after their completion of the first sur-
vey. The survey again asked each participant to
recall both sequences and recorded the same in-
formation. The participant was then asked to rec-
ognize their 8-digit sequence from a list of five
sequences and to recognize their word sequence
from a list of five word sequences generated by
their group’s encoder. Next, the participant was
shown an 8-digit sequence, its n-gram encoding,
and its sentence encoding and asked to rank the
three passwords from “easiest to remember” to
“hardest to remember.” Finally, the participant
was asked to share the approach they used to mem-
orize the two sequences.

5.3 Study Results

Our primary goal in performing this user study
was to evaluate our hypothesis that the sen-
tence encoder produced more memorable encod-
ings than the n-gram encoder. We also sought
to determine whether the sentence encodings are
more memorable than the relatively short 8-digit
sequences themselves.

Short-Term Recall: On the first survey, more
participants correctly confirmed the sentence pass-



word than the n-gram password. 29 of the 31 sen-
tence password participants (94%) remembered
the password, as opposed to only 26 of the 36
n-gram password participants (72%). This differ-
ence is statistically significant at α = 0.05 under
a z-test for two proportions with p = 0.02. Partic-
ipants with the sentence password also spent sig-
nificantly less time on the confirmation page than
did participants with the n-gram password (27 sec-
onds versus 52 seconds, with p = 0.019 under
an independent two-tailed t-test). After reading
the recipes distraction page, more participants re-
called the numeric password than the n-gram pass-
word (55/67 versus 23/36, p = 0.0403).

Long-Term Recall: On the second survey, we
found no statistically significant differences be-
tween the number of participants who recalled
the n-gram password, the sentence password, or
the numeric password (respectively 9/36, 10/30,
25/66).

Long-Term Recognition: On the second sur-
vey, more participants recognized the sentence
password than the numeric password when shown
five options for each (30/30 versus 58/66, p =
0.05).

Subjective Comparison: More participants
rated the sentence password as “easiest to remem-
ber” than the numeric password (36/66 versus
24/66, p = 0.04), and more participants rated
the numeric password as “easiest to remember”
than the n-gram password (24/66 versus 6/66, p <
0.001).

The results of our user study indicate that the
sentence encoder produces more memorable en-
codings than the n-gram encoder does. These
results also indicate that n-gram encodings are
harder to remember in the short-term than the
number itself. While few participants recalled any
passwords after seven days, more participants rec-
ognized the sentence password than the numeric
password, indicating that the sentence password
is more memorable. Furthermore, the sentence
password was most frequently rated “easiest to re-
member,” followed by the numeric password and
the n-gram password. We conclude that the sen-
tence encoder produces more memorable encod-
ings than the n-gram encoder and effectively aids
in the memorization of numbers.

6 Conclusions and Future Work

We have described several systems for generat-
ing encodings of numbers using the major sys-
tem. While n-gram models generate sentences
that accurately match their training corpora, the
sentences tend to be long and unmemorable. Sen-
tences based on POS tags tend to be more mem-
orable but are still not syntactically reasonable.
Forcing the same sentence structure on every sen-
tence by parsing ensures a reasonable structure
but at a high computational cost. Ultimately, en-
suring that each sentence is of a known but ran-
domly selected syntactic structure that favors short
encodings produces a reasonable balance of syn-
tactic correctness, length, and memorability. A
user study on password memorability supports our
claim that the sentence encoder produces memo-
rable mnemonic encodings of numbers.

Future work could further improve the sentence
encoder. We could produce a more interesting va-
riety of sentences by using punctuation from the
training corpus besides periods, such as commas,
exclamation marks, and question marks. The sen-
tence encoder often produces a fragment as its
last sentence because it runs out of digits to en-
code. This problem could be mitigated by mak-
ing the encoder select shorter sentence templates
when there are few digits remaining. Further-
more, the encoder could use more nuanced sen-
tence templates to enforce subject-verb agreement
and grammatical use of auxiliary verbs.

While the sentence encoder takes a greedy ap-
proach in an effort to encode digits in as few words
as possible, another potential approach would be
to use a dynamic programming algorithm to ef-
ficiently search through all possible encodings.
Given a suitable objective function as a proxy
for memorability, this could potentially produce a
more memorable encoding than the sentence en-
coder without excessively increasing the encod-
ing’s length.

One issue in our user study was the unexpect-
edly short amount of time spent on the distraction
page, with an average of 81 seconds instead of the
intended five minutes. Future user studies should
enforce a set distraction time through the use of
a timer or other mechanism when studying short-
term recall.

A future user study could examine the effective-
ness of our system on longer numbers. While our
user study did not show that any particular type



of password was easiest to recall after seven days,
we expect that a study involving longer passwords
would show the sentence password to be easiest to
recall. This is because the major system is well-
suited for aiding the memorization of long num-
bers while the eight-digit numeric passwords used
in our study are relatively short. It would also be
interesting to see how memorable our encodings
are in a context where users are prompted to recall
the password each day over a long period of time.

References
Thorsten Brants, Ashok C Popat, Peng Xu, Franz J

Och, and Jeffrey Dean. 2007. Large Language Mod-
els in Machine Translation. In Proc. EMNLP and
CoNLL. Citeseer.

Gerhard Buder. 2012. Major System.
https://play.google.com/store/apps/details?id=
com.majorsystem.android.

F. Fauvel-Gouraud. 1845. Phreno-mnemotechny:
Or, The Art of Memory: the Series of Lectures,
Explanatory of the Principles of the System,
Delivered in New York and Philadelphia, in
the Beginning of 1844. Wiley and Putnam.
https://books.google.com/books?id=dawRAAAAYAAJ.

Alain Forget and Robert Biddle. 2008. Mem-
orability of Persuasive Passwords. In CHI
’08 Extended Abstracts on Human Factors
in Computing Systems. ACM, New York,
NY, USA, CHI EA ’08, pages 3759–3764.
https://doi.org/10.1145/1358628.1358926.

W. N. Francis and H. Kuera. 1964. A Standard Corpus
of Present-Day Edited American English, for use
with Digital Computers. Brown University, Provi-
dence, Rhode Island.

Marjan Ghazvininejad and Kevin Knight. 2015. How
to memorize a random 60-bit string. Parking
11(70.8):58–83.

Team Got2Know. 2013. 2Know Mnemonic Software.
http://www.got2know.net.

Tyson Graaff. 2016. Phonetic Mnemonic System Key-
word Search Tool. http://www.phoneticmnemonic.
com.

S. Jeyaraman and U. Topkara. 2005. Have the cake
and eat it too - Infusing usability into text-password
based authentication systems. In 21st Annual Com-
puter Security Applications Conference. pages 10
pp.–482. https://doi.org/10.1109/CSAC.2005.28.

Jurkowski. 2014. Simple Major System.
https://play.google.com/store/apps/details?id=
de.cjcj.number2majorsystem.

Luis A. Leiva and Germán Sanchis-Trilles. 2014.
Representatively Memorable: Sampling the Right
Phrase Set to Get the Text Entry Experiment
Right. In Proc. SIGCHI Conference on Hu-
man Factors in Computing Systems. ACM, New
York, NY, USA, CHI ’14, pages 1709–1712.
https://doi.org/10.1145/2556288.2557024.

Kevin Lenzo. 2014. The CMU Pronouncing Dic-
tionary. http://www.speech.cs.cmu.edu/cgi-bin/
cmudict.

Magic Parcel. 2016. A+ Major System.
https://play.google.com/store/apps/details?id=
com.magicparcel.app.majorsystem.

Jochen Pfeiffer. 2013. Major System.
https://itunes.apple.com/us/app/major-system/
id6170790508?mt=8.

Gerald Reindl. 2015. Mnemo Major System
Trainer. https://itunes.apple.com/us/app/mnemo-
major-system-trainer/id649905769?mt=8.

Rememberg. 2010. Memorize numbers with this on-
line mnemonic generator. http://www.rememberg.
com.

Stephen Scott. 2015a. Numzi. https://itunes.apple.
com/us/app/id1036895529?mt=8.

Stephen Scott. 2015b. Numzi. http://numzi.com/
numzi.

Kyoto-shi Shimogyo-ku Shichijo. 2014. Mnemonic
Major System. https://play.google.com/store/apps/
details?id=com.cyandroid.majorsystem.

Jonathan Ströbele. 2013. Major System database. http:
//major-system.info.

Avramets Vladislav. 2016. Mnemonics.
https://play.google.com/store/apps/details?id=
ua.mind.mnemarket.

Kim-Phuong L Vu, Bik-Lam Belin Tai, Abhilasha
Bhargav, E Eugene Schultz, and Robert W Proc-
tor. 2004. Promoting Memorability and Security
of Passwords through Sentence Generation. In
Proc. Human Factors and Ergonomics Society An-
nual Meeting. SAGE Publications, volume 48, pages
1478–1482.

Jeff Jianxin Yan, Alan F Blackwell, Ross J Anderson,
and Alasdair Grant. 2004. Password Memorability
and Security: Empirical Results. IEEE Security &
privacy 2(5):25–31.

https://play.google.com/store/apps/details?id=com.majorsystem.android
https://play.google.com/store/apps/details?id=com.majorsystem.android
https://books.google.com/books?id=dawRAAAAYAAJ
https://doi.org/10.1145/1358628.1358926
https://doi.org/10.1145/1358628.1358926
https://doi.org/10.1145/1358628.1358926
http://www.got2know.net
http://www.phoneticmnemonic.com
http://www.phoneticmnemonic.com
https://doi.org/10.1109/CSAC.2005.28
https://doi.org/10.1109/CSAC.2005.28
https://doi.org/10.1109/CSAC.2005.28
https://doi.org/10.1109/CSAC.2005.28
https://play.google.com/store/apps/details?id=de.cjcj.number2majorsystem
https://play.google.com/store/apps/details?id=de.cjcj.number2majorsystem
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1145/2556288.2557024
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://play.google.com/store/apps/details?id=com.magicparcel.app.majorsystem
https://play.google.com/store/apps/details?id=com.magicparcel.app.majorsystem
https://itunes.apple.com/us/app/major-system/id6170790508?mt=8
https://itunes.apple.com/us/app/major-system/id6170790508?mt=8
https://itunes.apple.com/us/app/mnemo-major-system-trainer/id649905769?mt=8
https://itunes.apple.com/us/app/mnemo-major-system-trainer/id649905769?mt=8
http://www.rememberg.com
http://www.rememberg.com
https://itunes.apple.com/us/app/id1036895529?mt=8
https://itunes.apple.com/us/app/id1036895529?mt=8
http://numzi.com/numzi
http://numzi.com/numzi
https://play.google.com/store/apps/details?id=com.cyandroid.majorsystem
https://play.google.com/store/apps/details?id=com.cyandroid.majorsystem
http://major-system.info
http://major-system.info
https://play.google.com/store/apps/details?id=ua.mind.mnemarket
https://play.google.com/store/apps/details?id=ua.mind.mnemarket

