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1. Introduction

This book is intended for a broad second course in computer science, one emphasizing
principles wherever it seems possible at this level. While this course builds and amplifies
what the student already knows about programming, it is not limited to programming.
Instead, it attempts to use various programming models to explicate principles of
computational systems. Before taking this course, the student should have had a solid
one-semester course in computer programming and problem-solving, ideally using the
Java language, since some of the presentation here uses Java. The philosophy taken in
this course is that computer science topics, at an introductory level, are best approached
in an integrated fashion (software, theory, and hardware) rather than as a series of
individual isolated topics. Thus several threads are intertwined in this text.

1.1 The Purpose of Abstraction

This text touches, at least loosely, upon many of the most important levels of abstraction
in computer systems. The term abstract may be most familiar to the student in the form
of an adjective, as in abstract art. That association may, unfortunately, conjure a picture
of being difficult to understand. In fact, the use we make of the term of abstract is to
simplify, or eliminate irrelevant detail, as in the abstract of a published paper, which
states the key ideas without details. In computer science, an abstraction is an intellectual
device to simplify by eliminating factors that are irrelevant to the key idea. Much of the
activity of computer science is concerned with inventing abstractions that simplify
thought processes and system development.

The idea of levels of abstraction is central to managing complexity of computer systems,
both software and hardware. Such systems typically consist of thousands to millions of
very small components (words of memory, program statements, logic gates, etc.). To
design all components as a single monolith is virtually impossible intellectually.
Therefore, it is common instead to view a system as being comprised of a few interacting
components, each of which can be understood in terms of its components, and so forth,
until the most basic level is reached.

Thus we have the idea of implementing components on one level using components on
the level below. The level below forms a set of abstractions used by the level being
implemented. In turn, the components at this level may form a set of abstractions for the
next level. For example, proposition logic (also called switching logic, or sometimes
Boolean algebra) is an abstraction of what goes on at the gate-level of a computer. This
logic is typically implemented using electronics, although other media are possible, for
example mechanical logic or fluid logic. Switching logic, with the addition of memory
components such as flip-flops, is the basis for implementing finite-state machines.
Components such as registers and adders are built upon both logic and finite-state
machines. These components implement the instruction set of the computer, another
abstraction. The instruction set of the computer implements the programs that run on the
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computer. A compiler or assembler is a program that translates a program written in a
more user-friendly language into commands in the instruction set. The program might
actually be an interpreter or "virtual machine" for a still higher level language, such as
Java.

We never can be sure how far these levels may go; what were once complete systems are
now being fashioned into networks of computers, and those networks into networks,
which themselves are replete with layers of abstractions (called "protocol stacks"). The
same phenomenon occurs for software: compilers and interpreters for new languages may
be built atop existing languages. Figure 1 is meant to summarize some of these important
levels of abstraction.

The benefits of using abstraction are not unique to computer science; they occur in many
disciplines and across disciplines. For example:

Chemistry is an abstraction of physics: The purpose of chemistry is to
understand molecular interactions without resorting to particle physics to
explain every phenomenon.

Biology is an abstraction of chemistry: The purpose of biology is to
understand the growth and behavior of living things without resorting to
molecular explanations for every aspect.

Genetics is an abstraction of biology: The purpose of genetics is to
understand the evolution of traits of living organisms. Genetics develops
its own abstractions based on genes which don't require appealing to cells
in every instance.

We could go on with this list. Note that we are saying an abstraction rather than the
abstraction. It is not implied that the abstraction in question covers all aspects of the field
being abstracted, nor that it is the only possible abstraction of that field.

Some of the specific advantages in treating systems by levels of abstraction are:

•  Each level has its own definition and specification. This means that
development using this level can proceed concurrently with
development at the next level.

•  A system can be developed by more than one individual, each a
specialist in a particular aspect of construction. This is important since
some systems are sufficiently ambitious that they would be impossible
to develop by a single person in his or her lifetime.

•  A system can evolve by evolving components separately; it is not
necessary to re-implement the entire system when one component
changes.
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•  A non-working system can be diagnosed by diagnosing components at
their interfaces, rather than by exhaustively tracing the functions of all
components.

Historically, implementations tended to come before abstractions. That is, a system got
built, then abstractions were used to simplify its description. However, increasingly, we
need to think of the abstractions first then go about implementing them. The abstractions
provide a kind of specification of what is to be implemented.

electronics

logic

register-transfer
(finite-state machines)

instruction-set interpreter 
(machine language)

assembly 
language

compiled language

application program

window system

operating system

multiple 
computer
processors , 
e.g. a network

algorithms

interpreter or virtual 
machine

interpreted 
language

Figure 1: Typical levels of abstraction in computer science.
The bolder items are ones given emphasis in this book.
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Constructing abstractions is somewhat of an art, with or without a prior implementation.
But understanding abstractions is rapidly becoming a way of life for those with any more
than a casual relationship to computers. As new languages emerge, they are increasingly
expressed using abstractions. A prime example is the object-oriented language Java ,
which we use in part of this text to exemplify object-oriented concepts. The idea of
inheritance is used heavily in the description of Java libraries. Inheritance hierarchies are
miniature abstraction hierarchies in their own right.

At the same time, we are interested in how certain key abstractions are actually realized
in hardware or in code, hence the word implementation in the title of the text. Having an
understanding of implementation issues is important, to avoid making unreasonable
assumptions or demands upon the implementor.

1.2 Principles

One might say that a science can be identified with its set of principles. Computer
Science is relatively young as a discipline, and many of its principles are concerned with
concepts lying at a depth which is beyond an introductory course such as this.
Nevertheless, a conscious attempt is made to identify ideas as named principles wherever
possible. Many of these principles are used routinely by computer scientists,
programmers, and designers, but do not necessarily have standard names. By giving them
names, we highlight the techniques and also provide more common threads for
connecting the ideas. Although a modicum of theory is presented throughout the text, we
are interested in imparting the ideas, rather than devoting attention to rigorous proofs.

While many of the points emphasized are most easily driven home by programming
exercises, it is important to understand that the course is not just about programming, but
rather about underlying conceptual continua that programming can best help illustrate.

1.3 Languages

The text is not oriented to a particular language, although a fair amount of time is spent
on some language specifics. The educational "industry" has emerged from a point where
Pascal was the most widely-taught introductory language. It was about ready to move on
to C++ when Java  appeared on the horizon. Java is a derivative of C++, which offers
most of the object-oriented features of the latter, but omits some of the more confusing
features. (As is usually the case, it introduces some new confusing features of its own.)
For that reason, we start our discussion of object-orientation with Java. Another strong
feature of Java, not heavily exploited in this text, is that working application programs, or
“applets” as they are called, can be made available readily on the Internet. This text is
not, in any way, to be regarded as a replacement for a handbook on any particular
language, especially Java or C++. It is strongly advised that language handbooks be
available for reference to specific language details that this text does not cover.
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One purpose of a language is to give easy expression to a set of concepts. Thus, this book
starts not with Java but rather a functional language rex of our own design. An interpreter
for rex (implemented in C++) is provided. The rationale here is that there are many
important concepts that, while they can be applied in many languages, are most cleanly
illustrated using a functional language. To attempt to introduce them in Java would be to
obscure the concepts with syntactic rubric. We later show how to transcribe the thinking
and ideas into other languages. The current object-oriented bandwagon has much to
recommend it, but it tends to overlook some of the important ideas in functional
programming. In particular, functional programs are generally much easier to show
correct than are object-oriented programs; there is no widely-accepted mathematical
theory for the latter.

1.4 Learning Goals

The expected level of entry to this course is that students know basics of control-flow (for
and while statements), are comfortable with procedures, know how and when to use
arrays and structures, and understand the purposes of a type system. The student has
probably been exposed to recursion, but might not be proficient at using it. The same is
true for pointers. There may have been brief exposure to considerations behind choices of
data structures, the analysis of program run-time, and the relationship between language
constructs and their execution on physical processors. These things, as well as the
structure of processors and relation to logic design, are likely to be gray areas and so we
cover them from the beginning.

The student at this point is thus ready to tackle concepts addressed by this book, such as:

•  information structures (lists, trees, directed graphs) from an abstract viewpoint,
independent of particular data structure implementations

•  recursion as a natural problem-solving technique

•  functional programming as an elegant and succinct way to express certain
specifications in an executable form

•  objects and classes for expressing abstract data types

•  underlying theoretical models that form the basis for computation

•  inductive definitions and grammars for expressing language syntax and properties
of sequences, and their application to the construction of simple parsers and
interpreters from grammatical specifications

•  proposition logic in specifying and implementing hardware systems and in
program optimization

•  predicate logic in specifying and verifying systems, and directly in programming
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•  advanced computing paradigms such as backtracking, caching, and breadth-first
search

•  use of techniques for analysis of program run-time complexity and the
relationship to data-structure selection

•  structure of finite-state machines how they extend to full processors

•  assembly language, including how recursion is implemented at the assembly
language level

•  introduction to parallel processing, multithreading, and networking

•  introduction to theoretical limitations of computing, such as problems of
incomputability

These are among the topics covered in this book.

1.5 Structure of the Chapters

The chapters are described briefly as follows. There is more than adequate material for a
one-semester course, depending on the depth of coverage.

1. Introduction is the current chapter.

2. Information Structures discusses various types of information, such as lists, trees,
and directed graphs. We focus on the structure, and intentionally avoid getting into
much programming until the next chapter.

3 .  High-Level Functional Programming discusses functions on the information
structures used previously. The emphasis here is on thinking about high-level,
wholesale, operations which can be performed on data.

4. Low-Level Functional Programming shows how to construct programs which carry
out the high-level ideas introduced in the previous chapter. A rule-based approach is
used, where each rule tries to express a thought about the construction of a function.
We go into simple graph-processing notions, such as shortest path and transitive
closure.

5. Implementing Information Structures presents methods of implementing a variety of
information and structures in Java, including many of the structures discussed in
earlier chapters.

6. States and Transitions discusses the basis of state-oriented computation, which is a
prolog to object-oriented computation. It shows how state can be modeled using the
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framework introduced in previous chapters. We show how conventional imperative
programs can be easily transformed into functional ones. We illustrate the idea of a
Turing machine and discuss its acceptance as a universal basis for computation.

7 .  Object-Oriented Programming introduces object-oriented concepts for data
abstraction, using Java as the vehicle. We explore ideas of polymorphism, and
construct a model of polymorphic lists, matching the kind of generality available in
functional programming systems. We describe the implementation of higher-order
functions. We include a discussion of the uses of inheritance for normalizing software
designs.

8 .  Grammars and Parsing introduces the concept of grammars for specifying
languages. It also shows the construction of simple parsers for such languages. The
idea here is that in many cases we have to solve not just one problem but rather an
entire family of problems. Indeed, we may need to provide such a language to a
community of users who do not wish to get involved with a general purpose
programming language. Inventing a language in which to express a family of
problems, and being able to construct an interpreter for that language, is viewed as a
helpful skill.

9. Proposition Logic begins with basic ideas of proposition logic from a functional point
of view. We the show role these ideas play in hardware design, and go into some of
the theory of simplification of logical expressions. Physical bases for computing are
mentioned briefly

10. Predicate Logic introduces predicate logic and demonstrate its use in specifying and
proving programs. We also show how predicate logic can be used for direct
programming of databases and other applications, using the Prolog language.

11. Complexity introduces the idea of measuring the running time of a program across a
wide spectrum of inputs. We use the "O" notation, defining it in a simplified way
appropriate to the application at hand, analyzing programs. We show how programs
can be analyzed when they are decomposed into sequential compositions, loops, and
recursion. We use sorting and searching applications for many of the examples. We
also mention hashing and related techniques.

12. Finite-State Machines introduces various finite-state machine models and how they
are implemented. We work our way into the implementation of simple digital sub-
systems based on finite-state machines. We conclude with a discussion of data
communication issues, such as the use of 3-state buffer devices.

13. Stored-Program Computing talks about the structure and programming of stored-
program computers from a fairly low level. This ties together programming concepts
and concepts from finite-state computing. We present a simulated computer, the ISC,
and its assembly language.
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14. Parallel Computing discusses issues related to performing multiple computations at
the same time. We review cellular automata, data-parallel computing, process-
oriented approaches, suitable for multiple-instruction-stream/multiple-data-stream
computers, and discuss the importance of this emerging area in the network-based
computers of the future.

15. Limitations of Computing mentions some of the logical and physical limitations of
computing. We discuss algorithmic lower bounds, the limitations of finite-state
machines, the notions of incomputability and intractability, and the glitch
phenomenon.

Figure 2 gives an approximate dependence among chapters.

1.6 How the Problems are Rated

We use a dot notation to visually suggest a problem's difficulty:

• G: Intended to be workable based on just an understanding of the prior readings.

•• PG: Intended to be workable based on an understanding of readings plus a little
effort.

••• PG13:  Workable with a little effort and perhaps a hint or two.

•••• R:  Intended for mature audiences; requires substantial effort and possibly extra
insight or perseverance.

••••• NC17:  Obscenely difficult; might be the subject of a research paper, past or
future. Intended for perspective, not necessarily to be done in the mainstream of
the course.

Exercises

1 .  •• Cite an example from your own experience of an abstraction and its
implementation.

2. ••• Identify some areas outside of computer science, such as in chemistry, music,
dance, etc. where abstractions are heavily used. Give details.

3. •••• Identify some areas outside of computer science where several levels of
abstraction are used.
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2. Information Structures

3. High-Level Functional Programming

4. Low-Level Functional Programming 6. States and Transitions

7. Object-Oriented Programming

8. Grammars9. Proposition Logic

10. Predicate Logic
11. Complexity12. Finite-State Machines

13. Stored-Program Computing

14. Parallel  Computing

15. Limitations of Computing

5. Implementation of 
Information Structures

Figure 2: Chapter Dependence

1.7 Further Reading

Each chapter lists relevant further reading. In many cases, original sources are cited,
which are sometimes not very light reading. We try to provide a qualitative estimate of
difficulty at the end of each annotation. The following tend to lighter surveys, which
cover some of the ideas in the text (as well as others) from different perspectives, but still
at a more-or-less less technical level.
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Alan W. Biermann, Great Ideas in Computer Science, M.I.T. Press, 1990. [A textbook
approach to introductory examples. Algorithms are presented in Pascal. Easy to
moderate.]

Glenn Brookshear, Computer Science – An Overview, Third Edition,
Benjamin/Cummings, 1991. [Easy.]

Richard P. Feynman, Feynman Lectures on Computation, Edited by J.G. Hey and Robin
W. Allen, Addison-Wesley, 1996. [A famous physicist talks about computation and
computer science; moderate.]

A.K. Dewdney, The (New) Turing Omnibus – 66 Excursions in Computer Science,
Computer Science Press, 1993. [Short (3-4 page) articles on a wide variety of computer
science topics. Algorithms are presented in pseudo-code. Easy to moderate.]

David Harel, Algorithmics – The Spirit of Computing, Addison-Wesley, 1987.
[Moderate.]

Anthony Ralston and Edwin D. Reilly, Encyclopedia of Computer Science, Van Nostrand
Reinhold, 1993.
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2. Exploring Abstractions: Information Structures

2.1 Introduction

Which comes first, the abstraction or the implementation? There is no fixed answer.
Historically abstractions were introduced as ways of simplifying the presentation of
implementations and then standardizing implementations. Increasingly, developers are
being encouraged to think through the abstractions first, then find appropriate ways to
implement them. In this section we will discuss various abstractions for structuring
information, which is related to implementation issues of data structures.

We assume that the reader has been exposed to (uni-directional) linked-list data
structuring concepts. Linked lists are often presented as a way to represents sequences in
computer memory, with the following property:

Insertion of a new item into a linked list, given a reference to the insertion
point, entails at most a fixed number of operations.

Here “fixed” is as opposed to a number of operations that can vary with the length of the
sequence. In order to achieve this property, each item in the list is accompanied by a
pointer to the next item. In the special case of the last item, there is no next, so a special
null pointer is used that does not point to anything.

After, or along with, the process of demonstrating linked list manipulation, box diagrams
are typically illustrated. These show the items in the list in one compartment of a box and
the pointer in a second compartment, with an arrow from that compartment to the box
containing the next item. A diagonal line is typically used instead of the arrow in the case
of a null pointer. Finally, a pointer leading from nowhere indicates the first element of the
list.

For example, a sequence of four elements: a, b, c, d would be shown as in the following
box diagram.

Figure 3: A box diagram for a linked list of four elements

It is worth mentioning that box diagrams are themselves abstractions of data inside the
computer. In order to implement the concept of “pointing”, we typically appeal to an
addressing or indexing mechanism, wherein each potential box has an implied numeric
address or index. (Addressing can be regarded as a special case of indexing in which the
entire memory is indexed.) The underlying implementation of the box diagram

a b c d
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abstraction could be shown as in Figure 4, where the numbers at the left are the indices of
the boxes. We use an index value of –1 to represent the null pointer. The empty boxes are
currently unused. With this representation, we also need to keep track of the first element,
which in this case is the one at index 0. Note that there can be many representations for a
single abstraction; this is a common phenomenon.

Figure 4: A representation, using indices, for a linked list of four elements

At the representation level, in order to insert a new element, we simply obtain a new box
for it and adjust the structure accordingly. For example, since the box at index 1 is
unused, we can use it to hold the new element. Suppose the element is e anl it is to be
inserted after b. The new representation picture would be as shown in Figure 5

Figure 5: A representation for the modified linked list, of five elements

c

d

b

0
1
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4
5

a 3

2

5
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item next
index

item next

c
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1
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5

a 3

1

5
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e 2

index
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Returning to the abstract level, we can show the sequence of modifications for inserting
the new element as in Figure 6.

Figure 6: Sequence of changes in a box diagram to represent insertion.
The arrows show the changes to the state of the list.

e

a b c d

e

a b c d

a b c d

e

a b c d
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From the third state in the sequence of changes, we can observe something interesting: in
this state, two pointers point at the box containing item, rather than one. This suggests an
interesting possibility: that parts of lists can be shared between two or more lists. There is
a fundamental split in list processing philosophies which has to do with whether such
sharing is exploited or discouraged. This text refers to the philosophy in which lists are
frequently shared as open lists, and the opposite philosophy as closed lists. Chapter 5
gives more details on the distinctions between the two.

The present chapter is going to focus on open lists almost exclusively. The next figure
shows two lists sharing a common “tail”. The positive aspect of such sharing is that the
space saved for the stem is used only once even though the effect, from the viewpoint of
each list, is that each enjoys equal use of the tail. The negative aspect is that we must be
extremely careful about any modifications that take place in the tail; if the user of one list
modifies the tail, then the user of the other list “feels” the modification. This might be
unintended. Because it is hard to manage these types of changes, it is typical to forbid
modifications to lists in the open list model.

Figure 7: Two lists with a shared tail

One might wonder, if modifications to lists are forbidden in the open list model, how
does anything get done? The answer may be surprising: only create new lists. In other
words, to achieve a list that is similar to an existing list, create a new list so modified.
This might seem incredibly wasteful, but it is one of the major philosophies for dealing
with lists. Moreover, we still have the possibility of tail sharing, which can overcome a
lot of the waste, if we do things correctly. Since we agree to modify the structure of a list,
we can share a tail of it freely among an arbitrary number of lists. In fact, the shared tails
need not all be the same, as shown in the Figure 8.

Notice that it only makes sense to share tails, not “heads”, and to do so it simply suffices
to have access to a pointer to the start of the sub-list to be shared.

So far we have seen the box abstraction for open lists, and not shown its lower-level
implementation in a programming language. What we will do next is develop a textual
abstraction for dealing with open lists. Then we will use it as the implementation for
some higher level abstractions. This illustrates how abstractions can be stacked into

a b c d

hf g

shared tail
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levels, with one level of abstraction providing the implementation for the next higher
level.

Our approach derives structurally from languages such as Lisp, Prolog, and their various
descendants. An interpreter for our language, called rex, is available on common
platforms such as UNIX  and Windows, so that the specifications can be understood and
tried interactively.

Figure 8: Multiple tail-sharing

Despite the fact that we express examples in our own language, the reader should be
reassured that the medium is not the message. That is, we are not trying to promote a
specific language; the ideas and concepts are of main interest. From this neutrality comes
the possibility of using the ideas in many different languages. A few examples of
mapping into specific languages will be shown in this book. For example, in addition to
rex, we will show a Java implementation of the same ideas, so that the programming
concepts will carry forth to Java. We contend that is easier to see the concepts for the first
time in a language such as rex, since there is less syntactic clutter.

We should also comment on information structures vs. data structures. The latter term
connotes structures built in computer memory out of blocks of memory and references or
pointers. While an information structure can be implemented in terms of a data structure,
the idea of information structures attempts to suppress specific lower-level
implementation considerations. Put another way, an information structure is an
abstraction of a data structure. There could be several different data structures
implementing one information structure. This is not to say that all such data structures

a b c d
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would be equally attractive in terms of performance. Depending on the intended set of
operations associated with an information structure, one data structure or another might
be preferable.

2.2 The Meaning of “Structure”

Computing is expressed in terms of primitive elements, typically numbers and characters,
as well as in terms of structures composed of these things. Structures are often built up
hierarchically: that is, structures themselves are composed of other structures, which are
composed of other structures, and so on. These more complex structures are categorized
by their relative complexity: trees, dags (directed acyclic graphs), graphs, and so on.
These categories are further refined into sub-categories that relate to particular
applications and algorithmic performance (roughly translating into the amount of time a
computation takes): binary-search trees, tries, heaps, etc.

When a datum is not intended for further subdivision, it is called atomic. The property of
being atomic is relative. Just as in physics, atoms can be sub-divided into elementary
particles, so in information, atomic units such as numbers and character strings could
conceivably be sub-divided. Strings could be divided into their characters. Numbers
could, in a sense, be divided by giving a representation for the number using a set of
digits. Of course, in the case of numbers, there are many such representations, so the
subdivision of numbers into digits is not as natural as for strings into characters.

2.3 Homogeneous List Structures

We begin by describing a simple type of structure: lists in which all elements are of the
same type, which are therefore called homogeneous lists. However, many of the ideas
will also apply to heterogeneous lists as well. To start with, we will use numerals
representing numbers as our elements.

A list of items is shown in its entirety by listing the items separated by commas within
brackets. For example:

[2, 3, 5, 7]

is a list of four items. Although the notation we use for lists resembles that commonly
used for sets (where curly braces rather than square brackets are used), there are some
key differences:

•  Order matters for lists, but not for sets.

•  Duplication matters for lists, but not for sets.

Thus while the sets {2, 5, 3, 7, 3} and {2, 3, 5, 7} are regarded as equal, the two
lists[2, 5, 3, 7, 3] and [2, 3, 5, 7] are not.
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Two lists are defined to be equal when they have the same elements in
exactly the same order.

2.4 Decomposing a List

Consider describing an algorithm for testing whether two lists are equal, according to the
criterion above. If we were to base the algorithm directly on the definition, we might do
the following steps:

To test equality of two lists:

•  Count the number of items in each list. If the number is different then
the two lists aren’t equal. Otherwise, proceed.

•  Compare the items in each list to each other one by one, checking that
they are equal. If any pair is not equal, the two lists aren’t equal.
Otherwise, proceed.

•  Having passed the previous tests, the two lists are equal.

Although this algorithm seems fairly simple, there are some aspects of it that make less
than minimal assumptions, for instance:

•  It is necessary to know how to count the number of items in a list. This
requires appealing to the concept of number and counting.

•  It is necessary to be able to sequence through the two lists.

Let’s try to achieve a simpler expression of testing list equality by using the device of list
decomposition. To start, we have what we will call the fundamental list-dichotomy.

fundamental list-dichotomy:

A list is either:

•  empty, i.e. has no elements, or

•  non-empty, i.e. has a first element and a rest

By rest, we mean the list consisting of all elements other than the first element. The
empty list is shown as [ ]. It is possible for the rest of a non-empty list to be empty. Now
we can re-cast the equality-testing algorithm using these new ideas:
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To test equality of two lists:

a. If both lists are empty, the two lists are equal.
(proceeding only if one of the lists is not empty.)

b. If one list is empty, the two lists are not equal.
(proceeding only if both lists are non-empty.)

c. If the first elements of the lists are unequal, then the lists are not equal.
(proceeding only if the first elements of both are equal.)

d. The answer to the equality of the two lists is the same as the answer to
whether the rests of the two lists are equal. This equality test in this box can
be used.

Let us try this algorithm on two candidate lists: [1, 2, 3] and[1, 2].

Equality of [1, 2, 3] and[1, 2]:

Case a. does not apply, since both lists are non-empty, so we move to case
b.

Case b. does not apply, since neither list is empty, so we move to case c.

Case c. does not apply, since the first elements are equal, so we move to
case d.

Case d. says the answer to the equality question is obtained by asking the
original question on the rests of the lists: [2, 3] and [2].

Equality of [2, 3] and [2]:

Cases a. through c. again don't apply.

Case d. says the answer to the equality question is obtained by asking the
original question on the rests of the lists: [3] and [ ].

Equality of [3] and [ ]:

Case a. does not apply.

Case b. does apply: the two lists are not equal.

The differences between this algorithm and the first one proposed are that this one does
not require a separate counting step; it only requires knowing how to decompose a list by
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taking its first and rest. Although counting is implied by the second algorithm, it can be
“short-circuited”  if the two lists are found to be unequal.

In the next chapter we will see how express such algorithms in more succinct terms.

2.5 List Manipulation

Here we introduce the interactive rex system, which will provide a test-bed for dealing
with lists. When we type an expression to rex, followed by the semi-colon, rex shows the
value of the expression. The reason for the semi-colon is that some expressions take more
than one line. It would thus not work to use the end-of-line for termination of
expressions. Other approaches, such as using a special character such as \ to indicate that
the list is continued on the next line, are workable but more error-prone and less aesthetic
(lots of \’s traded for one ;). For lists as introduced so far, the value of the list as an
expression will be the list itself. Below, the boldface shows what is entered by the user.

rex > [2, 3, 5, 7];
[2, 3, 5, 7]

rex > [ ];
[ ]

As it turns out, list equality is built into rex. The equality operator is designated ==.

rex > [1, 2, 3] == [1, 2];
0

The value 0 is used by rex to indicate false: that the two lists are not equal.
A value of 1 is used to indicate true.

rex > [ ] == [ ];
1

Suppose we wanted to access the first and rest of a list in rex. Two approaches are
available: (i) use built-in functions first and rest; (ii) use list matching, which will be
described in Chapter 4. Here we illustrate (i):

rex > first([1, 2, 3]);
1

rex > rest([1, 2, 3]);
[2, 3]

Correspondence with Box Diagrams

It is worthwhile at this point to  interject at this time the correspondence between textual
representation and box diagrams. This mainly helps to motivate the way of manipulating
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lists that will be described presently, especially to justify the choice of primitive functions
being used.

Every list in the open list model can be identified with a pointer to the first box in the box
representation. The first element of the list is the item in the box and the list of the
remaining elements is the pointer. The pointer is the special null pointer if, and only if,
the rest of the list is empty.  Figure 9 is meant to illustrate this correspondence.

Figure 9: Equating pointers to lists in the open list representation

Intuitively, the rest operation is very fast in this representation. It does not involve
creating any new list; it only involves obtaining the pointer from the first box in the list.

Identifiers in rex

An identifier in rex is a string of symbols that identifies, or stands for, some item such as
a list or list element. As with many programming languages, a rex identifier must begin
with a letter or an underscore, and can contain letters, digits, and underscores. The
following are all examples of identifiers:

a Temp x1 _token_ move12 _456 ZERO

The most basic way to cause an identifier to stand for an item is to equate it to the item
using the define operator, designated = (recall that == is a different operator used testing
equality):

rex > a = 2;
1

a b c d

 [ ]

 [d]
 [c, d]

 [b, c, d]

 [a, b, c, d]
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This defines identifier a to stand for the number 2. In computer science it is common to
say a is bound to 2 rather than "stands for" 2.

Bindings

If an identifier is bound to something, we say that it is bound, and otherwise it is
unbound. By a binding, we mean a pairing of an identifier with its value, as in the binding
["a", 2], which is implicitly created inside the system by the above definition. Finally,
an environment is a set of bindings. In other words, an environment collects together the
meanings of a set of symbols.

Above, the reported value of 1 indicates that the definition was successful. We can check
that a now is bound to 2 by entering the expression a by itself and having rex respond
with the value.

rex > a;
2

On the other hand, if we try this with an identifier that is not bound, we will be informed
of this fact:

rex > b;
*** warning: unbound symbol b

Forming New Lists

The same symbols used to decompose lists in rex can also be used to form new lists.
Suppose that R is already bound to a list and F is an intended first element of a new list.
Then [F | R] (again read F “followed by” R) denotes a new list with F as its first
element and R as the rest of the new list:

rex > F = 2;
1

rex > R = [3, 4, 5];
1

rex > [F | R];
[2, 3, 4, 5]

One might rightfully ask why we would form a list this way instead of just building the
final list from the beginning. The reason is that we will have uses for this method of list
creation when either F or R are previously bound, such as being bound to data being
supplied to a function. This aspect will be used extensively in the chapter on low-level
functional programming.
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As with our observation about rest being fast, creating a new list in this way (called
“consing”, short for “constructing”) is also fast. It only entails getting a new box,
initializing its item, and planting a pointer to the rest of the list.

Lists of Other Types of Elements

In general, we might want to create lists of any type of element that can be described. For
example, a sentence could be a list of strings:

[“This”, “list”, “represents”, “a”, “sentence”]

A list can also be of mixed types of elements, called a heterogeneous list:

[“The”, “price”, “is”, 5, “dollars”]

We can get the type of any element in rex by applying built-in function type to the
argument:

rex > type(99);
integer

rex > type("price");
string

rex > type(["price", 99]);
list

The types are returned as strings, and normally strings are printed without quotes. There
is an option to print them with quotes for development purposes. Notice that giving the
type of a list as simply “list” is not specific as to the types of elements. Later we will see
how to define another function, deep_type, to do this:

rex > deep_type(["price", 99]);
[string, integer]

Here the deep type of a list is the list of deep types of the individual elements.

Using Lists to Implement Sets

For many computational problems, the ordering of data and the presence of repetitions
either are not to be important or are known not to occur at all. Then it is appropriate to
think of the data as a set rather than a list. Although a list inherently imposes an ordering
on its elements, we could simply choose to ignore the ordering in this case. Also,
although repetitions are allowed in lists, we could either ignore repetitions in the case of
sets or we could take care not to permit repetitions to enter into any lists we create.



Exploring Abstractions: Information Structures 23

Since abstraction has already been introduced as a tool for suppressing irrelevant detail,
let us think of sets as a distinct abstraction, with open lists as one way to represent sets.
An implementation, then, would involve giving list functions that represent the important
functions on sets

For example, suppose we wanted to represent the set function union on lists. A use of
this function might appear as follows:

rex > union([2, 3, 5, 7, 9], [1, 4, 9, 16]);
[2, 3, 5, 7, 1, 4, 9, 16]

Above the element occurs in both original sets, but only occurs once in the union.
Similarly, we can represent the set function intersection:

rex > intersection([2, 3, 5, 7, 9], [1, 4, 9, 16]);
[9]

This result is correct, since 9 is the only element occurring in both sets. These functions
are not built into rex; we will have to learn how to define them.

Representation Invariants

Our discussion of representing sets as lists provides an opportunity to mention an
important point regarding representations. Implementing functions on sets represented as
lists is more economical (is faster and takes less memory space) if we can assume that the
list used to represent the set contains no duplicates. A second reason for maintaining this
assumption is that the implementation of certain functions becomes simpler. For
example, consider a function remove_element that removes a specified element from a
set, provided that it occurs there at all. Without the assumption that there are no
duplicates, we would need to check the entire list to make sure that all occurrences of the
element were removed. On the other hand, if we can assume there are no duplicates, then
we can stop when the first occurrence of the element in question has been found.

Assumptions of this form are called representation invariants. Their articulation is part of
the implementation and each function implemented has the obligation of making sure that
the invariant is true for the data representation for the value it returns. At the same time,
each function enjoys the use of the assumption to simplify its work, as described in the
preceding paragraph.

2.6 Lists of Lists

Lists are not restricted to having numbers as elements. A list can have lists as elements:

[ [2, 4, 8, 16], [3, 9, 27], [5, 25], [7] ]

The elements of the outer list can themselves be lists.
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[ [ [1, 2, 3], [4, 5, 6] ], [ [7, 8, 9], [ ] ] ]

Pursuing our sets-implemented-as-lists idea, a list of lists could be used to represent a set
of sets. For example, the function subsets returns all subsets of its argument, interpreted
as a set:

  rex> subsets([1, 2, 3]);
  [ [ ], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3] ]

This function is not built in, but we will see how to define it in a later chapter.

Length of Lists

The length of a list is the number of elements in the list:

rex > length([2, 4, 6, 8]);
4

When the list in question has lists as elements, length refers to the number of elements in
the outer or top-level list, rather than the number of elements that are not lists:

rex > length([ [2, 4, 8], [3, 9], [5], [ ] ]);
4

The number of elements that are not lists is referred to as the leafcount:

rex > leafcount([ [2, 4, 8], [3, 9], [5], [ ] ]);
6

Exercises

1. • Which pairs of lists are equal?

a. [1, 2, 3] vs. [2, 1, 3]

b. [1, 1, 2] vs. [1, 2]

c. [1, [2, 3] ] vs. [1, 2, 3]

d. [1, [2, [3] ] ] vs. [1, 2, 3]

2. •• Execute the equality testing algorithm on the following two lists: [1, [2, 3], 4],
and [1, [2], [3, 4]].
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3. ••• As we saw above, although lists are not the same as sets, lists can be used to
represent sets. Present an equality testing algorithm for two sets represented as lists.

4. • What is the length of the list [1, [2, 3], [4, 5, 6]]? What is its leafcount?

2.7 Binary Relations, Graphs, and Trees

A binary relation is a set of ordered pairs. Since both sets and pairs can be represented as
lists, a binary relation can be represented as a list of lists. For example, the following list
represents the relation father_of in a portion of the famous Kennedy family:

[ [“Joseph”, “Bobby”],
[“Joseph”, “Eunice”],
[“Joseph”, “Jean”],
[“Joseph”, “Joe Jr.”],
[“Joseph”, “John”],
[“Joseph”, “Pat”],
[“Joseph”, “Ted”]
[“Bobby”,  “David”],
[“Bobby”,  “Joe”]
[“John”,   “Caroline”],
[“John”,   “John, Jr.”],
[“Ted”,    “Edward”] ]

Here Joseph, for example, is listed as the first element in many of the pairs because he
had many children. Notice also that no individual is listed as the second element in more
than one pair. This reflects the fact that an individual cannot have more than one father.

Graphical Representation of Binary Relations

Binary relations are sometimes rendered more understandable by depiction as a directed
graph: the nodes in the graph are items being related; arrows in the graph represent the
pairs in the relation. For example, the preceding father_of relation would be shown as
below:

Figure 10: a father_of relation

Joseph

Jean Joe Jr. John Pat TedEunice Bobby Jean

JoeDavid John Jr.Caroline
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Notice that each arrow in the directed graph corresponds to one ordered pair in the list.
This particular directed graph has a special property that makes it a tree. Informally, a
graph is a tree when its nodes can be organized hierarchically.

Let’s say that node n is a target of node m if there is an arrow from m to n. (In the above
example, the targets happen to represent the children of the individual.) Also, the target
set of a node m is the set of nodes that are targets of node m. For example, above the
target set of “Bobby” is {“David”, “Joe”}, while the target set of “Joe” is the empty
set.

Let’s say the nodes reachable from a node consist of the targets of the node, the targets of
those targets, and so on, all combined into a single set. For example, the nodes reachable
from “Joseph” above are all the nodes other than “Joseph”. If the nodes reachable from
some node include the node itself, the graph is called cyclic. If a graph is not cyclic then
it is called acyclic. Also, a node that is not a target of any node is called a root of the
graph. In the example above, there is one root, “Joseph”. A node having no targets is
called a leaf. Above, “Eunice”, “Joe”, and “Caroline” are examples of leaves.

Given these concepts, we can now give a more precise definition of a tree.

A tree is a directed graph in which the following three conditions are
present:

•  The graph is acyclic

•  There is exactly one root of the graph.

•  The intersection of the target sets of any two different nodes is always
the empty set.

If we consider any node in a tree, the nodes reachable from a given node are seen to form
a tree in their own right. This is called the sub-tree determined by the node as root. For
example, above the node “Bobby” determines a sub-tree containing the nodes {“Bobby”,
“David”, “Joe”} with “Bobby” as root.

Hierarchical-List Representation of Trees

A list of pairs, while simple, is not particularly good at allowing us to spot the structure
of the tree while looking at the list. A better, although more complicated, representation
would be one we call a hierarchical list:



Exploring Abstractions: Information Structures 27

To represent a tree as a hierarchical list:

•  The root is the first element of the list.

•  The remaining elements of the list are the sub-trees of the root, each
represented as a hierarchical list.

These rules effectively form a representation invariant.

This particular list representation has an advantage over the previous list-of-pairs
representation in that it shows more clearly the structure of the tree, viz. the children of
each parent. For the tree above, a list representation using this scheme would be:

[“Joseph”,
[“Eunice”],
[“Bobby”,

[“David”],
[“Joe”] ],

[“Jean”],
[“Joe Jr.”],
[“John”,

[“Caroline”],
[“John Jr.”] ],

[“Pat”],
[“Ted”,

      [“Edward”] ] ]

Note that in this representation, a leaf will always show as a list of one element, and
every such list is a leaf. Also, the empty list only occurs if the entire tree is empty; the
empty list representing a sub-tree would not make sense, because it would correspond to
a sub-tree with no root.

As a variant on the hierarchical list representation, we may adopt the convention that
leaves are not embedded in lists. If we do this for the current example, we would get the
representation

[“Joseph”,
“Eunice”,
[“Bobby”,

“David”,
“Joe”],

“Jean”,
“Joe Jr.”,
[“John”,

“Caroline”,
“John Jr.”],

“Pat”,
[“Ted”,

      “Edward”] ]
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which has the virtue of being slightly less cluttered in appearance. From such a list we
can reconstruct the tree with labels on each node. Accordingly, we refer to this as the
labeled-tree interpretation of a list.

Another example that can exploit the hierarchical list representation of a tree abstraction
is that of a directory structure as used in computer operating systems to manage
collections of files. A common technique is to organize files in "directories", where each
directory has an associated collection of files. A file space of this form can be thought of
as a list of lists. Typically directories are not required to contain only files; they can
contain other directories, which can contain files or directories, etc. in any mixture. So a
user's space might be structured as follows (we won't put string quotes around the names,
to avoid clutter; however, if this were rex, we would need to, to avoid confusing the
labels with variables):

[ home_directory,
  mail,
  [ mail_archive, current_mail, old_mail],
  [ programs,
    [ sorting, quicksort.rex, heapsort.rex],
    [ searching, depth_first.rex, breadth_first.rex]
  ],
  [ games, chess, checkers, tic-tac-toe]
]

representing the tree in Figure 11.

home_directory

mail_archive programs

current_mail old_mail

quicksort.rex heapsort.rex depth_first.rex

games

chess checkers t ic-tac-toesorting searching

breadth_first.rex

mail

Figure 11: A directory tree

Unlabelled vs. Labeled Trees as Lists

Sometimes it is not necessary to carry information in the non-leaf nodes of the tree. In
such cases, we can eliminate this use of the first list element, saving one list element. We
call this the unlabeled-tree interpretation of the list. The only list elements in such a
representation that are not lists themselves are the leaves of the tree. In this variation, the
list
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[a, [b, c], [d, [e, f], g], h]

represents the following tree (as is common practice, we often omit the arrow-heads, with
the understanding that they all point the same direction, usually downward):

a

b c d

e f

g

h

Figure 12: The list [a, [b, c], [d, [e, f], g], h] as an unlabeled tree

In the hierarchical list representation described previously, the first element in a list
represents the label on a root node. This tree would have a similar, but slightly different
shape tree (assuming the convention that we don't make lists out of single leaves):

        a

b

c

d

e

f

g

h

Figure 13: The list [a, [b, c], [d, [e, f], g], h] as a labeled tree

Clearly, when we wish to interpret a list as a tree, we need to say which interpretation we
are using. We summarize with the following diagrams:
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. . . .

Sub-trees are 
remaining elements 
of the list

Root is first element of the list

Figure 14: Hierarchical list representation of a labeled tree

. . . .

Sub-trees are the 
elements of the list

Root is identified with the whole  list

Figure 15: Interpretation of a list as an unlabeled tree

Note that the empty list  for an unlabeled tree would be the empty tree, or the slightly
anomalous “non-leaf” node with no children (since leaves have labels in this model).
Binary Trees

In the binary-tree representation of a list, we recall the view of a list as [First | Rest]
where, as usual, First is the first element of the list and Rest is the list consisting of all but
the first element. Then the following rules apply:
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Binary tree representation as lists:

•  The empty list is shown as a leaf [ ].

•  An atom is shown as a leaf consisting of the atom itself.

•  A list [First | Rest] is shown as a node with two subtrees, one tree
corresponding to First, the other the tree corresponding to Rest.

A representation invariant here is the right-hand branch is always a list, never an atom.

Tree representing the list

Tree representing the 
first element

Tree representing the 
rest of the list

Figure 16: Binary tree representation of a list

In particular, a list of n (top-level) elements can easily be drawn as a binary tree by first
drawing a "spine" with n sections:

[ ]

T1 T2 T3 Tn

. . . .

Figure 17: Binary tree representation of a list with top-level elements T1, T2, ...., Tn

The elements on the branches of the spine can then drawn in.

For the preceding example, [a, [b, c], [ ], [d, [e, f], g], h], these rules give
us the following tree, where the subtrees of a node are below, and to the right of, the node
itself.
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a

b c

d

e f

g

h

[ ]

[ ]

[ ]

[ ]

[ ]

Figure 18: The binary tree representation of a list
[a, [b, c], [ ], [d, [e, f], g], h]

Sometimes preferred is the rotated view where both subtrees of a node are below the
node. The same tree would appear as follows.

     

a

b

c d
h

g
e

f

[ ]

[ ]

[ ]

[ ]

[ ]

Figure 19: A rotated rendering of the binary tree representation of a list
[a, [b, c], [ ], [d, [e, f], g], h]

The binary tree representation corresponds to a typical internal representation of lists in
languages such as rex, Lisp, and Prolog. The arcs are essentially pointers, which are
represented as internal memory addresses.

In a way, we have now come a full cycle: we started by showing how trees can be
represented as lists, and ended up showing how lists can be represented as trees. The
reader may ponder the question: Suppose we start with a tree, and represent it as a list,
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then represent that list as a binary tree. What is the relationship between the original tree
and the binary tree?

Quad-Trees

An interesting and easy-to-understand use of trees is in the digital representation of
images. Typically images are displayed based on a two-dimensional array of pixels
(picture elements), each of which has a black-white, color, or gray-scale value. For now,
let us assume black and white. An image will not usually be homogeneous, but will
instead consist of regions that are largely black or largely white. Let us use the following
16-by-16 pixel image of a familiar icon as an example:

Figure 20: 16 x 16 pixel image of yin-yang icon

The quad-tree is formed by recursively sub-dividing the image into four quadrants, sub-
dividing those quadrants into sub-quadrants, and so on, until a quadrant contains only
black or only white pixels. The sub-divisions of a region are the four sub-trees of a tree
representing the entire region.

Sub-trees represent 
individual quadrants

Tree represents the entire region

A B C D

A B

CD

Region divided 
into quadrants

Figure 21: Quad tree recursive sub-division pattern
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The first level of sub-division is shown below, and no quadrant satisfies the stopping
condition. After the next level sub-division, several sub-quadrants satisfy the stopping
condition and will thus be encoded as 0.

Figure 22: The yin-yang image showing the first level of quad-tree sub-division

Figure 23: The image after the second level of quad-tree sub-division.
Note that one quadrant is all black and will not be further sub-divided.
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Continuing in this way, we reach the following set of sub-divisions, in which each
quadrant satisfies the stopping condition:

Figure 24: The yin-yang icon sub-divided until
 all sub-grids are either all black or all white

Encoding the sub-quadrants as 0 for white, 1 for black, we get the quad-tree in Figure 25.

A linear encoding of the quad-tree, using the symbol set { '0', '1', '[', ']' }, reading the
quadrants left-to-right and upper-to-lower, is:

[[[0[0001][0001][1000]][[0110][1101][0111]1][[1010]0[1010]0][1[1011][01
00]1]][[11[1101]1][[0111]01[0001]][[0001]011]1][[[1010]0[0101]0][000[01
11]][[0100][0010]0[0100]][0[0100][0011][0011]][[0[1101][0111]0][111[111
0]][0[0001][0111][1110]][[1110]000]]]

We need to accompany this linear encoding by a single number that indicates the depth of
a single pixel in the hierarchy. This is necessary to know the number of pixels in a square
area represented by an element in the quad-tree. For example, in the tree above, the depth
is 4. An element at the top level (call this level 1) corresponds to a 8-by-8 pixel square.
An element at level 2, corresponds to a 4-by-4 area, an element at level 3 to a 2-by-2
area, and an element at level 4 to a single pixel.

The linear quad-tree encoding can be compared in length to the raster encoding, that is
the array of pixels with all lines concatenated:
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00001111111100000001000111110000010011111111111000100111101111111010001
11100011111111001111011111111100001111111111110000011111111111000000000
11111110000000000111110100000100001111010000111000111001000001000011000
0100000001100000010000011100000000111111100000

Here it is not necessary to know the depth, but instead we need to know the row size.
Since both of these are printed in equal-space fonts, based purely on length, modest
compression can be seen in the quad-tree encoding for this particular image. In images
with larger solid black or solid white areas, a significantly greater compression can be
expected.

Figure 25: Quad-tree for the yin-yang icon in two dimensions

Quad trees, or their three-dimensional counterpart, oct-trees, have played an important
role in algorithm optimization. An example is the well-known Barnes-Hut algorithm for
doing simulations of N bodies in space, with gravitational attraction. In this approach,
oct-trees are used to structure the problems space so that clusters of bodies can be treated
as single bodies in certain computational contexts, significantly reducing the computation
time.

Tries

A trie is a special kind of tree used for information retrieval. It exploits indexability in
lists, or arrays, which represent its nodes, in order to achieve more efficient access to the
information stored. A trie essentially implements a function from character strings or
numerals into an arbitrary domain. For example, consider the function cities that gives
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the list of cities corresponding to a 5-digit ZIP code. Some sample values of this function
are:

cities(91711) = ["Claremont"]
cities(91712) = [ ]
cities(94305) = ["Stanford", "Palo Alto"]
cities(94701) = ["Berkeley"]

The value of cities for a given argument could be found by searching a list of the form

[
 [91711, "Claremont"],
 [91712],
 [94305, "Stanford", "Palo Alto"],
 [94701, "Berkeley"],
   ....
]

(called an association list , and elaborated on in the next chapter). However, this would
be slower than necessary. A quicker search would result if we used a tree with each non-
leaf node having ten children, one for each digit value. The root of the tree would
correspond to the first digit of the ZIP code, the second-level nodes would correspond to
the second digit, and so on. For any digit combination that cannot be continued to a
proper ZIP code, we could terminate the tree construction with a special empty node [] at
that point. The overall trie would appear as follows:

321 8765

43210 98765

4321 98765

43210 98765

43210 98765

Claremont

4

4210 98765

0

43210 5

3

43210 98765

Berkeley
Stanford, 
Palo Alto

0

43210 98765

0

0

Figure 26: Sketch of part of a trie
representing assignment of sets of cities to zip codes.
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General Graphs as Lists

If we omit, in the definition of tree, the condition “there is exactly one root”, thus
allowing multiple roots (note that there will always be at least one root if the graph is
acyclic), we would define the idea of a forest or set of trees. In general, taking the root
away from a tree will leave a forest, namely those trees with roots that were the targets of
the original root.

We can also use the idea of target set to clarify the structure of an arbitrary directed
graph: Represent the graph as a list of lists. There is exactly one element of the outer list
for each node in the graph. That element is a list of the node followed by its targets. For
example, Figure 27 shows a directed graph that is not a tree.

a cb

Figure 27: A graph that is not a tree.

The corresponding list representation would be:

[ [a, b, c],
[b, b, c],
[c, b] ]

We have gone through a number of different list representations, but certainly not
exhausted the possibilities. It is possible to convert any representation into any other.
However, the choice of a working representation will generally depend on the algorithm;
some representations lead to simpler algorithms for a given problem than do other
representations. The computer scientist needs to be able to:

•  Determine the best information representation and algorithm for a given data
abstraction and problem.

•  Be able to convert from one representation into another and to write programs
that do so.

•  Be able to present the information abstraction in a means that is friendly to the
user. This includes various tabular and graphical forms.

There is no one form that is universally the most correct or desirable. Each application
and user community will have its own ways of viewing information and it may even be
necessary to provide several views of the same information and the ability of software to
switch between them.
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One thing is certain: graphs and their attendant information structures are ubiquitous in
computer applications. Our entire world can be viewed as sets of intersecting networks of
items that connect to one another in interesting ways. The directed graph is the typical
way in which a computer scientist would view these connections. To give a modern
example, consider the “World-Wide Web”. This is an information structure that is
distributed over a pervasive network of computers known as the Internet. A node in the
World-Wide Web is a document containing text and graphics. Each node has a symbolic
address that uniquely identifies it among all other documents. Typically a document will
refer to one or more other documents in the form of hypertext links. These links specify
the addresses of other nodes. Thus they correspond directly to the arcs in a directed
graph. When the user clicks on the textual representation of a link using a web browser
the browser changes its focus to the target of that particular link.

The World-Wide Web is thus a very large directed graph. It is not a tree, since it is cyclic:
nodes can refer to each other or directly to themselves. Moreover, it is common for the
target sets of two nodes to have a non-empty intersection. Finally there is no unique root.
Thus all three of the requirements for a directed graph to be a tree are violated.

Exercises

1. •• What are some ways of representing the following tree as a list:

a

b g

c d

e f

2. •• Draw the trees corresponding to the interpretation of the following list as (i) a
labeled tree, (ii) an unlabeled tree, and (iii) a binary tree:

[1, [2, 3, 4, 5], [6, [7, [8, 9] ] ] ]

3. ••• What lists have interpretations as unlabeled trees but not as labeled trees? Do these
lists have interpretations as binary trees?

4. ••• Identify some fields outside of computer science where directed graphs are used.
Give a detailed example in each case.
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5. •• The decoding of the Morse code alphabet can be naturally specified using a trie.
Each character is a sequence of one of two symbols: dash or dot. For example, an 'a'
is dot-dash, 'b' is dash-dot-dot-dot, and so on. Consult a source, such as a dictionary,
which contains a listing of the Morse code, then construct a decoding trie for Morse
code.

6. ••• A tune identifier based on the trie concept can be developed to provide a simple
means of identifying unknown musical tunes. With each tune we may associate a
signature that describes the pattern of intervals between the initial notes, say the first
ten, in the tune. The symbol D indicates that the interval is a downward one, U
indicates it is upward, and S represents that the note is the same. For example, the
tune of The Star Spangled Banner has the signature DDUUU UDDDU,
corresponding to its start:

O - oh say can you see, by the dawn's ear-ly
  D   D   U   U   U    U  D   D      D   U

Some other tunes and their signatures are:

Bicycle Built for Two DDDUU UDUDU
Honeysuckle Rose DDUUU DDUUU
California Here I come SSSUD DDSSS
One-Note Samba SSSSS SSSSS

Show how a trie can be used to organize the songs by their signatures.

7 .  ••• The three-dimensional counterpart of a pixel is called a voxel (for volume
element). Describe how a 3-dimensional array of voxels can be compacted using the
idea of an oct-tree (eight-way tree).

8. •• An oriented directed graph is like a directed graph, except that the targets have a
specific order, rather than just being a set. Describe a way to represent an oriented
directed graph using lists.

9. ••• A labeled directed graph is a directed graph with labels on its arrows. Describe a
way to represent a labeled directed graph using lists.

10. •• Draw enough nodes of the World-Wide Web to show that it violates all three of the
tree requirements.

2.8 Matrices

The term matrix is often used to refer to a table of two dimensions. Such a table can be
represented by a list of lists, with the property that all elements of the outer list have the
same length.



Exploring Abstractions: Information Structures 41

One possible use of matrices is as yet another representation for directed graphs. In this
case, the matrix is called a connection matrix (sometimes called adjacency matrix) and
the elements in the matrix are 0 or 1. The rows and columns of the matrix are indexed by
the nodes in the graph. There is a 1 in the ith row jth column of the matrix exactly when
there is a connection from node i to node j. For example, consider the graph below, which
was discussed earlier:

a cb

The connection matrix for this graph would be:

a b c
a 0 1 1
b 0 1 1
c 0 1 0

Note that there is one entry in the connection matrix for every arrow. We can use the
connection matrix to quickly identify nodes with certain properties:

A root corresponds to a column of the matrix with no 1’s.

A leaf corresponds to a row of the matrix with no 1’s.

As a list of lists, the connection matrix would be represented

[ [0, 1, 1],
[0, 1, 1],
[0, 1, 0] ]

A related matrix is the reachability matrix. Here there is a 1 in the ith row jth column of
the matrix exactly when there is a directed path (one following the direction of the
arrows) from node i to node j. For the current example, the reachability matrix would be

a b c
a 0 1 1
b 0 1 1
c 0 1 1

From the reachability matrix, we can easily determine if the graph is cyclic: It is iff there
is a 1 on the (upper-left to lower-right) diagonal, indicating that there is a path from some
node back to itself. In the present example, both rows b and c have 1’s in their diagonal
elements.



     Exploring Abstractions: Information Structures42

Notice that the reachability matrix, since it does represent a set of pairs, also corresponds
to a relation in its own right. This relation is called the transitive closure of the original
relation. We typically avoid drawing graphs of transitive closures because they tend to
have a lot more arrows than does the original graph. For example, the transitive closure
of this simple graph

a cb d

would be the more complex graph

a cb d

As a second example of a matrix, we could use a table of 0’s and 1’s to represent a black-
and-white image. Of course, the entries in a matrix aren’t limited to being 0’s and 1’s.
They could be numeric or even symbolic expressions.

Apparently we can also represent tables of higher dimension using the same list
approach. For every dimension added, there would be another level of nesting.

Exercises

1. • Show a list of lists that does not represent a matrix.

2. •• Suppose a binary relation is given as the following list of pairs. Draw the graph.
Construct its connection matrix and its reachability matrix. What is the list of pairs
corresponding to its transitive closure?

[ [1, 2], [2, 3], [2, 4], [5, 3], [6, 5], [4, 6] ]

3. ••• Devise a method, using connection matrices, for determining whether a graph is
acyclic.

4. •• Consider the notion of a labeled directed graph as introduced earlier (a graph with
labels on its arrows). How could you use a matrix to represent a labeled directed
graph? How would the representation of this matrix as a list differ from previous
representations of graphs as lists?

5. ••• Devise a method for computing the connection matrix of the transitive closure of a
graph, given the graph's connection matrix.
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2.9 Undirected graphs

An undirected graph is a special case of a directed graph (and not the other way around,
as you might first suspect). An undirected graph is usually presented as a set of nodes
with lines connecting selected nodes, but with no arrow-heads on the lines. In terms of a
directed graph, i.e. a set of pairs of nodes, a line of an undirected graph connecting a node
n to a node m represents two arrows, one from node n to m and another from node m to n.
Thus the connection matrix for an undirected graph is always symmetric about the
diagonal (that is, if there is a 1 in row i column j, then there is a 1 in row j column i).

On the left below is an undirected graph, and on the right the corresponding directed
graph.

1 2

3 4

5 6 7

1 2

3 4

5 6 7

Figure 28: An undirected graph and its corresponding directed graph

In summary, an undirected graph may be treated as an abbreviation for a directed graph.
All the representational ideas for directed graphs thus apply to undirected graphs as well.

Exercises

1. • Show the list of pairs representing the undirected graph above. Show its connection
matrix.

2. •• Devise an algorithm for determining whether a directed graph could be represented
as an undirected graph.

3. ••• The transitive closure of an undirected graph has an unusual form. What is it?
Devise a more efficient way to represent such a transitive closure as a list based on its
properties.
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2.10 Indexing Lists vs. Arrays

We will index elements of a list by numbering them starting from 0. Given a list and
index, an element of the list is determined uniquely. For example, in

[“Canada”, “China”, “United Kingdom”, “Venezuela”]

the index of “China” is 1 and that of “Venezuela” is 3. The important thing to note is
that indices are not an explicit part of the data. Instead, they are implicit: the item is
determined by “counting” from the beginning.

In rex, an item at a specific index in the list may be determined by treating that list as if it
were a function: For example

rex > L = ["Canada", "China", "United Kingdom", "Venezuela"];
1

rex > L(2);
United Kingdom

Indexing lists in this way is not something that should be done routinely; for routine
indexing, arrays are a better choice. This is now getting into representational issues
somewhat, so we only give a preview discussion here.

The time taken to index a linked list is proportional to the index.

On the other hand, due to the way in which computer memory is constructed, the time
taken to index an array is nearly constant. We refer to the use of this fact as the linear
addressing principle.

linear addressing principle:

The time taken to index an array is constant, independent of the value of
the index.

We use the modifier "linear" to suggest that we get the constant-time access only when
elements can be indexed by successive integer values. We cannot expect constant-time
access to materialize if we were to instead index lists by arbitrary values. (However, as
will be seen in a later chapter, there are ways to come close to constant-time access using
an idea known as hashing, which maps arbitrary values to integers.)

In addition to lists, arrays are available in rex. For example, a list may be converted to an
array and vice-versa. Both are implementations of the abstraction of sequence, differing
primarily in their performance characteristics. Both can be indexed as shown above. We
will discuss this further in the next chapter.
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2.11 Structure Sharing

Consider lists in which certain large items are repeated several times, such as

[ [1, 2, 3], 4, [1, 2, 3], 5, [1, 2, 3], 6]

In the computer we might like to normalize this structure so that space doesn't have to be
taken representing the repeated structure multiple times. This is especially pertinent if we
do not tend to modify any of the instances of the recurring list. Were we to do that, we'd
have to make a decision as to whether we wanted the structures to be shared or not.

A way to get this kind of sharing in rex is to first bind an identifier to the item to be
shared, then use the identifier in the outer structure thus:

rex > shared = [1, 2, 3];
1

rex > outer = [shared, 4, shared, 5, shared, 6];
1

rex > outer;
[[1, 2, 3], 4, [1, 2, 3], 5, [1, 2, 3], 6]

Within the computer, sharing is accomplished by references. That is, in the place where
the shared structure is to appear is a data item that refers to the apparent item, rather than
being the item itself. From the user's viewpoint, it appears that the item itself is where the
reference is found. In rex, there is no way to tell the difference.

A reference is usually implemented using the lower-level notion of a pointer. Pointers are
based on another use of the linear addressing principle: all items in memory are stored in
what amounts to a very large array. This array is not visible in a functional language such
as rex, but it is in languages such as C. A pointer or reference is an index into this large
array, so we can locate an item given its reference in nearly constant time.

In programming languages, references typically differ from pointers in the following
way: a pointer must be prefixed or suffixed with a special symbol (such as prefixed with
a * in C or suffixed with a ^ in Pascal) in order to get the value being referenced. With
references, no special symbol is used; references stand for the data item to which they
refer. Most functional languages, as well as Java, have no pointers, although they may
have references, either explicit or implicit.

In addition to sharing items in lists, tails of lists can be shared. For example, consider

rex > tail = [2, 3, 4, 5];
1

rex > x = [0 | tail];
1

rex > y = [1 | tail];
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1

rex > x;
[0, 2, 3, 4, 5]

rex > y;
[1, 2, 3, 4, 5]

Although x and y appear to be distinct lists, they are sharing the list tail as a common
rest. This economizes on the amount of storage required to represent the lists.

As we saw earlier, lists have a representation as unlabeled trees. However, a tree
representation is not appropriate for indicating sharing. For this purpose, a generalization
of a tree called a dag (for directed acyclic graph) helps us visualize the sharing.

1 2 3

4 5 6

1 2 3 1 2 3

Figure 29: A tree with sharable sub-trees.

1 2 3

4

5 6

Figure 30: Showing shared structure using a dag.
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Strictly speaking, the above tree and dag are not simply directed graphs, but instead
directed oriented graphs, meaning that ordering and repetition of targets is important. If
it were purely a graph, then the targets would be regarded as a set and repetitions
wouldn't matter, defeating our use of trees. These fine distinctions will not be belabored,
since we are using lists to represent them anyway and we are trying to avoid building up
a vocabulary with too many nuances.

Graphs as well as dags can be represented using references. This results in a more
compact representation. In order to demonstrate such a use of references in rex, we will
introduce an identifier for each node in the graph. The identifier will be bound to a list
consisting of the name of the node followed by the values of the identifiers of the targets
of the node. Consider for example the graph introduced earlier:

a cb

We would like to define the three node lists simultaneously. To a first approximation, this
would be done by the rex statement:

[a, b, c] = [ ["a", b, c], ["b", b, c], ["c", b] ];

There is a problem with this however; the right-hand side is evaluated before binding the
variables on the left-hand side, but the symbols a, b, and c on the right are not yet
defined. The way to get around this is to defer the use of those right-hand side symbols.
In general, deferred binding means that we use a symbol to designate a value, but give its
value later. Deferring is done in rex by putting a $ in front of the expression to be
deferred, as in:

rex > a = ["x", $b, $c];
1

rex > b = ["y", $b, $c];
1

rex > c = ["z", $b];
1

While these equations adequately define a graph information structure inside the
computer, there is a problem if we try to print this structure. The printing mechanism tries
to display the list structure as if it represented a tree. If the graph above is interpreted a
tree, the tree would be infinite, since node a connects to b, which connects to b, which
connects to b, ... . Our rex interpreter behaves as follows:

rex > a;
[x, [y, [y, [y, [y, [y, [y, [y, [y, [y, [y, ...
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where the sequence continues until terminated from by the user. We would need to
introduce another output scheme to handle such cycles, but prefer to defer this issue at the
moment.

Exercises

1. •• Describe how sharing can be useful for storing quad trees.

2. ••Describe how sharing can be useful for storing matrices.

3. ••• Describe some practical uses for deferred binding.

4.  ••• Devise a notation for representing an information structure with sharing and
possible cycles.

5. ••• For a computer operating system of your choice, determine whether and how
sharing of files is represented in the directory structure. For example, in UNIX there
are two kinds of links, regular and symbolic, which are available. Describe how such
links work from the user's viewpoint.

2.12 Abstraction, Representation, and Presentation

We have used terms such as “abstraction” and “representation” quite freely in the
foregoing sections. Having exposed some examples, it is now time to clarify the
distinctions.

•  By information presentation, we mean the way in which the information is
presented to the user, or in which the user presents information to a
computational system.

•  By information representation, we mean the scheme or method used to record
and manipulate the information, such as by a list, a matrix, function, etc., for
example, inside a computer.

•  By information abstraction, we mean the intangible set of “behaviors” that are
determined by the information when accessed by certain functions and
procedures.

A presentation can thus be viewed as a representation oriented toward a user's taste.

Number Representations

As a very simple example to clarify these distinctions, let us consider the domain of
natural numbers, or “counting numbers”, which we normally denote 0, 1, 2, 3, ... . When
we write down things that we say represent numbers, we are dealing with the
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presentation of the numbers. We do this in using numerals. For example, 5280 would
typically be understood as a decimal numeral. The characters that make up a numeral are
called digits. The actual number itself is determined by abstract properties. For example,
the number of “ticks” we’d need to perform in counting starting from 0 to arrive at this
number determines the number exactly and uniquely. There is only one number requiring
exactly that many actions. Alternatively, the number of times we can remove a counter
from a number before reaching no counters also determines the number.

Regarding representation of numbers in the computer, typically this would be in the form
of a sequence of electrical voltages or magnetic flux values, which we abstract to bits: 0
and 1. This is the so-called binary representation (not to be confused with binary
relations). Each bit in a binary representation represents a specific power of 2 and the
number itself is derived by summing the various powers of two. For example, the number
presented as decimal numeral 37 typically would be represented as the sequence of bits

1 0 0 1 0 1
meaning

1 * 25  +  0 * 24  +  0 * 23  +  1 * 22  +  0 * 21  +  1 * 20

i.e.
    32        + 0           + 0          +  4           + 0          +  1

The appeal of the binary representation is that it is complete: every natural number can be
represented in this way, and it is simple: a choice of one of two values for each power of
two is all that is necessary.

An enumeration of the binary numerals for successive natural numbers reveals a pleasing
pattern:

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

...

The pattern is:  if we look down the rightmost column, we see that 0's and 1's alternate on
every line. If we look down the second rightmost column, they alternate every two lines,
in the third every four lines, etc. In order to find the least-significant (rightmost) digit of
the binary representation, we can divide the number by 2 (using whatever representation
we want). The remainder of that division is the digit. The reader is invited, in the
exercises, to extend this idea to a general method. In the programming languages we use,
N % M denotes the remainder of dividing N by M.
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Most real applications deal with information abstractions far more complex than just the
natural numbers. It is important for the computer scientist to be familiar with typical
abstractions and their attendant presentations and representations and to be able to spot
instances of these abstractions as they arise in problems. This is one of the reasons that
we have avoided focusing on particular common programming languages thus far; it is
too easy to get lost in the representational issues of the language itself and loose sight of
the information structural properties that are an essential component of our goal: to build
well-engineered information processing systems.

Sparse Array and Matrix Representations

As another example of representation vs. abstraction, consider the abstract notion of
arrays as a sequence indexed by a range of integers 0, 1, 2, .... N. A sparse array is one in
which most of the elements have the same value, say 0. For example, the following array
might be considered sparse:

[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

since most of the elements are 0. We could represent this array in a more compact, and in
some ways more readable, as a list of only the non-zero elements and the values of those
elements:

[ [1, 1], [3, 1], [7, 1], [9, 1], [13, 1], [27, 1] ]

Here the first element of each pair is the index of the element in the original array.

Likewise, we can consider a matrix to be an array indexed by a pair of values: row and
column. The following sparse matrix (where blank entries imply to be some fixed value,
such as 0)

0
5

3
6

2
4

7
1

could be represented as a list of non-zero elements of the form [row, col, value] (recalling
that row and column indices start at 0):

[ [0, 0, 0], [6, 1, 7],
  [4, 2, 2], [7, 3, 1],
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  [1, 4, 5], [3, 5, 6],
  [5, 6, 4], [2, 7, 3]]

This representation required 24 integers, rather than the 100 that would be required for
the original matrix. While sparse array and matrix representations make efficient use of
memory space, they have a drawback: linear addressing can no longer be used to access
their elements. For example, when a matrix is to be accessed in a columnar fashion, we
may have to scan the entire list to find the next element in a given column. This particular
problem can be alleviated by treating the non-zero elements as nodes in a pair of directed
graphs, one graph representing the columns and the other representing the rows, then
using pointer or reference representations to get from one node to another.

Other Data Presentations

As far as different presentations, the reader is probably aware that there are many
different presentations of numbers, for example different bases, Arabic vs. Roman
numerals, etc. The same is true for lists. We have used one presentation of lists. But some
languages use S expressions, ("S" originally stood for "symbolic"), which are similar to
ours but with rounded parentheses rather than square brackets and omitting the commas.
To differentiate, we could call ours R expressions (for rex expressions).

R expression: [1, [2, 3], [ [ ], 4] ]

S expression: (1 (2 3) (() 4))

S expressions often use entirely the same representation in the computer that we use:
singly-linked lists. S expressions are used in languages Lisp and Scheme, while R
expressions are used in the language Prolog. In Lisp and Scheme, programs, as well as
data, are S expressions. This uniformity is convenient when programs need to be
manipulated as data.

Regarding representations, we do not regard singly-linked lists as universally the most
desirable representation. They are a simple representation and in many, but not all, cases
can be a very efficient one. We will look at this and other alternatives in more detail in
later chapters.

In our view, it is too early to become complacent about the abstractions supported by a
given language. There are very popular languages on the scene that do a relatively poor
job of supporting many important abstractions. We are not proposing rex as a solution,
but only as a source of ideas, some of which some of our readers hopefully will design
into the next generation of languages.

Exercises

1. •• Enumerate the numbers from 9 to 31 as binary numerals.

2. ••• Devise a method for converting a number into its binary representation.
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3. ••• Devise a method for converting a binary numeral into decimal.

4.  •• Devise a method for transposing a matrix stored in the sparse representation
described in this section. Here transpose means to make the columns become rows
and vice-versa.

5. •• A formal polynomial is an expression of the form

a0 + a1x + a2x2 + a3x3 + .... +  aN-1xN-1

While polynomials are often used as representations for certain functions, the role
played by a formal polynomial is just to represent the sequence of coefficients

[ a0, a1, a2, a3,  ...., aN-1 ]

The "variable" or "indeterminate" x is merely a symbol used to make the whole thing
readable. This is particularly useful when the sequence is "sparse" in the sense that
most of the coefficients are 0. For example, it would not be particularly readable to
spell out all of the terms in the sequence represented by the formal polynomial

1 + x100

Devise a way to represent formal polynomials using lists, without requiring the
indeterminate symbol.

2.13 Abstract Information Structures

Previously in this chapter, we exposed a number of different information structures. A
common characteristic of the structures presented was that we could visualize the
structure, using presentations such as lists. But there is another common way to
characterize structures and that is in terms of behavior. Information structures viewed this
way are often called abstract data types (ADTs). This approach is the essence of an
important set of ideas called object-oriented programming, which will be considered later
from an implementation point of view. An object's class can be used to define an ADT, as
the class serves to group together all of the operators for a particular data type.

As an example, consider the characterization of an array. The typical behavioral aspects
of arrays are these:

•  We can make an array of a specified length.

•  We can set the value of the element at any specified index of the array.
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•  We can get the value of the element at any specified index.

These are the things that principally characterize an array, although we can always add
others, such as ones that search an array, search from a given index, search in reverse,
etc. All of these aspects can be understood carried out in terms of the three basic
behaviors given, without actually "seeing" the array and how it is represented. We can
postulate various abstract operators to represent the actions:

makeArray(N) returns an array of size N
set(A, i, V) sets the element of array A at index i to value V
get(A, i) returns the element of array A at index i
size(A) returns the size of array A

Note that aspects of performance (computation time) are not shown in these methods.
While it would be efficient to use the linear addressing principle to implement the array,
it is not required. We could use a sparse representation instead. What is implied,
however, is that there are certain relationships among the arguments and return values of
the methods. The essence is characterized by the following relationships, for any array A,
with .... representing a series of zero or more method calls:

A sequence

A = makeArray(N); .... size(A)

returns N, the size of the array created.

A sequence

set(A, i, V); .... get(A, i)

returns V, provided that within .... there is no occurrence of set(A, i, V) and
provided that i > 0 and i < size(A).

These summarize an abstract array, independent of any "concrete" array (concrete
meaning a specific implementation, rather than an abstraction).

This kind of thinking should be undertaken whenever building an abstraction. That is,
begin by asking the question

What are the properties that connect the operators?

The answers to such questions are what guide the choice or development of
implementations, which will be the subject of much of this book.
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Exercises

1. ••• Express the idea of a list such as we constructed using [.... | ....] from an abstract
point of view, along the lines of how we described an abstract array.

2. •••• A stack is an abstraction with a behavior informally described as follows: A stack
is a repository for data items. When the stack is first created, the stack contains no
items. Item are inserted one at a time using the push method and removed one at a
time using the pop method. The stack determines which element will be removed
when pop is called: elements will be removed in order of most recently inserted first
and earliest inserted last. (This is called a LIFO, or last-in-first-out ordering). The
empty method tells whether or not the stack is empty. Specify the relationships among
methods for a stack.

3. •• Many languages include a struct facility for structuring data. (An alternate term for
struct is record.) A struct consists of a fixed number of components of possibly
heterogenoeous type, called fields. Each component is referred to by a name. Show
how structs can be represented by lists.

2.14 Conclusion

In this chapter, we have primarily exposed ways of thinking about information structures.
We have not written much code yet, and have said little about the implementations of
these structures. We mentioned in the previous section the idea of abstract data types and
the related idea of “objects”. Objects and information structures such as lists should not
be viewed as exclusive. Instead, there is much possible synergism. In some cases, we will
want to use explicit information structures containing objects as their elements, and in
others we will want to use information structures to implement the behavior defined by
classes of objects. It would be unfortunate to box ourselves into a single programming
language paradigm at this point.

2.15 Chapter Review

Define the following concepts or terms:

acyclic
ADT (abstract data type)
array
binary relation
binary representation of numbers
binary tree representation of list
binding
connection matrix

dag
deferred binding
directed graph
forest
functional programming
index
information sharing
labeled-tree interpretation of a list
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leaf
leafcount
length (of a list)
linear addressing principle
list
list equality
list matching

 numeral vs. number
 quad tree
 queue
 R expression
 reachable
 reachability matrix
 reference
 root
 S expression
 sharing
 sparse array
 stack
 target set
 transitive closure
 tree
 trie
 unlabeled-tree interpretation of a list



3. High-Level Functional Programming

3.1 Introduction

This chapter focuses on functional programming, a very basic, yet powerful, paradigm in
which computation is represented solely by applying functions. It builds upon the
information structures in the preceding chapter, in that those structures are representative
of the kinds of structures used as data in functional programming. Some additional
characteristics of the functional programming paradigm are:

•  Variables represent values, rather than memory locations.

•  In particular, there are no assignment statements; all bindings to
variables are done in terms of definitions and function arguments.

•  Data are never modified once created. Instead, data are created from
existing data by functions.

•  Each occurrence of a given functional expression in a given context
always denotes a single value throughout its lifetime.

This last point is sometimes called “referential transparency” (although it might have
been equally well called “referential opacity”) since one cannot see or discern any
differences in the results of two different instances of the same expression.

A term often used for modifying the value of a variable is “side effect”. In short, in a
functional language there is no way to represent, and thus cause, side effects.

Some advantages that accrue from the functional style of programming are:

•  Debugging a program is simpler, because there is no dependence on
sequencing among assignment statements. One can re-evaluate an
expression many times (as in debugging interactively) without fear
that one evaluation will have an effect on another.

•  Sub-expressions of a program can be processed in parallel on several
different processors, since the meaning of an expression is inherent in
the expression and there is no dependence on expression sequencing.
This can produce a net speed-up of the execution, up to a factor of the
number of processors used.

•  Storage is managed by the underlying system; there is no way to
specify allocation or freeing of storage, and the attendant problems
with such actions are not present.
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One does not need a functional language to program in a functional style. Most of the
principles put forth in this section can be applied to ordinary imperative languages,
provided that the usage is disciplined. Please note that while functional-programming has
much to recommend it, we are not advocating its exclusive use. It will later be combined
with other programming paradigms, such as object-oriented programming. It is difficult
to present functional programming in that context initially, because the key ideas tend to
become obscured by object-oriented syntax. For this reason we use the language rex
rather than other more common languages. Once the ideas are instilled, they can be
applied in whatever language the reader happens to be working.

3.2 Nomenclature

Before starting, it is helpful to clarify what we mean by function. We try to use this term
mostly in the mathematical sense, rather than giving the extended meaning as a synonym
for procedure as is done in the parlance of some programming languages.

A function  on a set (called the domain of the function) is an entity that
associates, with each member of the set, a single item.

The key word above is single, meaning exactly one. A function never associates two or
more items with a given member of the domain, nor does it ever fail to associate an item
with any member of the domain.

We say the function, given a domain value, yields  or maps to the value associated with it.
The syntax indicating the element associated with a domain element x, if f represents the
function, is f(x). However this is only one possible syntax of many; the key idea is the
association provided.

Examples of functions are:

•  The add1 function: Associates with any number the number + 1. (The
domain can be any set of numbers).

•  The multiply function: Associates with any pair of numbers the
product of the numbers in the pair. (The domain is a set of pairs of
numbers.)

•  The reverse function: Associates with any list of elements another list
with elements in reverse order.

•  The length function: Associates with any list a number giving the
length of the list.

•  The father function: Associates with any person the person’s father.
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•  The zero function: Associates with any value in its domain the value 0.

Note that there is no requirement that two different elements of the domain can't be
associated with a single value. That is, f(x) could be the same as f(y), even though x and y
might be bound to different values. This occurs, for example, in the case of the multiply
function: multiply(3, 4) gives the same value as multiply(4, 3). Functions that prohibit
f(x) from being the same as f(y) when x and y are bound to different values are called one-
to-one functions. Functions such as the zero function, which associates the same value
with all elements of the domain are called constant functions.

A related definition, where we will tend to blur the distinction with function as defined, is
that of partial function:

A partial function on a set is an entity that associates, with each member
of a set, at most one item.

Notice that here we have replaced “single” in the definition of “function” with “at most
one”. In the case of a partial function, we allow there to be no item associated with some
members of the set. In this book, the same syntax is used for functions and partial
functions. However, with a partial function f, it is possible to have no value f(x) for a
given x. In this case, we say that f(x) is undefined.

An example of a partial function that is not a function is:

The divide function: It associates with any pair of numbers the first
number divided by the second, except for the case where the second is 0,
in which case the value of the function is undefined.

An example of a partial function on the integers is a list:

A list may be viewed as a partial function that returns an element of the
list given its index (0, 1, 2, 3, ...). For any integer, there is at most one
element at that index. There is no element if the index is negative or
greater than N-1 where N is the length of the list. Finally, there must be no
“holes”, in the sense that the partial function is defined for all values
between 0 and N-1.

We will use the common notation

f: A → B

to designate that f is a partial function on set A, and that every value f(a) for a in A is in
the set B.
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Evidently, any partial function is a function over a sufficiently selective domain, namely
the set of values for which the partial function is defined. Another way to remove the
partial aspect is by defining a special element to indicate when the result would have
otherwise been undefined. For example, in the case of divide by 0, we could use
Infinity to indicate the result (rex does this). However, it is important to note than in
computational systems, there are cases where this scheme for removing the partial nature
of partial function can only be done for the sake of mathematical discussion; that is, we
cannot, in some cases, compute  the fact that the result will be undefined. The
phenomenon to which we allude is non-termination of programs. While we often would
like to think of a program as representing a function on the set of all possible inputs, for
some inputs the program might not terminate. Moreover, it cannot always be detected
when the program will not terminate. So in general, programs represent partial functions
at best.

Two of the main ways to represent a partial function for computational purposes are: by
equation and by enumeration. When we say “by equation”, we mean that we give an
equation that defines the function, in terms of constants and simpler functions. Examples
in rex are:

f(x) = x*5;

g(x, y) = f(x) + y;

h(x) = g(f(x), 9);

Here *, +, 5, and 9 are symbols that are “built-in” to rex and have their usual meaning
(multiplication, addition, and two natural numbers). The semi-colon simply tells rex that
the definition stops there (rather than, say, continuing on the next line).

When we say “by enumeration”, we mean giving the set of pairs, the left elements of
which are the domain elements and the right elements the corresponding values of the
function. For example, we enumerate the add1 function on the domain {0, 1, 2, 3, 4} by
the list:

[ [4, 5], [3, 4], [2, 3], [1, 2], [0, 1] ]

Here we are treating a list as a set. Any reordering of the list would do as well.

While we can apply a function defined by equation by simply juxtaposing it with its
arguments, e.g.

rex > f(1);
5

rex > g(2, 3);
13
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we cannot do this in rex with a function enumerated by a list of pairs. We must instead
pass the list to another function, such as one that we call assoc (short for associate),
which will be described a bit later.

Likewise, we can go from a computed version of a function to an (internally) tabulated
version using an idea known as caching. Caching allows rex to possibly bypass re-
computing the function by first consulting the table. If the domain value is not present in
the table, it will compute it, then put it in the table.

Pragmatically, to cause caching to occur in rex, we issue a one-time directive, such as:

rex > sys(on, cache(f#1));

The # sign is used to identify the number of arguments to this particular function (since
different functions with different numbers of arguments can use the same function name,
the selection being determined by the number of arguments). So here we are causing
caching of the one-argument function with name f.

Another case of enumeration of a function occurs when the domain consists of
consecutive natural numbers from 0 to some value. In this case, we can list the
corresponding function values in order and apply the list. For example, in the preceding
example of the domain-limited add1 function, we could list the value (leaving the domain
implicit) as:

[1, 2, 3, 4, 5]

This list can be applied by merely juxtaposing it with an argument:

rex > [1, 2, 3, 4, 5](3);
4

Exercises

1. ••• Specify, by equation, a function that gives the area of a triangle given the lengths
of the sides as arguments. (Use Heron's formula, which may be found in various
mathematics references).

2. •• Specify, by enumeration, a function that gives the number of days in each month
in the year (assume 28 for February).

3.3 Using High-Level Functions

In the previous chapter, we used some of rex’s built-in functions such as length and
type to demonstrate properties of information structures. Later we will show how to
construct some functions on our own. First, however, we want to get more practice in
simply using functions. This will help in thinking at a relatively high level about
information structures and functions that use them and create them.
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Suppose we wish to create a list of numbers over a given range, where each number is 1
greater than its predecessor. To do this, we can use the function range that takes the
lower and upper limit of the range as its arguments:

rex > range(1, 10);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

rex > range(1.5, 9.5);
[1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]

If we want the increment to be other than 1, we can use a three-argument version of
range that specifies the increment:

rex > range(0, 20, 2);
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

rex > range(20, 0, -2);
[20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0]

As can be seen above, in rex the same function name can be used to designate different
functions, based upon the number of arguments. The number of arguments is called the
arity of the function (derived from using n-ary to mean n arguments). The use of one
name for several different functions, the choice of which depends on the arity or the type
of arguments, is called overloading the function’s name.

Function scale multiplies the elements of an arbitrary list to produce a new list.

rex > scale(5, [1, 2, 20]);
[5, 10, 100]

As examples of functions on lists, we have prefix, which returns a specified-length
prefix of a sequence:

rex > prefix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[1, 2, 3, 5]

antiprefix, which returns the sequence with the prefix of that length taken off:

rex > antiprefix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[7, 11, 13, 17, 19, 23]

and suffix, which returns the last so many elements of the list.

rex > suffix(4, [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]);
[13, 17, 19, 23]

Function remove_duplicates returns a list of the elements in the argument list, with
subsequent duplicates removed:

rex > remove_duplicates([1, 2, 3, 2, 3, 4, 3, 4, 5]);
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[1, 2, 3, 4, 5]

Function zip interlaces elements of two lists together, as if they were the two sides of a
zipper:

rex > zip([1, 3, 5, 7], [2, 4, 6]);
[1, 2, 3, 4, 5, 6, 7]

Function reverse reverses elements of a list:

rex > reverse([1, 2, 3, 4, 5]);
[5, 4, 3, 2, 1]

Function append  appends the elements of the second list to those of the first:

rex > append([1, 2, 3, 4], [5, 6]);
[1, 2, 3, 4, 5, 6]

Sorting Lists

Another high-level function is sort, which sorts its argument list into ascending order:

rex > sort(["peas", "beans", "oats", "barley"]);
[barley, beans, oats, peas]

When we do this with functional programming, we are not modifying the original list.
Instead, we are creating a new list from the original. To verify this using rex:

rex > L = ["peas", "beans", "oats", "barley"];
1

rex > M = sort(L);
1

rex > M;
[barley, beans, oats, peas]

rex > L;
[peas, beans, oats, barley]

We can see that L has not changed from the original.

Function sort will also work when the list’s elements are lists. It uses the idea of
lexicographic ordering to compare any two elements. Lexicographic ordering is like
dictionary ordering extended to any ordered set, such as the set of numbers. For example,
the empty  list [ ] is < than any other list. One non-empty list is < another provided that
the first element of one is < the other or the first elements are equal and the rest of the
first list is < the rest of the second. For example:

rex > [1,2,3] < [1,2,4];
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1

rex > [1,2,3] < [1,4];
1

rex > [1,2] < [1,1,2];
0

Notice that it is this same principle that allows us to sort a list of words, as if the words
were lists of characters.

In rex, numbers are < strings, and strings are < lists, but this is somewhat arbitrary. The
purpose of it is for certain algorithms such as removing duplicates, where an ordering is
helpful.

Finding Things in Lists

A couple of frequently-used functions that can be used to tell us things about the contents
of lists are member and assoc. Function member is a predicate that tells whether a specific
item occurs in a list: member(E, L) returns 1 if E occurs in L and returns 0 otherwise. For
example,

rex > member(99, range(90, 100));
1

rex > member(99, range(90, 95));
0

Function assoc applies to a special kind of list called an association list, a list of lists,
each with at least one element. Usually this will be a list of pairs representing either a
dictionary or a binary relation. The purpose of assoc is to find an element in an
association list having a specified first element. If the list is a dictionary, we can thus use
assoc to find the meaning of a given word. As an example,

rex > assoc(5, [ [4, 16], [5, 25], [6, 36], [7, 49] ]);
[5, 25]

Note that by definition of an association list, if an element is found, the returned value
will always be non-empty (because each list is supposed to have at least one element in
it). Thus we can use the empty list as a returned value to indicate no element was found:

rex > assoc(3, [ [4, 16], [5, 25], [6, 36], [7, 49] ]);
[ ]
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Typically the association list represents an enumerated partial function, which, as we
stated earlier, is a binary relation such that no two different pairs in the relation have the
same first element. For example,

[ [5, “apple”], [6, “banana”], [10, “grapefruit”] ]

is a partial function, whereas

[ [5, “apple”], [6, “banana”], [10, “grapefruit”], [6, “orange”]
]

is not, because in the latter there are two pairs with first component 6. However, even if
the list were not a partial function, assoc treats it as if it were by only returning the first
pair in the list that matches the argument and ignoring the rest of the pairs. If one wanted
to verify that the pair was unique, one could use function keep to find out.

Implementing Ordered Dictionaries

An ordered dictionary associates with each item in a set (called the set of keys) another
item, the “definition” of that item. An implementation of an ordered dictionary is a list of
ordered pairs, where a pair is a list of two elements, possibly of different types. The first
element of each pair is the thing being defined, while the second is its. For example, in
the following ordered dictionary implementation, we have musical solfege symbols and
their definitions. Each definition is a list of words:

  [ ["do", ["a", "deer", "a", "female", "deer"]],
    ["re", ["a", "drop", "of", "golden", "sun"]],
    ["me", ["a", "name", "I", "call", "myself"]],
    ["fa", ["a", "long", "long", "way", "to", "run"]],
    ["so", ["a", "needle", "pulling", "thread"]],
    ["la", ["a", "note", "that", "follows", "sol"]],
    ["ti", ["a", "drink", "with", "jam", "and", "bread"]]
  ]

Exercises

1. •• Using the functions presented in this section, along with arithmetic, give a one-
line rex  definition of the following function:

infix(I, J, L) yields elements I through J of list L, where the first element is
counted as element 0. For example,

rex > infix(1, 5, range(0, 10));
[1, 2, 3, 4, 5]

2. •• An identity on two functional expressions indicates that the two sides of the
expression are equal for all arguments on which one of the two sides is defined.
Which of the following identities are correct?
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append(L, append(M, N)) == append(append(L, M), N)

reverse(reverse(L)) == L

reverse(append(L, M)) == append(reverse(L), reverse(M))

sort(append(L, M)) == append(sort(L), sort(M))

reverse(sort(L)) == reverse(L)

sort(reverse(L)) == sort(L)

[A | append(L, M)] == append([A | L], M)

reverse([A | L]) == [A | reverse(L)]

reverse([A | L]) == [reverse(L) | A]

reverse([A | L]) == append(reverse(L), [A])

3. ••• Two functions of a single argument are said to commute provide that for every
argument value X, we have f(g(X)) == g(f(X)). Which pairs of functions
commute?

sort and remove_duplicates

reverse and remove_duplicates

sort and reverse

3.4 Mapping, Functions as Arguments

An important concept for leveraging intellectual effort in software development is the
ability to use functions as arguments. As an example of where this idea could be used, the
process of creating a list by doing a common operation to each element of a given list is
called mapping over the list. Mapping is an extremely important way to think about
operations on data, since it captures many similar ideas in a single high-level thought.
(The word mapping is also used as a noun, as a synonym for function or partial function;
this is not the use for the present concept.)  Later on we will see how to define our own
mapping functions. One of the attractive uses of high-level functions is that we do not
over-specify how the result is to be achieved. This leaves open many possibilities for the
compiler to optimize the performance of the operation.

The function map provides a general capability for mapping over a single sequence. For
example, suppose we wish to use mapping to create a list of squares of a list of numbers.
The first argument to the function map is itself a function. Assume that sq is a function
that squares its argument. Then the goal can be accomplished as follows:

rex > map(sq, [ 1, 7, 5, 9 ]);
[1, 49, 25, 81]
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Likewise, one way to create a list of the cubes of some numbers would be to define a
function cube (since there isn’t a built in one) and supply that as an argument to map. In
rex, a function can be defined by a single equation, as shown in the first line below. We
then supply that user-defined function as an argument to map:

rex > cube(X) = X*X*X;
1

rex > map(cube, [1, 7, 5, 9]);
[1, 343, 125, 729]

There is also a version of map that takes three arguments, the first being a function and
the latter two being lists. Suppose that we wish to create a list of pairs of components
from two argument lists. Knowing that function list will create a list of its two given
arguments, we can provide list as the first argument to map:

rex > map(list, [1, 2, 3], [4, 5, 6]);
[[1, 4], [2, 5], [3, 6]]

A function such as map that takes a function as an argument is called a higher-
orderfunction.

3.5 Anonymous Functions

A powerful concept that has a use in conjunction with map is that of anonymous function.
This is a function that can be created by a user or programmer, but which does not have
to be given a name.

As a simple example of an anonymous function, suppose we wish to create a list by
adding 5 to each element of a given list. We could do this using map and an “add 5”
function. The way to define an “add 5” function without giving it a name is as follows:

(X) => X + 5

This expression is read:

the function that, with argument X, returns the value of X + 5.

The “arrow” => identifies this as a functional expression.

We apply the anonymous function by giving it an argument, just as with any other
function. Here we use parentheses around the functional expression to avoid ambiguity:

((X) => X + 5)(6)
function        argument
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Here the function designated by (X) => X + 5 is applied to the actual argument 6. The
process is that formal argument X gets bound to the actual argument 6. The body, with
this identification, effectively becomes 6 + 5. The value of the original expression is
therefore that of 6 + 5, i.e. 11.

Here is another example, an anonymous function with two arguments:

((X, Y) => Y - X)(5, 6)

The function designated by (X, Y) => Y - X is applied to the actual pair of arguments
(5, 6). Formal argument X is bound to 5, and Y to 6. The result is that of 6 - 5, i.e. 1.

A common use of such anonymous expressions is in conjunction with functions such as
map. For example, in order to cube each element of a list L above, we provided a function
cube as the first argument of the function map, as in map(cube, L). In some cases, this
might be inconvenient. For example, we'd have to disrupt our thought to think up the
name "cube". We also "clutter our name-space" with yet another function name. The use
of such an anonymous function within map then could be

rex > map( (X) => X*X*X, range(1, 5));
[1, 8, 27, 64, 125]

Anonymous functions can have the property that identifiers mentioned in their
expressions can be given values apart from the parameters of the function. We call these
values imported values. In the following example

 ((X) => X + Y)(6)

Y is not an argument. It is assumed, therefore, that Y has a value defined from its context.
We call this a free variable as far as the functional expression is concerned. For example,
Y might have been given a value earlier. The function designated by (X) => X + Y is
applied to the argument 6. The result of the application is the value of 6 + Y. We need to
know the value of Y to simplify it any further. If Y had the value 3, the result would be 9.
If Y had been given no value, the result would be undefined (rex would complain about Y
being an unbound variable).

Here is an application of the idea of imported values. Consider defining the function
scale that multiplies each element of a list by a factor. Since this is a map -like concept,
the hope is we could use map to do it. However, to do so calls for an anonymous function:

scale(Factor, List) = map( (X) => Factor*X,  List);

Here X represents a "typical" element of the list, which is bound to values in the list as
map applies its function argument to each of those elements. The variable Factor, on the
other hand, is not bound to values in the list. It gets its value as the first argument to
function scale and that value is imported to the anonymous function argument of map.
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As a still more complex anonymous function example, consider:

((F) => F(6))((X) => X * 3)

Here the argument F to the functional expression (F) => F(6) is itself a functional
expression (X) => X * 3. We identify the formal argument F with the latter, so the body
becomes ((X) => X * 3)(6). We can then simplify this expression by performing the
application indicated, with X identified with 6, to get 6*3, which simplifies to 18.

In computer science, another, less readable, notation is often used in place of the
=> notation we use to define anonymous functions. This is called "lambda notation",
"lambda abstraction", or Church's lambda calculus. Instead of the suggestive
(X) => Y*X - 1, lambda notation prescribes λX.(Y*X - 1). In other words, the prefix
λ takes the place of the infix =>.

3.6 Functions as Results

An interesting aspect about anonymous functions is that they can be returned as results.
Consider

(Y) => ( (X) => X + Y )

This is read

“the function that, with argument Y, returns:

the function that, with argument X, returns the value of X + Y”

In other words, the first function mentioned returns a function as its value. The second
outer parentheses can be omitted, as in

(Y) => (X) => X + Y

because grouping around => is to the right. Obviously we are again applying the idea of
an imported variable, since the value of Y is not an argument but rather is imported to the
inner expression.

When we apply such a function to a number such as 9, the result is a function, namely the
function represented by

(X) => X + 9

What happens, for example, when we map a function-returning function over a list of
numbers?  The result is a list of functions:

rex > map( (Y) => (X) => X + Y, [5, 10, 15] );
[(X) => (X+5), (X) => (X+10), (X) => (X+15)]



70 High-Level Functional Programming

While the idea of a list of functions might not be used that often, it is an interesting to
exercise the concept of one function returning another. The point here is to get used to
thinking of functions as whole entities in themselves.

Suppose we wanted to apply each of the functions in the list above to a single value, say
9. We could use map to do that, by mapping a function with a function argument:

(F) => F(9)

is, of course, the function that with argument F returns the result of applying F to 9. When
we map this function over the previous result, here’s what we get:

rex > L = map((Y) => (X) => X + Y, [5, 10, 15]);
1

rex > map( (F)=>F(9),  L);
[14, 19, 24]

Consider the problem of making a list of all possible pairs of two given lists. For
example, if the lists were:

[1, 2, 3, 4] and [96, 97, 98]

then we want the result to be something like

[ [1, 96], [1, 97], [1, 98],  [2, 96], [2, 97], [2, 98],
  [3, 96], [3, 97], [3, 98],  [4, 96], [4, 97], [4, 98]]

Note that this is quite different from the result of

map(list, L)

discussed earlier. We solve this problem by first considering how to make all pairs of a
given element, say X, with each element of the second list, say M. This can be
accomplished by using map:

map((Y) => [X, Y], M)

Now we make a function that does this mapping, taking X as its argument:

(X) => map((Y) => [X, Y], M)

Now consider mapping this function over the first list L:

map((X) => map((Y) => [X, Y], M), L)

For the present example, this doesn't quite do what we want. The result is a list of lists of
pairs rather than a list of pairs:
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[ [ [1, 96], [1, 97], [1, 98] ],
  [ [2, 96], [2, 97], [2, 98] ],
  [ [3, 96], [3, 97], [3, 98] ],
  [ [4, 96], [4, 97], [4, 98] ] ]

Instead of the outer application of map, we need to use a related function mappend (map,
then append) to produce the list of all the second level lists appended together:

mappend((X) => map((Y) => [X, Y], M), L)

Let’s try it:

rex > L = [1, 2, 3, 4];
1

rex > M = [96, 97, 98];
1

ex > mappend((X) => map((Y) => [X, Y], M), L);

[ [1, 96], [1, 97], [1, 98], [2, 96], [2, 97], [2, 98],
  [3, 96], [3, 97], [3, 98], [4, 96], [4, 97], [4, 98] ]

We can package such useful capabilities as functions by using the expression in a
function-defining equation.

pairs(L, M) = mappend((X) => map((Y) => [X, Y], M), L);

3.7 Composing Functions

Suppose we wish to construct a function that will take two other functions as arguments
and return a function that is the composition of those functions. This can be accomplished
using the following rule:

compose(F, G) = (X) => F(G(X));

We could alternatively express this as a rule using a double layer of arguments:

compose(F, G)(X) = F(G(X));

Let’s try using compose in rex:

rex > compose(F, G) = (X) => F(G(X));
1

rex > square(X) = X*X;
1

rex > cube(X) = X*X*X;
1
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rex > compose(square, cube)(2);
64

rex > compose(cube, square)(2);
64

rex > compose(reverse, sort)([3, 5, 1, 2, 6, 7]);
[7, 6, 5, 3, 2, 1]

rex > map(compose(square, cube), range(1, 10));
[1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1000000]

In mathematical texts, the symbol o is often used as an infix operator to indicate
composition:

compose(F, G) ≡ F o G

The following diagram suggests how compose works. It in effect splices the two
argument functions together into a single function.

f

g

compose

f

g

arguments
result

Figure 31: Diagram of the action of the function-composing function compose

3.8 The Pipelining Principle

A key design technique in computer science and engineering involves the decomposition
of a specified function as a composition of simpler parts. For example, in the UNIX
operating system, single application programs can be structured as functions from a
stream of input characters to a stream of output characters. The composition of two such
functions entails using the output stream of one program as input to another. The result
behaves as a program itself, and can be further composed in like fashion. One can regard
this style of programming as building a pipeline connecting stages, each stage being an
application program. Indeed, the operator for constructing such pipelines is known as
"pipe" and shown as a vertical bar |. If P, Q, and R are programs, then

P | Q | R
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defines the composition that connects the output of P to the input of Q and the output of
Q to the input of R. The overall input then is the input to P and the output is the output of
R. In terms of the function composition notation introduced earlier, we have R o (Q o P).

The pipelining principle is pervasive in computer science. Not only is it used in the
construction of software; it is also extremely important at low levels of processor design,
to enable parts of successive instructions to execute simultaneously. In later discussion,
we will extend the idea of function composition to allow us to derive function
composition networks of arbitrary structure.

3.9 Functions of Functions in Calculus (Advanced)

The failure to differentiate expressions from functions can be the source of confusion in
areas such as differential and integral calculus, where it is easy to forget that functions,
not numbers, are generally the main focus of discussion. For example, we are used to
seeing equations such as

d
dx  sin x = cos x

What is really meant here is that the result of operating on a function, sin, is another
function, cos. The use of x is really irrelevant. It might have been less confusing to state

derivative(sin) = cos

and leave the dummy argument x out of the picture. A step in the right direction is to use
the "prime" notation, wherein the derivative of a function f is shown as f '. But then we
don't often see written equalities such as

sin' = cos
even though this, coupled with a proper understanding of functions as entities, would be
less confusing than the first equation above.

As an example of the confusion, consider the chain rule in calculus, which can be
correctly expressed as

(f o g)' (x) = f ' (g(x)) * g' (x)

Using the d/dx notation, the chain rule cannot be expressed as nicely. If we are willing to
define the product of two functions to be the function whose value for a given x is the
product of the values of the individual functions, i.e.

(f * g)(x) = f(x) * g(x)

then the chain rule can be nicely expressed as:
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(f o g)'  = (f ' o g) * g'

Translated to English, this statement says that the derivative of the composition of two
functions is equal the product of the derivative of the second function and the
composition of the derivative of the first function with the second function.

Exercises

1. • Create a function that cubes every element of a list, using map as your only named
function.

2. •• Describe the functions represented by the following functional expressions:

a. (X) => X + 1

b. (Y) => Y + 1

c. (X) => 5

d. (F) => F(2)

e. (G, X) => G(X,X)

f. (X, Y) => Y(X)

3. •• Argue that compose(F, compose(G, H)) == compose(compose(F, G), H), i.e.
that composition is associative. Written another way, F o (G o H) ≡  (F o G) o H.
This being the case, we can eliminate parentheses and just write F o G o H.

4. ••• Express the calculus chain rule for the composition of three functions:

(F o G o H)'  = ??

5. •• In some special cases, function composition is commutative, that is (F o G) ≡
(G o F). Give some examples of such cases. (Hint: Look at functions that raise their
argument to a fixed power.)

6. •• Give an example that shows that function composition is not generally
commutative.

7. •• Which functional identities are correct?

a. map(compose(F, G), L) ==  map(F, map(G, L))

b. map(F, reverse(L)) == reverse(map(F, L))

c. map(F, append(L, M)) == append(map(F, L), map(F, M))
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3.10 Type Structure

A concern that occupies many computer scientists is that of the types of data and
functions that operate on that data. The language we have been using so far, rex, is rather
"loose" in its handling of types. This has its purpose: we don't wish to encumber the
discussion with too many nuances at one time. Nonetheless, it is helpful to have a way to
talk about expected types of data in functions; it helps us understand the specification of
the function.

The basic types of most programming languages include:

integer numerals
characters or character strings
floating-point numerals

In order to provide a safe computational system, rex has to be able to discern the type of a
datum dynamically:  Although a rex variable is not annotated with any type, the basic
operations in rex use the type of the data. For example, the + operator applies to integers
or floating-point numerals, but not to character strings. Nothing prevents us from trying
to use + on strings, but doing so will result in a run-time error that terminates the
computation. Thus it is important that the programmer be aware of the type likely to be
passed to a function. The rex language includes some built-in predicates for determining
the type of data. For example, the predicate is_number establishes whether its argument
is either an integer or floating point. The predicate is_integer establishes whether its
argument is integer. The programmer can use these predicates to steer clear of run-time
type errors.

It is common to treat data types as sets and to assert the type of functions using the
customary domain-range notation on those sets. For example:

f: integer x integer → integer

asserts that function (or partial function) f takes two integer arguments and returns an
integer.

In general, A x B, where A and B are sets, means the set of all pairs, the first element
drawn from A and the second from B. This is called the Cartesian product of the sets.
For example, the Cartesian product is computed by the function pairs worked out
earlier.

In dealing with types, we use | to mean union, i.e. to describe elements that can be one of
two different types. For example,

g: (integer | float) x integer → float
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describes a function g, the first argument of which can be an integer or a float.

We often see type equations used to define intermediate classes. For example, we could
define the type numeric to be the union of integer and float thus:

numeric = integer | float

We could also use equations to define types for functions:

binary_numeric_functions = (numeric x numeric) → numeric

treating the usual arrow notation as defining a set of functions.

Perhaps more important than the particular choice of basic types is the means of dealing
with composite or aggregate types. The fundamental aggregation technique in rex is
creating lists, so we could enlist the * notation to represent lists of arbitrary type things.
For example,

integer*

could represent the type of lists of integers. Then

integer**

would represent the type of lists of lists of integers, etc. Since rex functions do not, in
general, require their argument to be of any specific type, it is helpful to have a
designation for the union of all types. This will be called any. For example, the type of
the function length that counts the number of items in a list, is:

length: any* → integer

since this function pays absolutely no attention to the types of the individual elements in
the argument list. On the other hand, some functions are best described using type
variables. A good example is the function map that takes two arguments: a list of elements
and a function. The domain of that function must be of the same type as the elements in
the list. So we would describe map by

map: ((A → B) x A*) → B* where A and B are arbitrary types

A function such as map that operates on data of many different types is called
polymorphic.

Function compose is a polymorphic function having following type:

((B → C) x (A → Β)) → (A → C)
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where A, B, and C are any three types.

Notice that although anonymous functions don't have names, we can still specify their
types to help get a better understanding of them. For example, the type of (X)=>X*X is:

numeric → numeric

The set of lists permitting arbitrary nesting, which we have already equated to trees,

deserves another type designator. If A is a type, then let's use A† to designate the type

that includes A, lists of A, lists of lists of A, and so on, ad infinitum. In a sense, A† obeys
the following type equation:

A† = A | (A†)*

That is to say A† is the set that contains A and all lists of things of type A†. We shall
encounter objects of this type again in later chapters when we deal with so called
"S expressions".

We should cultivate the habit of checking that types match whenever a function is
applied. For example, if

f: A → B

then, for any element a of type A, we know that f(a) is an element of type B.

Exercises

1. • Describe the types of the following functions:

a. (X) => X + 1

b. (Y) => Y + 1

c. (X) => 5

d. (F) => F(2)

e. (G, X) => G(X,X)

f. (X, Y) => Y(X)

2. •• Describe the type structure of the following functions that have been previously
introduced:

a. range

b. reverse

c. append
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3.11Transposing Lists of Lists

In a previous section, we showed how to use map to pair up two lists element-wise:

rex > map(list, [1, 2, 3], [4, 5, 6]);
[[1, 4], [2, 5], [3, 6]]

Another way to get the effect of pairing elements would be to cast the problem as an
instance of a more general function transpose. This function would understand the
representation of matrices as lists of lists, as described in the previous chapter. By giving
it a list of the two argument lists above, we get the same result, pairing of corresponding
elements in the two lists. What we have done, in terms of the matrix view, is transposed
the matrix, meaning exchanging the rows and columns in the two-dimensional
presentation. For example, the transpose of the matrix

1 2 3
4 5 6

is

1 4
2 5
3 6

Using a list of lists, the transposition example would be shown as:

rex > transpose([ [1, 2, 3], [4, 5, 6] ]);
[[1, 4], [2, 5], [3, 6]]

However, transpose is more general than a single application of map in being able to
deal with matrices with more than two rows, for example.

rex > transpose([ [1,   2,  3],
                  [4,   5,  6],
                  [7,   8,  9],
                  [10, 11, 12] ] );

[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

The effect could be achieved with a double application of map, but to do so is a little
tricky.

Exercises

1. • Give the type of function transpose.

2. •• Give the type of function mappend defined earlier.
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3.12 Predicates

By a predicate, we mean a function to be used for discrimination, specifically in
determining whether its arguments have a certain property or do not. Here we will use 1
(representing true) to indicate that an argument has the property, and 0 (also called false)
otherwise, although other pairs of values are also possible, such as {yes, no}, {red,
black}, etc. The arity of a predicate is the number of arguments it takes.

A simple example is the 2-ary predicate that we might call less, of two arguments, for
example less(3, 5) == 1, less(4, 2) == 0, etc. Informally, less(x, y) is 1
whenever x is less than y, and 0 otherwise. We are used to seeing this predicate in infix
form (with the symbol < between the arguments), i.e. x < y instead of less(x, y). We
could also use the symbol < instead of the name less in our discussion. Actually this is
the name by which rex knows the predicate.

rex > map(<, [1, 2, 4, 8], [2, 3, 4, 5]);
[1, 1, 0, 0]

When an argument combination makes a predicate true, we say that the combination
satisfies the predicate. This is for convenience in discourse.

Some functions built into rex expect predicates as arguments. An example is the function
some: if P is a predicate and L is a list, then some(P, L), returns 1 if some element of list
L satisfies predicate P, and 0 otherwise. For example, is_prime is a predicate that gives
the value 1 exactly if its argument is a prime number (a number that has no natural
number divisors other than 1 and itself). We can ask whether any member of a list is
prime using some in combination with is_prime. For example:

rex > some(is_prime, [4, 5, 6]);
1

rex > some(is_prime, [4, 6, 8, 10]);
0

Here 5 is the only prime. Note that some itself is a predicate. It would be called a higher-
order predicate, because it takes a predicate as an argument. It could also be called a
quantifier, since it is related to a concept in logic with that name. We shall discuss
quantifiers further in a later chapter. A related quantifier is called all. The expression
all(P, L) returns 1 iff all elements of L satisfy P. For example:

rex > all(is_prime, [2, 3, 5, 7]);
1

Often we want to know more than just whether some element of a list satisfies a predicate
P; we want to know the identity of those elements. To accomplish this, we can use the
predicate keep. The expression keep(P, L) returns the list of those elements of L that
satisfy P, in the order in which they occur in L. For example:
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rex > keep(is_prime, [2, 3, 4, 5, 6, 7, 8, 9]);
[2, 3, 5, 7]

Note that if sets are represented as lists, keep  gives a facility like set selection in
mathematics.

{x ∈  S | P(x) }

(read “the set of x in S such that P(X) is true”) is analogous to:

keep(P, S)

where we are representing the set S as a list. Function keep gives us a primitive database
search facility: the list  could be a list of lists representing records of some kind. Then
keep can be used to select records with a specific property. For example, suppose our
database records have the form

[Employee, Manager, Salary, Department]

with an example database being:

DB = [ ["Jones",   "Smith", 25000, "Development"],
       ["Thomas",  "Smith", 30000, "Development"],
       ["Simpson", "Smith", 29000, "Development"],
       ["Smith",   "Evans", 45000, "Development"]];

Then to pose the query “What records correspond to employees managed by Smith with a
salary more than 25000, we could ask rex:

rex > keep((Record) => second(Record) == "Smith"
                      && third(Record) > 25000, DB);

[[Thomas, Smith, 30000, Development],
 [Simpson, Smith, 29000, Development]]

This could be made prettier by using pattern matching, however we have not yet
introduced pattern matching in the context of anonymous functions and don’t wish to
digress to do so at this point.

The complementary predicate to keep is called drop. The expression drop(P, L)
returns the list of elements in L that do not satisfy P:

rex > drop(is_prime, [2, 3, 4, 5, 6, 7, 8, 9]);
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[4, 6, 8, 9]

Sometimes we are interested in the first occurrence of an element satisfying a particular
predicate, and might make use of the other occurrences subsequently. The predicate find
gives us the suffix of list L beginning with the first occurrence of an element that satisfies
P. If there are no such elements, then it will give us the empty list:

rex > find(is_prime, [4, 6, 8, 11, 12]);
[11, 12]

rex > find(is_prime, [12, 14]);
[ ]

The predicate find_indices gives us a list of the indices of all elements in a list which
satisfy a given predicate:

rex > find_indices(is_prime, range(1, 20));
[0, 1, 2, 4, 6, 10, 12, 16, 18]

rex > find_indices(is_prime, range(24, 28));
[ ]

Exercises

1. • Suppose L is a list of lists. Present an expression that will return the lists of elements
in L having length greater than 5.

2. ••• Present as many functional identities that you can among the functions keep,
find_indices, map, append, and reverse, excluding those presented in earlier
exercises.

3. ••• Show how to use keep and map in combination to define a function gather that
creates a list of second elements corresponding to a given first element in an
association list. For example,

rex > gather(3, [[1, "a"], [2, "b"], [3, "c"], [1, "d"],
                 [3, "e"], [3, "f"], [2, "g"], [1, "h"]]);
[c, e, f]

4. ••• Then define a second version of gather that gathers the second components of all
elements of an association list together:

rex > gather ([[1, "a"], [2, "b"], [3, "c"], [1, "d"],
             [3, "e"], [3, "f"], [2, "g"], [1, "h"]]);
[[1, a, d, h], [2, b, g], [3, c, e, f]]
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3.13 Generalized Sorting

A variation on the function sort has an additional argument, which is expected to be a
binary predicate. This predicate specifies the comparison between two elements to be
used in sorting. For example, to sort a list in reverse order:

rex > sort(>, [6, 1, 3, 2, 7, 4, 5]);
[7, 6, 5, 4, 3, 2, 1]

The ability to specify the comparison predicate is useful for specialized sorting. For
example, if we have a list of lists of the form

[Person, Age]

and wish to sort this list by age, rather than lexicographically, we could supply a
predicate that compares second elements of lists only:

(L, M) => second(L) < second(M).

Let’s try this:

rex > Data =
           [["John", 25], ["Mary", 24], ["Tim", 21], ["Susan", 18]];
1

rex > sort((L, M) => second(L) < second(M), Data);
[[Susan, 18], [Tim, 21], [Mary, 24], [John, 25]]

In the next chapter, we will show some details for how lists can be sorted.

3.14 Reducing Lists

By reducing a list, we have in mind a higher-order function in a spirit similar to map
introduced earlier. As with map, there are many occasions where we need to produce a
single value that results from applying a binary function (i.e. 2-argument function, not be
confused with binary relation or binary number representation introduced earlier) to
elements of a list. Examples of reducing include adding up the elements in a list,
multiplying the elements of a list, etc. In abstract terms, each of these would be
considered reducing the list by a different binary operation.

For completeness, we need to say what it means to reduce the empty list. Typically
reducing the empty list will depend on the operator being used. It is common to choose
the mathematical unit of the operation, if it exists, for the value of reducing the empty
list. For example, the sum of the empty list is 0 while the product is 1. The defining
characteristic of the unit is that when another value is combined with the unit using the
binary operator, the result is that other value:
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For any number x:

0 + x == x

1 * x == x

The function reduce performs reductions based on the binary operator, the unit or other
base value, and the list to be reduced:

rex > r = range(1, 10);
1

rex > r;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

rex > reduce(+, 0, r);
55

That is, 55 is the sum of the natural numbers from 1 to 10.

rex > reduce(*, 1, r);
3628800

That is, 3628800 is the product of the natural numbers from 1 to 10.

Suppose we wished to create a single list out of the elements present in a list of lists. For
two lists, the function that does this is called append:

rex > append([1, 2, 3], [4, 5]);
[1, 2, 3, 4, 5]

For a list of lists, we can use the higher-order function reduce with append as its
argument. However, we have to decide what the unit for append is. We are looking for a
value U such that for any list L

append(U, L) == L

That value is none other than the null list [ ]. So to append together an arbitrary list of
lists L, we can use

reduce(append, [ ], L)

For example,

rex > reduce(append, [ ], [ [1, 2], [3, 4, 5], [ ], [6]] );
[1, 2, 3, 4, 5, 6]

Actually there are at least two different ways to reduce a list: since the operator operates
on only two things at a time, we can group pairs starting from the right or from the left.
Some languages make this distinction by providing two functions, foldl and foldr, with
the same argument types as reduce. For example, if the operator is +, then



84 High-Level Functional Programming

foldl(+, 0, [x0, x1, x2, x3, x4])

evaluates in the form

((((0 + x0)  + x1) + x2) + x3) + x4

whereas

foldr(+, 0, [x0, x1, x2, x3, x4])

evaluates in the form

x0 + (x1 + (x2 + (x3 + (x4 + 0))))

We can show this idea with rex by inventing a “symbolic” operator op that displays its
arguments:

rex > op(X, Y) = concat("op(", X, ",", Y, ")");
1

rex > foldl(op, "unit", ["x0", "x1", "x2", "x3", "x4"]);
op(op(op(op(op(unit,x0),x1),x2),x3),x4)

rex > foldr(op, "unit", ["x0", "x1", "x2", "x3", "x4"]);
op(x0,op(x1,op(x2,op(x3,op(x4,unit)))))

Note that the base value in this example is not the unit for the operator.

Currently, rex uses the foldl version for reduce, but this is implementation-defined. For
many typical uses, the operator is associative, in which case it does not matter which
version is used. If it does matter, then one should use the more specific functions.

Exercises

1. •• Suppose we wish to regard lists of numbers as vectors. The inner product of two
vectors is the sum of the products of the elements taken element-wise. For example,
the “inner product” of [2, 5, 7], [3, 2, 8] is 2*3 + 5*2 + 7*8 ==> 72. Express
an equation for the function inner_product in terms of map and reduce.

2. • Show that the rex predicate some can be derived from keep.

3. •• Suppose that P is a 1-ary predicate and L is a list. Argue that

some(P, L) == !all((X) => !P(X), L)

In other words, P is satisfied by some element of L if, and only if, the negation of
P is not satisfied by all elements of L.

4. •• Show that the rex predicate drop can be derived from keep.
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5. •• Using reduce, construct a version of compose_list that composes an arbitrary
list of functions. An example of compose_list is:

compose_list([(A)=>A*A, (A)=>A+1, (A)=>A-5])(10) ==> 36

Hint:  What is the appropriate unit for function composition?

6. •• Which of the following expressions is of the proper type to reproduce its third
argument list L?

a. foldl(cons, [ ], L)
b. foldr(cons, [ ], L)

3.15 Sequences as Functions

In computer science, it is important to be aware of the following fact:

Every list can be viewed as a partial function on the domain of natural numbers
(0, 1, 2, 3, ...).

When the list is infinite, this partial function is a function.

That is, when we deal with a list [x
0
, x

1
, x

2
, ... ] we can think of this as the following

function represented as a list of pairs:

 [[0, x
0
], [1, x

1
], [2, x

2
], ... ]

In the case that the list is finite, of length N, this becomes a partial function on the natural
numbers, but a total function on the domain {0, 1, ...., N-1}.

This connection will become more important in subsequent chapters when we consider
arrays, a particular sequence representation that can also be modeled as a function. The
thing that it is important to keep in mind is that if we need to deal with functions on the
natural numbers, we can equivalently deal with sequences (lists, arrays, etc.).

In rex, special accommodation is made for this idea, namely a sequence can be applied
as if it were a function. For example, if x denotes the sequence [0, 1, 4, 9, 16, 25, ....] then
x(2) (x applied to 2) is 4, x(3) is 9, etc. Moreover, rex sequences need not be only lists;
they can also be arrays. An array applied to an argument gives the effect of array
indexing.

One way to build an array in rex is to just give the elements of the array to the function
array:
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array(a0, a1, ...., an-1)

(The function array has an arbitrary number of arguments.)  Another way is to use the
function make_array. The latter takes two arguments, a function, say f, and a natural
number, say n, and gives the effect of

array(f(0), f(1), ...., f(n-1))

One reason we might prefer such an array to a function itself is to avoid re-evaluating the
function at the same argument multiple times. Once the function values are "cached" in
the array, we can access them arbitrarily many times without recomputing.

Array access is preferred over list access for reasons of efficiency. For arrays, we can get
to any element in constant time. For lists, the computer has to "count up" to the
appropriate element. This takes time proportional to the index argument value. For this
reason, we emphasize the following:

Sequencing through a list L by repeated indexing L(i), L(i+1), L(i+2),
... is to be avoided, for reasons of efficiency.

We already know better ways to do this (using the list decomposition operators).

Exercises

1. ••• Construct a function that composes two functions represented as association lists.
For example, the following shows the association list form of a composition:

    [ [0, 0], [1, 3], [2, 2], [3, 3] ]
o   [ [0, 3], [1, 2], [2, 1], [3, 0] ]
==> [ [0, 3], [1, 2], [2, 3], [3, 0] ]

(Hint: Use map.)

2. ••• Construct a function that composes two functions represented as lists-as-functions,
for example:

[0, 3, 2, 3] o [3, 2, 1, 0] ==> [3, 2, 3, 0]

(Hint: Use map.)

3.16 Solving Complex Problems using Functions

Most computational problems can be expressed in the form of implementing some kind
of function, whether or not functional programming is used as the implementation
method. In this section, we indicate how functions can provide a way of thinking about
decomposing a problem, to arrive at an eventual solution.
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As we already observed, functions have the attractive property closure under
composition: composing two functions gives a function. Inductively, composing any
number of functions will give a function. In solving problems, we want to reverse the
composition process:

Given a specification of a function to be implemented, find simpler
functions that can be composed to equal the goal function.

By continuing this process of decomposing functions into compositions of simpler ones,
we may arrive at some functions that we can use that are already implemented. There
may be some we still have to implement, either by further decomposition or by low-level
methods, as described in the next chapter.

A Very Simple Example

Implement a function that, with a list of words as input, produces a list that is sorted in
alphabetical order and from which all duplicates have been removed. Our goal function
can be decomposed into uses of two functions: sort and remove_duplicates:

goal(L) = remove_duplicates(sort(L));

If we were working in rex, then those two functions are built-in, and we'd be done.
Alternatively, we could set out to implement those functions using low-level methods.

An Example Using Directed Graphs

Consider the problem of determining whether a graph is acyclic (has no cycles). Assume
that the graph is given as a list of pairs of nodes.

Examples of an acyclic vs. a cyclic graph is shown below:

1

3

6

4

5

2

1

3

6

4

5

2

Figure 32: Acyclic vs. cyclic directed graphs
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We'd like to devise a function by composing functions that have been discussed thus far.
This function, call it is_acyclic, will take a list of pairs of nodes as an argument and
return a 1 if the graph is acyclic, or a 0 otherwise.

Here's the idea we'll use in devising the function:

If a graph is acyclic, then it must have at least one leaf.

A leaf is defined to be a node with no targets (also sometimes called a “sink”). So if the
graph has no leaf, we immediately know it is not acyclic. However, a graph can have a
leaf and still be cyclic. For example, in the rightmost (cyclic) graph above, node 3 is a
leaf. The second idea we'll use is:

Any leaf and attached arcs can be removed without affecting whether the
graph is acyclic or not.

Removing a leaf may produce new leaves in the resulting graph. For example, in the
leftmost (acyclic) graph above, node 3 is a leaf. When it is removed, node 6 becomes a
leaf.

The overall idea is this:

Starting with the given graph, repeat the following process as much as
possible:

Remove any leaf and its connected arcs.

There are two ways in which this process can terminate:

1. All nodes have been eliminated, or

2. There are still nodes, but no more leaves.

In case 1, our conclusion is that the original graph was acyclic. In case 2, it was not. In
fact, in case 2 we know that a cycle in the remaining graph exists and it is also a cycle of
the original graph.

We now concentrate on presenting these ideas using functions. As a running example,
we'll use the graph below, the representation of which is the following list:

[ [1, 2], [2, 3], [2, 4], [4, 5], [6, 3], [4, 6], [5, 6] ]
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1

3

6

4

5

2

Figure 33: An acyclic graph for discussion

First we need a function that can determine whether there is a leaf. By definition, a leaf is
a node with no arcs leaving it. A good place to start would seem to be devising a function
that can determine whether a given node of a graph is a leaf, then iterate that function
over the entire set of nodes. The following function is proposed:

is_leaf(Node, Graph) =

    no( (Pair) => first(Pair) == Node, Graph );

The function no applies its first argument, a predicate, to a list. If there is an element in
the list satisfying the predicate, then there is a leaf. In this case, the predicate is given by
the anonymous function

(Pair) => first(Pair) == Node

that asks the question: is Node the first element of Pair?  The function no asks this
question for each element of the list, stopping with 1 when a leaf is found, or returning 0
if no leaf is found.

On our example graph, suppose we try this function with arguments 3 and 4 in turn:

rex > graph = [ [1, 2], [2, 3], [2, 4], [4, 5],
    [6, 3], [4, 6], [5, 6] ];

1

rex > is_leaf(3, graph);
1

rex > is_leaf(4, graph);
0

Now let's use the is_leaf function to return a leaf in the graph, if there is one. Define
find_leaf as follows:
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find_leaf(Graph) =

    find((Node) => is_leaf(Node, Graph), nodes(Graph));

Here we are assuming that nodes(Graph) gives a list of all nodes in the graph. We're
going to leave the implementation of this function as an exercise. The result of
find_leaf will be a list beginning with the first leaf found. Only the first element of this
list is really wanted, so we will use first to get that element.

Let's try find_leaf on the example graph:

rex > find_leaf(graph);
[3, 4, 5, 6]

indicating that 3 is a leaf, since it is the first element of a non-empty list. We can thus
incorporate function find_leaf into one that tests whether there is a leaf:

no_leaf(Graph) = find_leaf(Graph) == [];

To remove a known leaf from a graph represented as a list of pairs, we must drop all pairs
with the leaf as second element (there are no pairs with the leaf as first element, by
definition of "leaf"). Here we use the function drop to do the work:

remove_leaf(Leaf, Graph) =

    drop((Pair) => second(Pair) == Leaf, Graph);

Similar to uses of no and find, the first argument of drop is a predicate. The resulting list
is like the original list Graph, but with all pairs satisfying the predicate removed.

To test remove_leaf in action:

rex > remove_leaf(3, graph);
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

Now we work this into a function that finds a leaf and removes it. We'll use the same
name, but give the new function just one argument. By the way, here's where we apply
first to the result of find:

remove_leaf(Graph) =

    remove_leaf(first(find_leaf(Graph)), Graph);

This function in action is exemplified by:

rex > remove_leaf(graph);
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

Now we have one issue remaining: the iteration of leaf removal until we get to a stage in
which either the graph is empty or no leaf exists. The following scenario indicates what
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we'd like to have happen: We create new graphs as long as no_leaf is false, each time
applying remove_leaf to get the next graph in the sequence. The reader is encouraged to
trace the steps on a directed graph diagram.

rex > graph1;
[[1, 2], [2, 3], [2, 4], [4, 5], [6, 3], [4, 6], [5, 6]]

rex > no_leaf(graph1);
0

rex > graph2 = remove_leaf(graph1);
1

rex > graph2;
[[1, 2], [2, 4], [4, 5], [4, 6], [5, 6]]

rex > no_leaf(graph2);
0

rex > graph3 = remove_leaf(graph2);
1

rex > graph3;
[[1, 2], [2, 4], [4, 5]]

rex > no_leaf(graph3);
0

rex > graph4 = remove_leaf(graph3);
1

rex > graph4;
[[1, 2], [2, 4]]

rex > no_leaf(graph4);
0

rex > graph5 = remove_leaf(graph4);
1

rex > graph5;
[[1, 2]]

rex > no_leaf(graph5);
0

rex > graph6 = remove_leaf(graph5);
1

rex > no_leaf(graph6);
1

rex > graph6;
[]

The fact that the final graph is [ ] indicates that the original graph was acyclic.
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Of course it is not sufficient to apply the transformations manually as we have done; we
need to automate this iterative process using a function. Let's postulate a function to do
the iteration, since we've not introduced one up until now:

iterate(Item, Action, Test)

will behave as follows. If Test(Item) is 1, then iteration stops and Item is returned.
Otherwise, iteration continues with the result being

iterate(Action(Item), Action, Test).

In other words, Action is applied to Item, and iteration continues. To accomplish our
overall acyclic test then, we would use:

is_acyclic(Graph) =

    iterate(Graph, remove_leaf, no_leaf) == [];

which reads: "iterate the function remove_leaf, starting with Graph, until Graph is either
empty or has no leaf, applying Action at each step to get a new Graph;. If the result is
empty, then Graph  is acyclic, otherwise it is not."  In other words, the functional
description succinctly captures our algorithm.

To demonstrate it on two similar test cases:

rex > is_acyclic([ [1, 2], [2, 3], [2, 4], [4, 5],
                   [6, 3], [4, 6], [5, 6] ]);
1

rex > is_acyclic([ [1, 2], [2, 3], [2, 4], [4, 5],
                   [6, 3], [6, 4], [5, 6] ]);
0

A Game-Playing Example

In this example, we devise a function that plays a version of the game of nim: There are
two players and a list of positive integers. Each integer can be thought of as representing
a pile of tokens. A player’s turn consists of selecting one of the piles and removing some
of the tokens from the pile. This results in a new list. If the player removes all of the
tokens, then that pile is no longer in the list. On each turn, only one pile changes or is
removed. Two players alternate turns and the one who takes the last pile wins.

Example:  The current set of piles is [2, 3, 4, 1, 5]. The first player removes 1 from the
pile of 5, leaving [2, 3, 4, 1, 4]. The second player removes all of the pile of 4, leaving
[2, 3, 1, 4]. The first player does the same, leaving [2, 3, 1]. The second player takes 1
from the pile of 3, leaving [2, 2, 1]. The first player takes the pile of 1, leaving [2, 2]. The
second player takes one from the first pile, leaving [1, 2]. The first player takes one from
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the second pile, leaving [1, 1]. The second player takes one of the piles, leaving [1]. The
first player takes the remaining pile and wins.

There is a strategy for playing this form of nim. It is expressed using the concept of nim
sum, which we will represent by ⊕ . The nim sum of two numbers is formed by adding
their binary representations column-wise without carrying. For example, 3 ⊕  5 = 6, since

3 = 0 1 1
5          = 1 0 1
6 = 1 1 0

The nim sum of more than two numbers is just the nim sum of the numbers taken
pairwise.

The strategy to win this form of nim is: Give your opponent a list with a nim-sum of 0.
This is possible when you are given a list with a non-zero nim sum, and only then. Since
a random list is more likely to have a non-zero nim sum than a zero one, you have a good
chance of winning, especially if you start first and know this strategy.

To see why it is possible to convert a non-zero nim sum list to a zero nim sum list by
removing tokens from one pile only, consider how that sum got the way it is. It has a
high-order 1 in its binary representation. The only way it could get this 1 is that there is a
number in the list with a 1 in that position. (There could be multiple such numbers, but
we know there will be an odd number of them.)  Given s as the nim sum of the list, we
can find a number n with a 1 in that high-order position. If we consider n ⊕  s, that high-
order 1 is added to the 1 in s, to give a number with a 0 where there was a 1. Thus this
number is less than n . Therefore, we can take away a number of tokens, which reduces n
to n ⊕  s. For example, if n were 5 and s were 6, then we want to leave 5 ⊕  6 = 3. So
what really counts is what we leave, and what we take is determined by that.

To see why the strategy works, note that if a player is given a non-empty list with a nim
sum of 0, the player cannot both remove some tokens and leave the sum at 0. To see this,
suppose that the player changes a pile with n tokens to one with m tokens, m < n. The nim
sum of the original list is n ⊕  r, where r stands for the nim sum of the remainder of the
piles. The new nim sum is m ⊕  r. Consider the sum n ⊕  m ⊕  r. This sum is equal to m ⊕  n
⊕  r, which is equal to m, since n ⊕  r is 0. So the new nim sum can only be 0 if he leaves
0 in some pile, i.e. he takes the entire pile. But taking a whole pile of size n is equivalent
to nim-adding n to the nim sum, since r is the new sum and using the associative property
for ⊕:

n ⊕  (n ⊕  r) == (n ⊕  n) ⊕  r
  == r

since
(n ⊕  r) is the original nim sum, assumed to be 0.
(n ⊕  n) == 0 is a property of ⊕
(0 ⊕  r) == r is a property of ⊕
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The only way nim-adding n to 0 can produce 0 is if n itself is 0, which is contradictory.

By always handing over a list with a sum of zero, a player is guaranteed to get back a list
with a non-zero sum, up until the point where there is one pile left, which he takes and
wins the game.

Now let's see how to make a good nim player as a function play_nim. Assume that the
argument to our function is a non-empty list with a nim sum of non-zero. Then the player
would decompose the problem into:

Find the nim sum of the list, call it s.

Find a pile to which s can be nim-added to produce a number less than s. Make a
new list reflecting that change.

 We can show this as:

play_nim(L) = make_new_list(nim_sum(L), L);

We can construct nim_sum by using reduce and a function that makes the nim sum of
two numbers. Let's call this function xor. Then we have

nim_sum(L) = reduce(xor, 0, L);

The value of make_new_list(s, L) must make a list by replacing the first element n of
L such that s ⊕  n < n  with the value s ⊕  n. We don't have a function like this in our
repertoire just yet, so let's postulate one:

change_first(P, F, L)

creates a new list from L by finding the first element satisfying predicate P and applying
the function F to it, leaving other elements unchanged. We will have to appeal to the next
chapter to see how to go further with change_first. We also need to drop the element in
the case that it is 0. This can be done by our function drop:

make_new_list(s, L) =
  drop((n) => n == 0,
       change_first((n) => (xor(s, n) < n), (n) => xor(s, n), L));

So we have reduced the original problem to that of providing xor and change_first.

To complete our nim player, we have to provide an action for the case it is given a list
with a non-zero sum. How to provide such alternatives will be discussed in the next
chapter.
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Exercises

1. •• Develop an implementation of the function nodes that returns the list of nodes of a
graph represented as a list of pairs.

2. ••• Develop an implementation of the function xor used in the nim example.

3.17 Conclusion

This chapter has shown how information structures can be transformed using functions.
Such techniques provide a powerful collection of viewpoints, even if we do not use the
tools exclusively. The language rex was used to illustrate the concepts, however the ideas
carry forward into many varieties of language, functional and otherwise. Later on, for
example, we show how to express them in Java.

3.18 Chapter Review

Define the following concepts or terms:

acyclic graph test
anonymous function
assoc function
association list
composition of functions
definition by enumeration
definition by equation
higher-order function
lists as functions
leaf of a graph
map function
mappend function
nim sum
pipeline principle
predicate
reduce function
satisfy



4. Low-Level Functional Programming

4.1 Introduction

In the previous chapter, we saw how to use various functions over information structures
defined in chapter 2. The emphasis in the previous chapter was to develop high-level
thinking about working with such structures. The functions with which we worked were
assumed to be built into rex. However large a repertoire of functions is provided in a
functional language, there will usually be some things that we’d like to do that can’t be
captured in a manner that is as readable or as efficient as we might like. In the current
chapter, we show how to write custom definitions of functions.

4.2 List-matching

Now we illustrate list decomposition using matching within a definition. Consider the
form

[F | R]

(read F “followed by” R). This form represents a pattern or template that matches all, and
only, non-empty lists. The idea is that identifier F matches the first of the list and
identifier R matches the rest of the list. We can test this by trying a definition:

rex > [F | R] = [1, 2, 3];
1

The 1 (for true) indicates that the definition was successful. We can check that identifiers
F and R are now bound appropriately, F to the first element of the list and R to the rest of
the list:

rex > F;
1

rex > R;
[2, 3]

A definition of the form

identifier = expression;

will always succeed, but it is possible for a definition involving list matching to fail. For
example,

rex > [F | R] = [ ];
0
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Here the definition fails because we attempt to match [F | R] against the empty list.
Such a match is impossible, because the empty list has no elements, and therefore no first
element. In a similar way, an attempt to apply functions first or rest to the empty list
results in an error:

rex > first([ ]);
*** warning: can't select from null list [ ]

rex > rest([ ]);
*** warning: can't take rest of null list [ ]

Extended Matching

The list-matching notation may be extended to extract an arbitrary number of initial
elements of a list. For example, to extract the first, second, and third elements:

rex > [F, S, T | R] = [1, 4, 9, 16, 25, 36];
1

As before, the 1 indicates the definition succeeded. We can check that the correct
identifications were made:

rex > F;
1

rex > S;
4

rex > T;
9

This time, however, R is bound to the portion of the list after the first three elements:

rex > R;
[16, 25, 36]

When we match using the vertical bar | we can do so only if it is the last punctuation
item in a match template. For example, the following attempted match is syntactically ill-
formed.

[F | R, S, T] = [1, 3, 9, 16];

rex would report this as a syntax error. On the other hand, the bar would not be used if we
wanted to match a list with an exact number of elements:

rex > [F, S, T] = [1, 3, 9];
1
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We must get the number right however, or the match will fail.

rex > [F, S, T, X] = [1, 3, 9];
0

Also, using an identifier twice with the same left-hand side will fail unless it happens that
both occurrences would get bound to the same value.

rex > [F, F, S] = [1, 3, 9];
0

The above match failed because it is ambiguous whether F is getting bound to 1 or 3.

rex > [F, F, S] = [1, 1, 9];
1

The above match succeeded despite there being two definitions of F, because both
definitions are the same. This style is nonetheless regarded as awkward and should be
avoided.

We mention these points not because they are so essential in what we will be doing, but
because they help further emphasize that = is definition, not assignment. The difference is
admittedly subtle: assignment presupposes a memory location containing a value;
definition merely identifies a value with an identifier, but there is not necessarily any
memory location. So assignment can be treated as definition, if desired, by making sure
the location has a value before any use of its value and by not re-assigning the value once
established.

Matching in Lists of Lists

The idea of binding variables by matching a template to a list extends naturally to lists of
lists. For example, consider the template

[ [A, B] | X ]

This would match a list of at least one element, the first element of which is a list of
exactly two elements. In other words, the only lists it would fail to match would be the
empty list and a list that did not begin with an element that is a pair. Let’s test this idea
using rex:

rex > [ [A, B] | X] = [ [1, 2], 3];
1

rex > A;
1

rex > B;
2

rex > X;
[3]
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rex > [ [A, B] | X] = [1, 2, 3];
0

We see that the match failed in the last attempt; the list does not begin with an element
that is a pair.

Exercises

5. •• For all possible pairs of pattern vs. list below, which patterns match which lists,
and what bindings are defined as a result of a successful match? For those pairs that
don't match, indicate why.

patterns lists

[F | R] [1, 2, 3]

[F, S | R] [1, [2, 3] ]

[F, S, T] [ [1], 2, 3]

[ [F], S] [1, 2 | [3] ]

[ [F, S] | R] [ [1, 2], 3]

[F, S, T | R] [1, 2, [3, 4] ]

6. •• For the patterns above, give a word description for the lists that they match.

7. ••• Give an algorithm for determining whether a pattern matches a list. It should be
something like the equality checking algorithm.

4.3 Single-List Inductive Definitions

In chapter 2 we mentioned the fundamental list-dichotomy: A list is either:

• empty, i.e. has no elements, or

• non-empty, i.e. has a first element and a rest

A great many, but not all, low-level definitions are structured according to this
dichotomy. In defining a function that takes a list as argument, we:

• Define what the function does on the empty list.

• Define what the function does on a typical non-empty list.
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Typically in the second case, the non-empty list is expressed in terms of its first and rest:
[F | R]. The definition in the second case would generally use the function's value for
the argument R to define the value for argument the larger argument [F | R]. This type
of definition is called inductive or recursive. The difference between these two terms is
primarily one of viewpoint. In inductive definitions, we think in terms of building up
from definitions on simpler structures to definitions on the more complex ones, while in
recursive definitions, we think in terms of decomposing a complex structure into simpler
ones.

Let’s consider the definition of the function length that returns the length of its list
argument. Using the list-dichotomy, we must say what length does with an empty list.
The obvious answer is to return 0. We express this as a rewrite rule:

length( [ ] ) => 0;

It is called a rewrite rule because whenever we see length( [ ] ) we can just as well
rewrite it as 0. The symbol

=>

is read "rewrites as". Thanks to the idea of referential transparency, we are evaluating the
expression for a value, not for an effect. This rule is called the basis of the induction,
since it does not convert to an expression involving length.

The other part of the dichotomy is a non-empty list. We express this using the generic
form [F | R]. What is the length of a list of this form. The answer is it is 1 more than the
length of R. So we give a second rule:

length( [F | R] ) => length(R) + 1;

Again this is a rewrite rule because whenever we see length(L) where L is a non-empty
list, we can effectively replace it with length(R) + 1 where R is the rest of the list.
Because this rule appeals to the definition of length for its final value, it is called the
induction rule rather than the basis.

For example, length([2, 3, 5, 7]) is replaceable with length([3, 5, 7]) + 1. By
continuing this replacement process, using one of the two rules each time, and evaluating
the final result as a sum, we can a number that is the actual length of the list. This result is
called irreducible, because it contains no further function applications that could be
rewritten.

   length([2, 3, 5, 7])
=> (length([3, 5, 7])             + 1)
=> ((length([5, 7])          + 1) + 1)
=> (((length([7])       + 1) + 1) + 1)
=> ((((length([ ]) + 1) + 1) + 1) + 1)
=> ((((          0 + 1) + 1) + 1) + 1)
=> (((               1  + 1) + 1) + 1)
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=> ((                     2  + 1) + 1)
=> (                           3  + 1)
=>                                  4

Here we have assumed that the + operator is grouped from left to right, so we can only
rewrite the + expressions when a numeric value for the left argument is known. In
evaluating the + expressions, we are assuming very simple properties. These could be
expressed more rigorously themselves using rewrite rules.

Sometimes we do not wish to see the rewrite sequence in this much detail. We use the
symbol

==>

to represent a collapsed sequence of intermediate steps. As a relation, ==> represents the
transitive closure of the relation =>, as described earlier. For example, we could outline
the major plateaus in the above derivation as:

    length([2, 3, 5, 7])

==> ((((length([ ]) + 1) + 1) + 1) + 1)

=>  ((((          0 + 1) + 1) + 1) + 1)

==> 4

Now let’s try another low-level definition, this time for the function append. Recall that
append takes two arguments, both lists, and produces the result of appending the second
argument to the first. However, in the spirit of functional programming, neither argument
is modified, so the term append is slightly misleading; nothing gets appended to the first
list in place; instead a new list is created. For example,

append([1, 2, 3], [4, 5]) ==> [1, 2, 3, 4, 5]

We are in a section on single-list definitions, yet append has two arguments. What gives?
Regardless of the number of arguments a function has, we should first look for the
possibility of using only one of the list arguments on which to apply the fundamental list
dichotomy. This argument, if it exists, is called the inductive argument. In the case of
append, the first argument rather than the second turns out to be the right choice for the
inductive one. Let us see why.

To append a list M to an empty list gives the list M. This is expressible by the a rule:

append( [ ], M ) => M;

To append a list M to non-empty list, one that matches [A | L] say, we observe that the
first element of the result list must be the binding of A. Furthermore the rest of the result
can be obtained by appending M to the shorter list L, which is the rest of the original list.
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This works out perfectly, in that the parts we get by decomposing the original list are
exactly what we need to construct the new one.

append( [A | L], M ) => [A | append(L, M)];

We can check this by a specific example: In evaluating

append( [1, 2, 3], [4, 5] )

we see how the arguments, or actual parameters, of the expression match up to the
formal parameters of the rule:

                 actual parameters
         ↓           ↓
append( [1,  2, 3], [4, 5] )
         ↑   ↑       ↑
         ↓   ↓       ↓
append( [A | L],     M     ) => [A | append(L, M)];
         ↑   ↑       ↑

    formal parameters

Formal parameter A matches the first element 1 of list [1, 2, 3]. Formal parameter L
matches the rest of that list, [2, 3]. Formal parameter M matches the entire list [4, 5].
When we rewrite, or replace the expression with the right-hand side of the rule, the
formal parameters carry their values along and the expression that results is constructed
from those values:

[A | append(L, M)]

becomes

[1 | append([2, 3], [4, 5])]

simply by substituting the value of each variable for the value itself. In the computer
science literature, this type of rewriting is sometimes called the copy rule or beta
reduction. Rewriting is certainly more complicated to describe than it is to use. Once we
have worked through a number of examples, its use should come fairly naturally. Note
that the idea of matching formal and actual parameters is not very language specific;
some variation of this idea occurs in most computer languages, although not all languages
support decomposing lists by pattern matching.

Continuing the above example, we are thus left with another expression containing
append. Hence another rewrite is requested, this time with a different set of actual
parameters. The process of rewriting continues until we get to apply the first rule for
append, which leaves us with no further instances of append to be rewritten.

   append([1, 2, 3], [4, 5])
=> [1 | append([2, 3], [4, 5]) ]
=> [1 | [2 | append([3], [4, 5]) ] ]
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== [1, 2 | append([3], [4, 5]) ]
=> [1, 2 | [3 | append([ ], [4, 5]) ] ]
== [1, 2, 3 | append([ ], [4, 5]) ]
=> [1, 2, 3 | [4, 5] ]
== [1, 2, 3, 4, 5]

Here the == steps just recall that these are two ways of writing equivalent expressions.
The main difference between this series of rewrites and the earlier length series is that
these construct a list from outside in, whereas length constructs a number.

What would have happened had we chose to use the second argument instead as the
induction variable?  The basis would still have been okay:

append( L, [ ] ) => L;

However, there is a snag when we get to the induction rule:

append( L, [A | M] ) => ??

There is no elegant way to use the constructs we have here to achieve the result. The
single element A does not start the desired resulting list. Being able to recognize the
correct variable for induction is a skill that will develop as we do more exercises.

A confusion often held by newcomers is the difference between the following two
expressions:

append(L, M) vs. [L | M]

The expression on the right produces a new list starting with L as an element of the result
list. This element does not have to be a list, although it could be if the result is going to be
a list of lists. In contrast, the expression on the left always needs a list for L and the
elements of L, not L itself, are elements of the result list. Now let’s see what happens if
we use the right-hand expression in place of append in one of the preceding examples.

rex > [ [2, 3, 5, 7] | [11, 13] ];
[[2, 3, 5, 7], 11, 13]

This is quite different from what append produces, a list of six elements:

rex > append( [2, 3, 5, 7], [11, 13] );
[2, 3, 5, 7, 11, 13]

4.3 Rules Defining Functions

In the previous section, we presented two rules for the function append that creates a new
list having the elements of the second argument appended to the first:
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append( [ ], M ) => M;
append( [A | L], M ) => [A | append(L, M)];

A question that is proper to ask is in what sense does a set of rules define a function?  For
the case of append, we can answer this question using the same reasoning that leads to
the construction of the rules in the first place:  append is a function on the set of all lists if
it prescribes a correct rewriting for all pairs of lists. Examination of the rules reveals that
the second argument plays a very minor role: It is never decomposed. The only thing that
is required is that it be a list, in order that the first rule make sense when that argument is
returned as the result (the result is supposed to be a list). So we can focus on the first
argument, the inductive one.

An arbitrary list is either the empty list or a non-empty list. The space of all lists is
exhausted by these two possibilities. The case of the first argument being empty is
handled by the first rule, and the other case, an infinite set of possibilities, is handled by
the second rule. This reasoning leads us to conclude that there will never be a pair of lists
for which no rule is applicable. This is certainly a good start toward defining a function.
Furthermore, for a given pair of lists, only one rule is applicable; there is never ambiguity
as to which rule to choose. So this tells we have at least a partial function.

But there is another issue in establishing that the rules give us a function. What we have
argued above is that there will always be a rule for a given pair of lists. We haven’t
shown that, once we apply the rule, the ensuing series of rewrites will always terminate.
In the case of append, here is the way to show termination: Notice that if the first rule
applies, no expression in need of rewriting is introduced. This is the basis of the
definition. In other words, for a list of length 0, the rewrite series will terminate. Next
consider the case of a non-empty first argument. We see that the length of the argument
of append on the right-hand side is one less than the length on the left-hand side, thanks
to having taken away the first element A of the first list. In other words, every application
of the second rule effectively shrinks the first argument by one, figuratively speaking
(because we are not modifying the actual argument in any way). Thus, no matter what
length we start with in that argument, it will keep shrinking as further rule applications
occur. But when it shrinks to length 0, i.e. the empty list, it can shrink no further. The
first rule then applies and rewriting terminates.

What we have just described is a narrative version of an inductive argument, or proof by
induction. More succinctly, it could be captured as follows:

Claim:
For every finite list L, append(L, M) produces a terminating sequence of
rewrites.

Proof:
(Basis):  For L being [ ], append([ ], M) generates a terminating
rewrite sequence, since there are no further rewrites according to the first
rule.
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(Induction Step): Assume that append(L, M) generates a terminating
rewrite sequence. Consider the case of an argument one longer,
append([A | L], M). According to the second rule, the continuation of
the rewriting sequence is based on the sequence for append(L, M). This
sequence terminates by assumption, therefore the sequence for
append([A | L], M) also terminates, it being one step longer.

We will not go through such proofs for most of the functions to be presented. However, it
is important that the reader get comfortable with the logic of the proof, in order to be able
to construct sound sets of rules.

4.4 Lists vs. Numbers

Some of our functions involve lists, some involve only numbers, and some, such as
length, involve combinations of both. A useful viewpoint for reasoning is that natural
number (numbers in the set {0, 1, 2, 3, …}) can be thought of as special cases of lists.
Consider an arbitrary element, say •. Then the number n can be thought of as a list of n of
these elements. For example,

0 is [ ]
1 is [•]
2 is [•, •]
3 is [•, •, •]

…
Representing numbers in this way is sometimes called the 1-adic representation. This is,
no doubt, the representation for numbers used in the stone age (think of each • as a stone).
We are not proposing a return to that age for actual calculation, but we do suggest that
this analogy provides a basis for reasoning about numbers and for analogies between
various functions. For example, if the function append is restricted to lists of stones, then
it becomes the addition function.

A very important theory, known as recursive function theory, starts out by defining
functions on natural numbers in this very way. While we do not intend to make explicit
use of recursive function theory in this book, the ideas are useful as exercises in creating
rule sets, so we pursue it briefly. Recursive function theory typically starts with a
successor function, which in list terms would be defined by one rule:

successor(L) => [• | L];

In other words, successor adds one to its argument. We can then define addition by using
successor and recursion. But rather than showing an argument lists as [A | L], we would
show it as L+1. (Since all elements of the list are the same, the identity of A is
unimportant.)  The definition of add would be presented:
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add(0, N) => N;

add(M+1, N) => add(M, N) + 1;

The M+1 on the left is another form of pattern matching available in rex, and can be
viewed as a direct translation of append specialized to lists of one type of element:

append([ ], N) => N;

append([• | M], N) => [• | append(M, N)];

On the right-hand side, the +1 indicates application of the successor function.

Reasoning about such definitions typically uses induction, in the same way we reasoned
about append. This style of definition is used to build up a repertoire of functions. For
example, having defined add, we can then define multiply:

multiply(0, N) => 0;

multiply(M+1, N) => add(multiply(M, N), N);

Reasoning that add and multiply are functions for all natural numbers is essentially the
same as reasoning that append terminates.

Defining subtraction in this way is a little tricky. If you don’t believe me, try it before
reading on. We start with a simpler function, predecessor. Informally, the predecessor
of a number is the number minus 1, but since 0 has no predecessor in the natural
numbers, we make its predecessor 0 for sake of convention and completeness. Likewise,
we define subtract, when the first argument is smaller than the second, to be 0. This is
known in the literature as proper subtraction. In the spirit of building up definitions from
nothing but successor, we can’t appeal to a comparison operator yet.

predecessor(0) => 0;

predecessor(M+1) => M;

Now we can define subtract using the second argument as an induction variable:

subtract(M, 0) => M;

subtract(M, N+1) => subtract(predecessor(M), N);

Actually, we could use a different set of rules and bypass predecessor:

subtract(M, 0) => M;

subtract(0, N) => 0;

subtract(M+1, N+1) => subtract(M, N);
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However, this rule set is trickier since it uses two induction variables simultaneously.
Doing so can be more error-prone unless you have a very clear idea of what you are
doing.

Note also the following point about the second set of subtract rules: This is our first set of
rules where there was overlap between the applicability of the rules. In particular,
subtract(0, 0) could invoke both the second and the first rules. Fortunately in the
present case, the result is the same either way. In order to avoid possible
misinterpretations in the future, and to actually make rule definitions simpler, we adopt
the following convention:

rex rule-ordering convention:

In rex, the rules are tried in top-to-bottom order. The first applicable rule
is used, and subsequent rules, while they might have been applicable on
their own, are not considered if an earlier rule applies.

As a simple example where this makes a difference, consider defining a function
is_zero that tests whether its argument is 0:

is_zero(0) => 1;
is_zero(N+1) => 0;

Under the rule-ordering convention, we could have used:

is_zero(0) => 1;
is_zero(N) => 0;

since the second rule will never be used if the argument is 0, thanks to the rule-ordering
convention. Similarly, define non_zero:

non_zero(0) => 0;
non_zero(N) => 1;

Having defined subtract, we can define less_than_or_equal (for natural numbers):

less_than_or_equal(M, N) => is_zero(subtract(M, N));

We can define equality in many ways, for example using rex’s argument matching
capabilities:

equal(M, M) => 1;
equal(M, N) => 0;

The second rule is valid only by virtue of the rule-ordering convention; two different
variables can be bound to the same value.
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If this type of matching were not available, we could still construct an equality predicate
in other ways, e.g.

equal(M, N) => non_zero(multiply(less_than_or_equal(M, N),
                                less_than_or_equal(N, M));

In other words, two numbers are equal if, and only if, each is less than or equal to the
other.

Convention:  Henceforth, we will use the typical symbols for the functions we have
defined, rather than their “spellings”, e.g. + instead of add, *  instead of multiply, <=
instead of less_than_or_equal, == instead of equal, etc. Keep in mind that the built-in
- is ordinary signed subtraction, rather than proper subtraction as defined above.

Exercises

1 • Give rules that define the function zero that invariably returns the result 0.
Similarly, show that for any number you can name, e.g. five, one_thousand,
etc., you can define a function that invariably returns that number, without
actually using the number directly in the definition.

2 •• Give rules that define the function power that raises a number to a power, using
multiply and recursion. For example, power(2, 3) would ultimately rewrite to
8.

3 •• Give an inductive argument that shows that the rules given for length establish a
function on the set of lists.

4 ••• Define rules that define the function superpower that bears the same relation to
power as power does to multiply. For example, superpower(2, 3) ==> 16 and
superpower(2, 4) ==>65536.

5 •••• Continuing in the above vein, we could define supersuperpower ,
supersupersuperpower, and so on, ad infinitum. Give rules for a three-argument
function that effectively takes the number of “super”s as a first argument and
applies the corresponding function to the remaining arguments. The function you
have defined is a version of what is commonly known as “Ackermann’s
function”.

4.5 Guarded Rules

One purpose in preferring a sequential list of rules to a single comprehensive rule is
clarity and readability. In some cases, however, clarity is best served by conditioning the
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applicability of a rule on other than the form of the arguments. The concept of a guard is
useful to provide this additional clarity. A rule is guarded if it has the form

lhs => guard ? body;

format of a guarded rule

Here guard ? body is an expression for the rhs as before. The question-mark separator is
what distinguishes this form. Both guard and body are terms that can ultimately rewrite
to values. The rule as a whole is called a guarded rule. The meaning of a guarded rule is
as follows:

The rule is considered applicable only if the arguments match as before,
and then only if the value of guard ultimately rewrites to 1 (true). In this
case the lhs rewrites to the value of body.

If the condition of applicability does not hold, then the rule is unusable and we must
appeal to later rules to rewrite a given term. Note: the rule ordering convention is still in
effect; a later rule is applied only if all previous rules don’t apply.

An example of guarded rules occurred in our first rex example, the function for testing
whether a number is prime. Here is another example.

Euclid's Algorithm

Euclid's algorithm is an algorithm for finding the greatest common divisor (gcd) of two
natural numbers. The rules are:

gcd(0, Y) => Y;
gcd(X, Y) => X <= Y ? gcd(Y-X, X);
gcd(X, Y) => gcd(Y, X);

Euclid's Algorithm

The second rule is guarded, using the <= (less than or equal) operator of rex. By
convention, the third rule, which contains no guard, is applicable only if the first two
rules are not applicable, i.e. only in the case that X is not 0 and X is greater than Y.

There are ways to speed up the computation, e.g. by using the operator % (remainder or
modulus). This amounts to repeated subtraction, in place of division.

Let us trace the rewrite behavior of these rules on a test case, gcd(18, 24). Since 18
factors into 2*3*3 and 24 factors into 2*2*2*3, we can anticipate the result will be 2*3 =
6.
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gcd(18, 24) ==>
gcd(6, 18) ==>
gcd(12, 6) ==>
gcd(6, 12) ==>
gcd(6, 6) ==>
gcd(0, 6) ==>
6

Why does Euclid’s algorithm work?  The rationale for the algorithm is based on two
observations:

The actual greatest common divisor of the two arguments never changes.

Each time one of the second or third rules is applied, one of the arguments will
soon decrease.

The first fact is due to some reasoning about division: If a number Z evenly divides both
X and Y, and X <= Y, then Z also divides Y - X. So if the first rule becomes applicable, we
see that Y is the greatest common divisor, since it is obviously the largest divisor of both
Y and 0.

The second fact may be seen from the rule structure: If X <= Y, (and X is not 0, otherwise
the first rule would have been used) then Y - X is clearly less than Y. On the other hand, if
X > Y, then, based on the third rule, the second rule will be tried with X and Y reversed.

Because one of the arguments is bound to decrease and stop at 0, we have that the term
will eventually be reduced to a case where the first rule applies, i.e. Euclid’s algorithm
always terminates.

Exercises

1 ••• Continue the development of recursive function theory by defining the following,
using guards where it is helpful:

mod(M, N)

is the remainder after dividing M by N (use the convention that mod(M, 0) is 0. (In
rex, mod(M, N) is available as M % N, also read “M modulo N”, or “M mod N”.)

div(M, N)

is the quotient obtained by dividing M by N (again with div(M, 0) defined to be
0). (In rex, div(M, N) is available as M / N.)

2 ••• Show how Euclid’s algorithm can be “sped up” if mod were available as a
primitive function.
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4.6 Conditional Expressions

Although not absolutely essential due to the rule notation, for convenience rex allows the
Java language notation for conditional expressions:

C ? A : B

is an expression that has the value A if C rewrites to a number other than 0, otherwise the
value is B. This is an extension of the guard idea, providing an immediate alternative in
case the guard is false, rather than requiring resolution through another rule. Although the
same effect can be achieved with guards and additional rules, the conditional expression
is a self-contained unit. As an example, an alternative set of rules for gcd would be

gcd(0, Y) => Y;
gcd(X, Y) => X <= Y ? gcd(Y-X, X) : gcd(Y, X);

4.7 Equations

As noted in the previous chapter, rex supports the notion of defining functions by
equations as well as rules. By an equation, we mean a single expression that captures all
cases. While it would certainly be adequate to give a single rule instead of an equation,
using an equation has a signal of finality about it: there will be no further rules defining
this function. Also, in terms of the rex implementation we provide, an equation will
execute more efficiently since there will be no pattern-matching superstructure. Finally,
the handling of equations vs. rules is different in the interactive environment provided: If
an equation for a function is re-entered, it will be taken as a re-definition, whereas if a
rule for a function is re-entered, it will be taken as an additional rule, rather than as a
replacement.

Typically, conditional expressions are used to simulate what would have been separate
rules. For example, a single equation defining gcd of the previous section would be:

gcd(X, Y) = X == 0 ? Y : X <= Y ? gcd(Y-X, X) : gcd(Y, X);

4.8 Equational Guards

The rex language allows a guard to consist of an equation that binds a variable to a value
for use in the expression that follows. Such variables are used in the rhs in the same way
any lhs variable would be used. A basic equational guard takes the form:

Var = Expression,

The meaning of this equation is that Var is bound to Expression. This simple form of
equational guard always succeeds. However, equational guards that involve "matching"
might not, as will be explained momentarily.
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The main use of the simple form of equational guard above would be to give a name to
the value of a complicated expression, for one of the following purposes:

• to avoid multiple evaluations of the expression, even though its value
is used multiple times:

f(X) => Y = sqrt(X), g(Y, Y);

Here sqrt is supposed to be a function that is relatively expensive to
evaluate.

• to document the meaning of the expression by giving the variable a
descriptive name:

f(X, Y) => First_Vowel = find(vowel, X),
           g(First_Vowel, Y);

Here the expression on the rhs of the equation for First_Vowel could
have been substituted directly as the argument of g. However, then the
documentary aspect of the name would be lost.

• to redefine the scope of variable X, which gives an
argument variable a value different from the one it had in the function
call. This can be used to provide "wrappers" for expressions that we
wish to leave intact but for which we don't wish to use the given
argument variables.

f(X, Y) => X = g(X, Y), X*Y;

Here the X used in expression X*Y is not the argument X, but rather the
value of g(X, Y).

Equational guards can involve binding multiple variables in a single equation
through the use of the list notation.

[X, Y, Z] = [1, 2, 3],

is a guard that binds each of X, Y , and Z simultaneously. If the result of an
evaluation is a list, then this type of guard can be used to select elements from the
list, in the manner used in argument pattern matching:

[X, Y, Z] = g(W),

means that g(W) is expected to return a list of three elements, and the variables on
the lhs get bound to these elements. Here is one place an equational guard can



114  Low-Level Functional Programming

fail: If the list returned does not have exactly three elements. In general, a match
must be possible with the lhs and the list returned. Similarly,

[X, Y | Z] = g(W),

matches a list with at least two elements. Variable Z is bound to the list after the
first two elements.

Equational guards may also be cascaded:

lhs1 = Expression1, lhs2 = Expression2, …, lhsN = ExpressionN,

If any of the left-hand sides fails, the guard is considered to have failed, in which case rex
will try the next rule, if there is one. If there are no more rules, then the function returns a
distinguishable failure value. When other functions operate on such values, they typically
return failure values themselves.

Example – Computing mod from first principles

One way to compute the mod or remainder function is as follows:

mod(0, K) => 0;

mod(N+1, K) => mod(N, K)+1 == K ? 0 : mod(N, K) + 1;

Here we define mod by induction on the first variable, basing the value of mod(N+1, K)
on the value of mod(N, K). The unpleasant part of this definition is that potentially the
rhs sub-expression mod(N, K)+1 must be computed twice. A way to avoid this would be
to introduce a variable, say R, to stand for the value of mod(N, K)+1 then use the value of
R a second time if necessary. The following alternate set of rules accomplishes this:

mod(0, K) => 0;

mod(N+1, K) => R = mod(N, K)+1, (R == K ? 0 : R);
      ↑

                             equational guard defining R

The use of equational guards provides a style found in mathematically-oriented texts. It is
often convenient to introduce variables to stand for large expressions. So the text would
read:

Let R = … some expression… .

Then later on either the text or another expression can use R to represent the value of that
expression.

A similar style often used in writing is "… R …, where R = … some expression… ".
Both forms are especially convenient when R is referred to more than once. Some
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programming languages provide a let construct or a where construct to achieve the same
end. The construct letrec ("let recursive") is also used when the variable is defined
recursively in terms of itself.

4.9 More Recursion Examples

As much as possible, we would like to use powerful concepts such as recursion to
simplify our work. When a problem involves structures such as lists and numbers that can
be arbitrarily large, often the only reasonable way to get a handle on the problem is to
deal with simple cases directly, and deal with the general case by breaking it down into
simpler cases that we have assumed can be handled. The tool of recursion can work like
magic in the hands of the knowledgeable. Therefore, the recursion manifesto is

Let recursion do the work for you.

We applied this principle in several previous examples, but it is time now to really
exercise it

Range: Creating a List 

The function range synthesizes a list from two numbers, M <= N. Specifically,

range(M, N) yields [M, M+1, …, N].

If M > N, the result is specified to be the empty list. Rules that define range are:

range(M, N) => M > N ? [ ];

range(M, N) => [M | range(M+1, N)];

Scale: Transforming a List 

Suppose we wish to multiply each element in a list of numbers by a constant K, returning
a new list. A function scale is to be devised such that scale(K, L) is this new list. Here
we let recursion work for us, by decomposing into the empty and non-empty list cases
and only coding the scaling of the first element in the latter.

scale(K, [ ]) => [ ];
scale(K, [ A | L ] ) => [ K*A | scale(K, L) ];
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Illustration:

scale(3, [7, 5, 2]) =>
[ 21 |  scale(3, [5, 2])] =>
[ 21, 15 | scale(3, [2]) ] =>
[ 21, 15, 6 | scale(3, [ ]) ] =>
[21, 15, 6 | [ ] ] =>
[21, 15, 6]

Note:  The philosophy of "functional programming" (which is what we do
in rex) is that we never modify lists in place. We only create new lists,
possibly out of existing lists. But the original list remains intact as long as
needed.

We mention the above philosophy explicitly, as it is quite possibly foreign, depending on
the manner to which one is exposed to programming.

The Map Functions

In the previous chapter, we showed an alternate definition of scale, which used map.
But how would map be defined from first principles?  It is essentially the same pattern as
scale, except that the first argument is a function, not a number:

map(F, [ ] ) => [ ];

map(F, [A | X]) => [ F(A) | map(F, X) ];

For mapping over two lists simultaneously the rules are:

map(G, [ ], _) => [ ];

map(G, _, [ ] ) => [ ];

map(G, [A | X], [B | Y]) => [ G(A, B) | map(G, X, Y) ];

mapping a function across a pair of lists

The presence of two basis cases allows us to deal with the case where the lists are not the
same length. As soon as one list is reduced to [ ], the recursion will stop, so the length of
the result will be that of the shorter of the two argument lists.

Reducing a List

Quite often we have need to compute the result of a binary (i.e. two-argument) operator
being applied to "reduce" a list to a single item. An example would be to "add up" the
elements of a list of numbers. The rules specialized to the add operator might be:

add_up( [ ] ) => 0;
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add_up( [A | X] ) => A + add_up(X);

The same technique could be used for multiplying the elements of a list, or to applying
any binary function H to a list in the same pattern. We do need to specify a base value for
the case of the empty list. The general form of the rules for reducing a list using operator
H are:

reduce( _, Base, [ ] ) => Base;

reduce( H, Base, [A | X] ) => H(A, reduce(H, Base, X));

reducing a list by a function H, together with a base value

This set of rules "biases" the reduction to the right, i.e. the result of

reduce(H, Base, [X0, X1, …, XN-1])

will be that of

H(X0, H(X1, …, H(XN-1, Base) …))

Horner's Rule 

Consider the requirement of evaluating polynomials

a
0
*x

n
 + a

1
*x

n-1
 + … + a

n-1
*x

1
 + a

n
*x

0

where we are given a list with low-order coefficient first [a
n
, a

n-1
, …, a

1
, a

0
] and a value x.

A method that is commonly used to reduce the number of multiplications is to evaluate
the polynomial using the following scheme, known as Horner’s Rule:

(…((a
0
*x + a

1
)*x + … + a

n-1
)*x + a

n

This has the computational advantage of not computing the large powers separately.
Instead they are folded into the multiply-add’s that have to be done anyway. This elegant
scheme is concisely represented by the following rex recursion:

horner(X, [ ]) => 0;

horner(X, [A | L]) => A + X * horner(X, L);
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Principle of Radix Representation

This is actually an application of Horner’s rule. Here we assume that a list represents a
radix numeral for a number, least-significant digit first. We wish to construct rules for a
function value that computes the number. The radix r representation of a number is a
sequence of digits

d
n-1

 d
n-2

 … d
2
 d

1
 d

0

where each di is in a digit in the set {0, 1, …, r-1}. The number represented by the
sequence is the value of the expression

d
 n-1

*r
n-1

 + d
 n-2

*r
n-2

 + … + d
2
*r

2
 + d

1
*r

1
 + d

0
*r

0

For example, if r = 2, we have the binary representation, where each d
i is either 0 or 1. A

numeral such as

1 1 0 1

represents the number designated by the decimal numeral 13, since

1*2
3
 + 1*2

2
 + 0*2

1
 + 1*2

0
 == 13

and

1*10
1
 + 3*10

0
 == 13

It is important to notice that the expression for the value can also be computed another
way, in a nested fashion using Horner's Rule:

(( … ((0 + d
n-1

)*r + d
n-2

)*r + … + d
2
)*r + d

1
)*r + d

0

The function value will accept a list of digits [d
0
, d1

, d
2
,  …, d

n-2
, dn-1

 ] and return the
value. It will use the Horner’s rule version of the expression. The idea is that we can
compute values of a sequence by multiplying by r the value of all but the first element of
the sequence (treated as a numeral with one fewer digit) then adding the remaining digit.
In other words, notice that the sub-expression of the above

( … ((0 + d
n-1

)*r + d
n-2

)*r + … + d
2
)*r + d

1

looks a lot like the original expression. The only difference is that the d subscripts have
been "shifted" by one position:
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(( … ((0 + dn-1)*r + dn-2)*r + … + d2)*r + d1)*r + d0
                     ↑           ↑       ↑      ↑
                     ↓           ↓       ↓      ↓
         (( … ((0 + dn-1)*r + … + d3)*r + d2)*r + d1

  That is,

value([ d
0
, d1

, d
2
,  …,  d

n-2
, dn-1

 ]) ==

d
0 + r * value([ d

1
, d

2
,  …,  d

 n-2
, d n-1

 ])

In order to set things up to apply recursion, we only need to identify the sequence
[ Digit | Digits ] with [d

0
, d1

, d
2
,  …,  d

n-2
, dn-1

] to convert this equation into a rex
rule, adding a new variable Radix for the radix:

value( [ Digit | Digits ], Radix ) =>

Digit + Radix * value( Digits, Radix );

value( [ ], Radix ) => 0;

Radix Interpretation of a list of digits, Least-significant first

Here we have added a basis rule for the empty sequence.

Let us check this with the binary numeral 1 1 0 1, which we said has a value of 13. The
list representation, least-significant digit first, will be [1, 0, 1, 1]. By the rules:

   value( [1, 0, 1, 1], 2 )
=> 1 + 2 * value( [0, 1, 1], 2 )
=> 1 + 2 * (0 + 2 * value( [1, 1], 2 ))
=> 1 + 2 * (0 + 2 * (1 + 2 * value( [1], 2 )))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 2*value( [ ], 2 ))))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 2*0)))
=> 1 + 2 * (0 + 2 * (1 + 2 * (1 + 0)))
=> 1 + 2 * (0 + 2 * (1 + 2 * 1))
=> 1 + 2 * (0 + 2 * (1 + 2))
=> 1 + 2 * (0 + 2 * 3)
=> 1 + 2 * (0 + 6)
=> 1 + 12
=> 13

Now consider the inverse function for radix conversion: Given a number, produce a list
of its digits in a given radix notation. For now, we will develop the list least-significant
digit first. We can either apply reverse to the result, or use a later technique to get the
digits in most-significant digit first order. We can find the least-significant digit by using
the integer remainder function mod: N % M is the remainder that occurs when N is divided
by M using integer division /. We can find the remaining digits by applying the same
process to the quotient of the number and the radix. We are letting recursion do the work
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for us. We use an auxiliary function digits1 so that our function digits handles the case
0 in such a way that the result is [0] rather than an empty list. The rules are thus:

digits(0, Radix) => [0];
digits(N, Radix) => digits1(N, Radix);

digits1(0, Radix) => [ ];
digits1(N, Radix) => [ (N % Radix) | digits1(N / Radix, Radix) ];

Forming the digit list of a natural numbering a given radix

The "Radix" Principle

Although most of the computation with which we will be concerned is "digital" in nature,
we use the term "radix principle" to connote algorithmic techniques that rely specifically
on the data being representable by a series of digits, such as in radix representation. Some
algorithms rely on this fact for efficiency, while others do not. The radix principle makes
it possible to do arithmetic with reasonable efficiency. If, for example, all arithmetic were
done using tally representation, not much useful computation would get done. We already
saw how much space saving was afforded by using radix notation instead of tallies. Now
consider the time saved in doing arithmetic with a radix representation instead of tallies.
The addition of two arbitrarily-long binary numerals, represented as lists, least-
significant digit first, can be expressed using the following rules:

add_bin(X, Y) => add_bin(X, Y, 0);

add_bin([ ], X, Carry) => add_digit(X, Carry);
add_bin(X, [ ], Carry) => add_digit(X, Carry);

add_bin([A | X], [B | Y], C) =>
  Sum_Digit = (A+B+C) % 2,
  Carry = (A+B+C) / 2,
  [Sum_Digit | add_bin(X, Y, Carry)];

add_digit([ ], 0) => [ ];
add_digit([ ], 1) => [1];
add_digit([A | X], C) =>
  Sum_Digit = (A+C) % 2,
  Carry = (A+C) / 2,
  [Sum_Digit | add_digit(X, Carry)];

Adding two arbitrarily-long binary numerals, least-significant digit first.

The core of these rules is the function add_bin of three arguments, two sequences and a
carry bit. If one of the sequences is empty, then add_digit takes over to finish off the
addition. Otherwise there is a rule for each combination of first digits in each sequence
and for the carry. These rules produce a digit of the resulting sequence, followed by a
recursive call to add_bin with a new carry value.
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Notice that we could, if desired, avoid using the % and / functions by enumerating the
eight different possibilities of digits for A, B, and C.

Examples of other techniques that we will study that make use of, or rely on, the radix
principle are:

Fast multiplication by the "Russian peasants' principle"

radix sort, described in Complexity of Computing

multiplexors, described in Computing Logically

barrel shifters  (described in Finite-State Computing)

Fast Fourier Transform

The radix principle represents an idea that should not be overlooked when developing
efficient algorithms. Here we will show the Russian peasants' principle. Suppose we wish
to raise a number to an integer power N. The simple way to do this is to multiply the
number by itself N times. This thus requires N multiplications. A more clever way to
achieve the same end is to repeatedly square the base number, and selectively multiply
some of the results to achieve a final product. Repeatedly squaring the original number
gives us powers of two of that number. That is:

N, N2, (N2)2, ((N2)2)2, …

is the same as

N1, N2, N4, N8, …

To achieve an arbitrary power of N, say Nk, we can represent k in binary. Then we select
the powers of N to powers of 2 according to the bits in the binary representation that are
1. For example, if k were 19, its binary representation would be 10011. The

corresponding powers of N are then N16, N2, N1. When we multiply these together, we

get the desired product N16+2+1 = N19.

Fortunately, we do not have to put these powers into a list. We can simply multiply in the
ones we need as we decompose k into binary. The Russian peasants' approach, expressed
in rex, would be:

power(X, 0) => 1;

power(X, Y) => even(Y) ? power(X*X, Y/2);

power(X, Y) => X * power(X*X, Y/2);
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where function even tests whether its argument is even or odd. The binary decomposition
of the second argument is taking place by dividing it by 2 on each recursion step.

A further example of the radix principle occurs after the following brief presentation of
sorting techniques.

Insertion Sorting a List 

Arranging a list so that the elements appear in increasing order is known as "sorting" the
list. As explained above, in functional programming, the original list is not disturbed.
Instead a new list is created that has the same elements in the appropriate order. There are
dozens of ways to do it. Here are a few:

Function insertion_sort sorts a list by repeatedly inserting an element where it
belongs:

To sort an empty list, return the empty list:

insertion_sort([ ]) => [ ];

To sort a non-empty list, insertion_sort all but the first element (using recursion), then
insert the first element into its proper place:

insertion_sort([F | R]) => insert(F, insertion_sort(R));

Overall, recursion does most of the work in insertion_sort. However, we still need to
define insert.

Inserting an element into its proper place in an empty list just gives the list with one
element:

insert(A, [ ]) => [A];

To insert an element into a non-empty list, compare the element with the first element of
that list. The resulting list starts with one or the other, and recursion takes care of
inserting the other element in the remaining list:

insert(A, [B | X]) => // note: [B | X] is assumed to be ordered
  A < B ?
    [A, B | X]
  : [B | insert(A, X)];

This is a fine example of letting recursion do the work for you.
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Selection Sorting a List 

An example of a different sort is selection_sortwhich sorts a list by repeatedly
selecting the minimum of the unsorted remaining elements and putting it next.

To sort an empty list, return the empty list

selection_sort([ ]) => [ ];

To sort a non-empty list, an equational guard comes in handy. First get a list with the
minimum as the first element, and the rest of the elements as the rest of that list. Call this
list [M | R]. Return the minimum M followed by the result of sorting R, the rest of that
list (letting recursion do that work):

selection_sort(L) =>
          [M | R] = select_min(L),
          [M | selection_sort(R)];

Function select_min is designed to work only on non-empty lists L  It brings the
minimum of the list to the first position.

The minimum of a list of one element is at the first

select_min([A]) => [A];

For a list with at least two elements, retain the first element and apply select_min to the
remaining elements, then return a new list with the retained element and the first element
of the result properly ordered:

select_min([A | L]) =>
          [B | R] = select_min(L),
          (A < B ? [A, B | R] : [B, A | R]);

Merge Sorting a List 

Merge sorting is another way to sort. We will show later that it has substantially fewer
rewrite steps than either of the sorts introduced prior. By "merging", we mean operation
of creating, from two sequences already in order, a longer sequence containing the
elements of both sequences. This can be done easily by examining only the first elements
of residual unmerged sequences and choosing the smaller one for output, until both
sequences have been decimated.
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Our implementation of function merge_sort works in the following way:

To sort:

A non-empty list to be sorted is made into a list of 1-element lists. These lists are
merged together a pair at a time using merge_pairs. This gives us lists of length
at most 2. Then the process is repeated, merging pairs of those lists to get half as
many lists that are twice as long. This is done in successive stages until only one
list is left. That list is the sorted list.

To merge two lists:

If the either list to be merged is empty, return the other list.

Otherwise, compare the first elements of each list. Return a new list starting with
the smaller element and followed by the result of merging the remaining
elements.

The merge_sort function, expressed in rex, is given below:

First the initial list is transformed to a list of 1-element lists then those lists are merged
repeatedly.

merge_sort(List) = repeat_merge( map((X) => [X], List ) );

Function repeat_merge merges pairs in a list of lists until there is only one list left.

repeat_merge([A]) => A; // only one list left

repeat_merge(Lists) => // more than one list left
  repeat_merge( merge_pairs(Lists) );

Function merge_pairs merges pairs of lists in a list until none is left. It is similar to a
map application, except that the function being mapped (merge) is called on successive
pairs from a single list rather than on pairs from two different lists.

merge_pairs([ ]) => [ ]; // no more lists

merge_pairs([A]) => [A]; // only one list

merge_pairs([A, B | L]) => [merge(A, B) | merge_pairs(L)];

Function merge creates a single ordered list from two ordered lists.

merge(L, [ ]) => L;

merge([ ], M) => M;

merge([A | L], [B | M]) =>
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  A <= B ? [A | merge(L, [B | M])] : [B | merge([A | L], M)];

Below is a coarse trace of merge_sort in operation:

merge_sort([5, 1, 2, 7, 0, 4, 3, 6]) ==>

repeat_merge([ [5], [1], [2], [7], [0], [4], [3], [6] ]) ==>

repeat_merge(merge_pairs([ [5], [1], [2], [7], [0], [4], [3], [6]
]))

repeat_merge([ [1, 5], [2, 7], [0, 4], [3, 6] ]) ==>

repeat_merge(merge_pairs([ [1, 5], [2, 7], [0, 4], [3, 6] ])) ==>

repeat_merge([ [1, 2, 5, 7], [0, 3, 4, 6] ]) ==>

repeat_merge(merge_pairs([ [1, 2, 5, 7], [0, 3, 4, 6] ])) ==>

repeat_merge([ [0, 1, 2, 3, 4, 5, 6, 7] ]) ==>

[0, 1, 2, 3, 4, 5, 6, 7]

Radix Sorting a List 

We conclude the set of sorting examples with a method based on the radix principle. For
this method, we assume that the numbers are non-negative integers. Sorting is based on
comparing bits of the numbers, from lowest to highest. As splitting and regrouping is
done for each bit, the numbers remain sorted on lower-order bits. Sorting is complete
after the numbers are regrouped on the highest order bit.

// To sort, we sort based on the number of bits,
// from lowest order to highest

radix_sort(L) = radix_sort(0, numBits(L)-1, L);

// Sort on the Ith bit, then on the remaining bits

radix_sort(I, N, L) = I > N ? L : radix_sort(I+1, N, split(I,
L));

// split the list into two based on the Ith bit,
// then append the results

split(I, L) = append(drop((X)=>bit(I, X), L),
                     keep((X)=>bit(I, X), L));

// bit(I, X) gives the I-th bit of X

bit(I, X) = I == 0 ? X%2 : bit(I-1, X/2);
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// find the maximum number of bits across all numeral in list

numBits(L) = ceilLog2(reduce(max, -Infinity, L));

// find the number of bits required to represent a numeral

ceilLog2(N) = N == 0 ? 0 : 1 + ceilLog2(N/2);

Further discussion of sorting methods appears in the chapter on Computational
Complexity.

Exercises

Wherever possible, adhere to the recursion manifesto in the following:

1 • Give a set of rules for a function that computes the list of squares of each of a
list of numbers. (This could be done with map, but do it from scratch instead.)

2 •• Give a set of rules for computing the sum of a list of numbers; for computing
the product of a list of numbers. (This could be done with reduce, but do it
from scratch instead.)

3 •• Using your function days_of_month constructed in an earlier exercise, give
rules for the function total_days that takes as an argument a list of months and
returns the sum of the days in those months.

4 •• Give a set of rules for computing the average of a list of numbers (use 0 for the
average of an empty list).

5 •• Indicate two different ways to compute the sum of the squares of a list of
numbers.

6 •• Give rules that define the function flip, that operates on lists, and exchanges
successive pairs of elements. If there is an odd number of elements, the last
element is left as is. For example:

flip([1, 2, 3, 4, 5, 6, 7]) ==> [2, 1, 4, 3, 6, 5, 7]

Suggestion: Use a rule that matches on the first two elements, rather than just
one:

flip([A, B | L]) => … ;

7 ••• Give rules for the function at_least that tells whether a list has at least a
certain number of elements. For example:
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at_least(3, [1, 2, 3]) ==> 1

at_least(3, [1, 2]) ==> 0

Avoid counting all of the elements of the list. This is unnecessarily inefficient
for large lists.

8 ••• Like the previous problem, except at_most.

9 •• The function select has the property of selecting the Ith element of a list, I >=
0, or returning the value of a special parameter Other if there is no such element
(the list is not long enough). That is,

select(I, [X0, X1, …, XN-1], Other) ==> XI  if I < N

select(I, [X0, X1, …, XN-1], Other) ==> Other   if I >= N

Give a set of rules for select.

10 •• The function find_index has the property of computing the index of the first
occurrence of a given element within a list. If there is no such occurrence, -1  is
returned. For example,

find_index('d', ['a', 'b', 'c', 'd', 'e']) ==> 3
find_index('a', ['a', 'b', 'c', 'd', 'e'] ==> 0
find_index('g', ['a', 'b', 'c', 'd', 'e']) ==> -1

Give a complete set of rules for find_index.

11 ••• Give rules for a function remove_duplicates that removes all duplicates in a
list. For example

remove_duplicates([1, 2, 1, 3, 1, 2, 3]) ==> [1, 2, 3]

12 •• Give rules for a function that gives the value of a list representing the 2-adic
representation of a number, least-significant digit first, using the digits 1 and 2.

13 ••• Give rules for a function that gives the list representation of a number in 2-adic
form, least-significant digit first.

14 ••• Give rules for a function that produces the list of prime factors of a natural
number. For example

factors(72) ==> [2, 2, 2, 3, 3]

15 •• Using functions above, give rules for a function that produces the unique prime
factors of a natural number. For example
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unique_factors(72) ==> [2, 3]

16 •• Give rules for the function subst that makes substitutions in a list. Specifically,
subst(A, L, R) returns a new list that is like list L except that whenever A
would have occurred as a member of L, R occurs instead.

17 •• By adding an extra argument, and assuming integer functions mod and div,
generalize the function add_bin to a function that adds in an arbitrary radix.

18 ••• Devise a function that will multiply two numbers represented as a list of bits,
least-significant-bit first. Notice that this function has some advantage over the
standard multiplication function found in most programming languages, namely
that it will work for arbitrarily-large numbers.

19 ••• Sometimes we use numeral systems of mixed radix. For example, in referring to
time within a given month, we could use expressions of the form D:H:M:S for
days, hours, minutes, and seconds. H ranges from 0 to 24, M from 0 to 59, and S
from 0 to 59. To compute the number of seconds from the start of the day
corresponding to a given time, we'd compute:

S + 60*(M + 60*(H+24*D)).

Generalize this mixed radix computation by giving rules for a function value
that takes as arguments two lists, one giving the ranges and another giving the
ordinal numbers within these ranges. For example, in the current case we would
call

value( [S, M, H, D], [1, 60, 60, 24] )

20 ••• Devise a function that will divide one number represented in binary by another,
yielding a quotient and a remainder. This function should return the pair of two
items as a list. Do the division digit-by-digit, don’t convert to another form first.

21 •• The function keep takes two arguments: a predicate and a list: keep(P, L) is
the list of those items in L such that P is true for the item. For example,

keep(odd, [1,3,2,4,6,7]) ==> [1,3,7]

Provide rex rule definitions for keep.

22 •• The function drop is like function keep above, except that the items for which P
is not true are kept. For example,

drop(odd, [1,3,2,4,6,7]) ==> [2,4,6]

Provide rex rule definitions for drop.
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23 •• The function select takes two arguments: a list of 0's and 1's and another list,
usually of the same length. select(S, L) is the list of those items in L for
which the corresponding element of S is 1. For example,

select([1,0,0,1,1,0], [1,3,2,4,6,7]) ==> [1,4,6]

Provide rex definitions for select.

24 •• Iterated function systems are used for producing so-called "fractal" images.
These entail applying a function repeatedly to an initial seed argument. Let

FN(X)

denote

F(F(F…(F(X))…))

    N applications of F

including the definition:

F0(X) = X.

Give rewrite rules for the function iterate informally defined by:

iterate(N, F, X) ==> FN(X)

25 ••• Restate the definition of Ackermann's function using iterate.

26 ••• By indefinite iteration we mean iteration that stops when some condition is
true, rather than by iterating a pre-determined number of times. The condition
for stopping is best expressed as a predicate, say P. Give the rewrite rules for a
function

iterate(P, F, X)

defined to compute

Fn(X)

where n is the least value of N such that P(FN(X)) == 1.

27 ••• Give the rules for a function that transposes a matrix represented as a list of
lists. Your function can assume that each "row" of the matrix has the same
number of elements without checking. You might, however, wish to construct a
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separate function that checks the integrity of the matrix. Check your definition
carefully and show that the types match up.

28 ••• Referring to the previous problem, if you understand matrix addition and
multiplication, construct functions that carry out these operations.

29 •••• If you understand matrix inversion, construct a function that carries out this
operation.

30 •• Show how to use enumeration to define the function radix without using the %
and / functions.

4.10  Accumulator-Argument Definitions

Consider the problem of specifying a function that can reverse a list, for example:

reverse([1, 2, 3]) ==> [3, 2, 1]

The newcomer will typically try to approach this problem inductively by creating
something like:

reverse( [ ] ) => [ ]; // not recommended

reverse( [A | L] ) => append(reverse(L), [A]);

While this pair of rules does achieve its purpose, it is clumsier than necessary when it
comes to execution by rewriting. This clumsiness translates into taking much longer in

execution. This particular rule set requires a number of rewrites proportional to n2/ 2 to
reverse a list of length n, whereas it is possible to do it in rewrites proportional to only n.
Here’s an illustration for a list of length 4:

   reverse([1, 2, 3, 4])
=> append(reverse([2, 3, 4]), [1])
=> append(append(reverse([3, 4], [2]), [1])
=> append(append(append(reverse([4]), [3]), [2]), [1])
=> append(append(append(append(reverse([ ]), [4]), [3]), [2]), [1])
=> append(append(append(append([ ], [4]), [3]), [2]), [1])
=> append(append(append([4], [3]), [2]), [1])
=> append(append([4 | append([ ], [3])], [2]), [1])
=> append(append([4 | [3]], [2]), [1])
=> append(append([4, 3], [2]), [1])
=> append([4 | append([3], [2])], [1])
=> append([4, 3 | append([ ], [2])], [1])
=> append([4, 3 | [2]], [1])
=> append([4, 3, 2], [1])
=> [4 | append([3, 2], [1])]
=> [4, 3 | append([2], [1])]
=> [4, 3, 2 | append([ ], [1])]
=> [4, 3, 2 | [1] ]
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=> [4, 3, 2, 1]

This clumsiness can be avoided by using the technique of an accumulator. An
accumulator is an “extra” argument that serves to accumulate the result. In the case of
reverse, what is accumulated is a list that ends up being the answer. For the reverse
function, the reversal of the list is accomplished by moving the elements from one list to
another. They are thus accumulated in an order that is the reverse of the order on the
original list. We use a two-argument function reverse, then define a one-argument
version in terms of it. In the first rule, when the original list is empty, we return the
accumulated last:

reverse( [ ], R ) => R;
              ↑             ↑

     accumulator argument            the accumulator is returned

In the second rule, when the list is non-empty, we continue with the rest of the list and
accumulate the first of the list on an already-started list:

reverse( [A | L], R ) => reverse( L, [A | R]);
                  ↑                                        ↑

             accumulator argument                                    the accumulator accumulates

Let us verify that this results in far fewer rewriting steps for the previous list example:

   reverse( [1, 2, 3, 4], [ ])
=> reverse( [2, 3, 4], [1])
=> reverse( [3, 4], [2, 1])
=> reverse( [4], [3, 2, 1])
=> reverse( [ ], [4, 3, 2, 1])
=> [4, 3, 2, 1]

In general, using the non-accumulator definition will require a number of steps that is
about one-half the square of the number of steps in the accumulator definition. Thus
using an accumulator provides a significant saving in computation time. We shall see
how to perform such an analysis in more detail in the chapter on Complexity.

4.11 Interface vs. auxiliary functions

In order to make a one-argument reverse function, we may define it in terms of the two-
argument version presented in the previous section. The function in terms of this one by
specifying an additional argument:

reverse(L) = reverse(L, [ ]);

We can give a description of what the two-argument reverse does: It appends the second
list to the reverse of the first. This jibes with the rule above: appending [ ] to the reverse
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of the first list is exactly the reverse of the first list, since appending [ ] to anything
gives that thing.

To simply reverse a list, the one-argument reverse function is what we should provide
to the user. Thus it is called an interface function. The two-argument reverse is called the
auxiliary or “helper” function. This is not to say that a user would never have need for the
auxiliary itself, but this would only happen if she wanted to do a combination of reversal
and appending, which seems to be a less frequent need.

In many cases, we can build reversal into our function definitions rather than call upon
reverse after the fact. For example, it was natural to produce the digits of the radix
representation of a number least-significant digit first. If we wanted them most-
significant first instead, we could either call reverse on the result, or we could just design
the function to handle it directly using an accumulator argument. Here’s how it would
look for the radix representation. Note that we use an interface function for two purposes:
to handle the special case of argument 0, and to call the auxiliary function with [ ] as the
accumulator value.

digits(0, Radix) => [0];
digits(N, Radix) => digits1(N, Radix, [ ]);

digits1(0, Radix, Tail) => Tail;
digits1(N, Radix, Tail) =>
    digits1(N / Radix, Radix, [N % Radix | Tail]);

Function digits gives the digits of the first argument represented in the radix of the
second, most-significant digit first.

Notice that the third argument of digits1 is an accumulator. As we divide the original
number successively by Radix, we are determining digits of higher powers of the radix,
that get tacked on to the left-end of the list. When the number is finally decimated
(reduced to 0), in the basis for digits1, the accumulated list is returned.

4.12 Tail Recursion

The type of recursion displayed by reverse using an accumulator, where there are no
further operations to be performed on the rewritten result, is called tail-recursion. Tail-
recursive rules have the desirable property that they reduce storage overhead resulting
from nested function calls.

Below we show the distinction using nrev to denote the “naive” first attempt at
constructing the reverse function vs. rev2 to show the version with an accumulator
argument. In rev2, there is nothing else to be done when the right-hand side returns its
result. This is tail-recursion.
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nrev([ ]) => [ ];
nrev([A | L]) => append(nrev(L), [A]);
                 ↑
                 due to this call, this rule is not tail-recursive

reverse( L ) = rev2(L, [ ]);
rev2( [ ], M ) => M;
rev2( [A | L], M ) => rev2( L, [A | M] );
                      ↑
                      this rule is tail-recursive

comparative forms of list reversal, non-tail-recursive vs. tail-recursive

While tail-recursive rules are desirable for efficiency, they can be less readable unless
one is on the lookout for them. Therefore it is sometimes a good idea to have a non-tail-
recursive reference version of a function on hand if a tail-recursive version is being used.

Consider trying to give a tail-recursive formulation for factorial:

factorial(0) => 1;

factorial(N) => N * factorial(N-1);

As with the naive reverse example, there is a tendency to build-up unfinished work, in
this case multiplies, outside the principal expression being rewritten:

factorial(4) ==> 4*factorial(3) ==> 4*3*factorial(2) ==> …

The unresolved multiplications represent work to which we will have to return when we
finally get to use the first rule. How would we express this function using tail-recursion?
As it turns out, we cannot do so with only one argument: We need to add an accumulator
argument to carry the accumulated product and the original argument value as it
diminishes. This can be accomplished by using an auxiliary function of two arguments
and defining the interface function in terms of it:

factorial(N) = factorial(N, 1);

factorial(0, M) => M;

factorial(N, M) => factorial(N-1, N*M);

Here we have “overloaded” the name factorial to use it for two distinct functions, one
with one argument and the other with two arguments. Now consider evaluating
factorial(4):

factorial(4)     ==>
factorial(4, 1)  ==> factorial(3, 4*1)  ==>
factorial(3, 4)  ==> factorial(2, 3*4)  ==>
factorial(2, 12) ==> factorial(1, 2*12) ==>
factorial(1, 24) ==> factorial(0, 1*24) ==>
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factorial(0, 24) ==> 24

While the tail-recursive factorial has a cleaner evaluation sequence, its rules are more
complicated due to the introduction of a second function. These rules don’t appear to be
as natural as the original ones.

Exercises

1 ••• Construct an alternate set of rules for reduce that biases the reduction to the left,
i.e.

reduce(H, Base, [X0, X1, …, XN-1])  ==>
H(…H(H(Base, X0), X1), …, XN-1)

This function is often differentiated from the original one by calling this one
foldl (fold-left) and the other foldr (fold-right).

2 •• The function mappend combines map and append in the following way. Suppose f
is a function of one argument that returns a list for arguments drawn from a list L.
Then mappend(f, L) is the list of the values of f(A), for A in L , appended
together.

For example, if f(1) ==> [10, 11], f(2) ==> [12, 13], and f(3) ==> [14,
15], then

mappend(f, [1, 2, 3]) ==> [10, 11, 12, 13, 14, 15]

This is in contrast with map:

map(f, [1, 2, 3]) ==> [[10, 11], [12, 13], [14, 15]]

Give rules that define mappend.

3 •• Give another set of rules for the function length that computes the length of a
list. This time, use an accumulator argument so that the rules are tail-recursive.

4 ••• Using an accumulator argument, but not using explicit list reversal, give rules for
a function that converts from binary to a natural number when the binary is
represented as a list most significant digit first.

5 ••• Give rules for the function qsort (abbreviation for "Quicksort") that sorts a list
by the following recursive method:

If the list has one or no element, the result is just the list itself.

If the list has more than one element, use the first element to split the list
into two: one list of elements less than the first element, and a list of the
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remaining elements. qsort each of those lists and append the results
together so that the ordering is correct.

Once you have your function working, replace the use of append with an
appropriate accumulator argument.

4.13 Using Lists to Implement Sets

It is common to use lists in the computer to represent sets. In order to represent a set, we
disregard order of the elements. We must also ensure that there are no duplicate elements.
The empty list [ ] is naturally used to represent the empty set. To add a new member to a
set, we only need use the list constructor [ | ]. However, we must be sure that the member
is not already present. The function member is such that member(A, S) ==> 1 if A is in
the set and 0 otherwise.

member(_, [ ]) => 0; // since the empty set can have no member

member(A, [A | S]) => 1; // A is the first member in the list

member(A, [_ | S]) => member(A, S);

// A is not the first member, but could come later

To add a member known not to be in the set:

add_new_member(A, S) => [A | S];

To add a member in general, we use a guarded rule:

add_member(A, S) => member(A, S) ? S;  // already a member, no change

add_member(A, S) => add_new_member(A, S);

To form the union of two sets, we can use a process similar to append. However, we
must take care not to duplicate any elements. We assume that there are no duplicates in
either argument set.

union([ ], T) => T;

union([A | S], T) => add_member(A, union(S, T));

Power Set Example

The power set of a set S is the set of all of subsets of S. Suppose we wished to give rules
for computing the power set (as a list) from a given set (list). For example,

subsets([a, b, c]) ==>
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  [[ ], [a], [a, b], [a, c], [a, b, c], [b], [b, c], [c]]

The type of power, by the way, is A* → A**, since it takes a list of arbitrary things and
returns a list of lists of those things.

Below we have worked through the reasoning of this problem. Thinking inductively …

Basis:  subsets( [ ] )  is [ [ ] ] since the empty set has only one subset: itself. This
gives the following rule:

subsets( [ ] ) => [ [ ] ];

Induction: How can we get subsets([A | L]) from subsets(L)?

For one thing, subsets(L) is contained in subsets([A | L]), i.e. subsets([A | L])
will be something appended to subsets(L):

subsets( [ A | L ] ) => append(subsets(L), ???);

What is missing?  subsets(L) are those subsets of [A | L] that don't contain A. We
need the ones that do contain A. But these are just like subsets(L) except that A has
been added to each set.

So for ??? above we can use

add_to_each(A, subsets(L))

Now we have to define add_to_each. We can give rules for it alone, or we can recognize
that add_to_each is just a "map" application:

add_to_each(_, [ ]) => [ ];

add_to_each(A, [E | S]) => [ [A | E] | add_to_each(A, S)];

subsets( [ ] ) => [ [ ] ];

subsets( [ A | L ] ) =>
append( subsets(L), add_to_each(A, subsets(L)));

The first alternative eliminates the function add_to_each by using an anonymous
function in conjunction with map. Noting that

add_to_each(A, L) == map( (S) => [A | S], L);

we can replace the add_to_each expression with the map expression in the second rule
for subsets.
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A second alternative is to replace the multiple uses of subsets(L) with an equational
guard, giving us a new second rule:

subsets( [ A | L ] ) =>
      SoL = subsets(L),
      append( SoL, map( (X) => [A | X], SoL));

Finally, we can get rid of the call to append by using a version of map called map_tail
that has an accumulator argument:

subsets( [ ] ) => [ [ ] ];

subsets( [ A | L ] ) =>
      SoL = subsets(L),
      map_tail( (X) => [A | X], SoL, SoL);

map_tail( F, [ ], Acc ) => Acc;

map_tail(F, [A | X], Acc) => map_tail(F, X, [ F(A) | Acc ]);

Exercises

1 • Trace through the series of rewrites for
union( [1, 2, 3, 4], [2, 4, 5, 6]).

2 •• Give a set of rules for finding the intersection of two sets.

3 •• The difference of two sets, difference(S, T), is defined to be the elements that
are in S but that are not in T. Give a set of rules for the function difference.

4 •• Give a set of rules for testing two sets for equality, recalling that the elements
need not be listed in the same order. One possibility is to use the difference
function defined above. What other ways are there?

5 •• Define rules for a function includes so that includes(S, T) ==> 1 if set S
includes set T and includes(S, T) ==> 0 otherwise. [Hint:  Use the function
difference.]

6 ••• Show that definitions for set operations can be simplified if we assume that the
elements of each list always occur in a specific order and we can test that order
between any two elements.

7 •••• Earlier we derived a way to compute the set of all pairs of elements of two sets
represented as lists. Extend this idea to a function that computes the set of all n-
tuples from a list of n sets. Calling this function tuples, we would have
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tuples( [ [1, 2], [3, 4, 5], [6, 7] ] ) ==>

[[1, 3, 6], [1, 3, 7], [1, 4, 6], [1, 4, 7], [1, 5, 6],
 [1, 5, 7], [2, 3, 6], [2, 3, 7], [2, 4, 6], [2, 4, 7],
 [2, 5, 6], [2, 5, 7]]

Note that:

tuples( [ ] ) ==> [ [ ] ]

since there is exactly one tuple of no elements, the empty tuple. Also,

tuples( [ [ ] ] ) ==> [ ]

since there are no tuples that contain an element of the empty set.

4.14 Searching Trees

Consider the problem of determining whether an element satisfying a given property
occurs in a tree. The property could entail specifying the exact identity or it could specify
some characteristic of the element. Both of these cases are subsumed by specifying a
predicate P that is satisfied exactly by the elements of interest.

This type of problem arises routinely in computer science. For example, if the tree is a
directory structure, we might want to search for a specific file or sub-directory name, or
for a file with specific ownership or permission properties, or with a last-write date
before a certain date.

Let us assume that our trees are specified as lists, with the root as the first element and its
major sub-trees as the remaining elements. For example, the following tree would be
specified as the list

[1, [2, [4], [5], [6] ], [3, [7, [9] ], [8] ] ]

1

2

4 5 6

3

7

9

8

Figure 34: A tree for searching
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The following simple recursive algorithm searches a tree for a node with property P:

To find a node with property P in a tree:

• If the root has property P, then return 1 (for success).

• Search the sub-trees of the root until one returns 1.

• If no sub-tree has returned success, then return 0 (for failure).

Let’s cast these ideas as rex rules:

find_df(P, [Root | Subtrees]) => P(Root) ? 1;

find_df(P, [Root | Subtrees]) => find_in_subtrees(P, Subtrees);

find_in_subtrees(P, [ ]) => 0;

find_in_subtrees(P, [Tree | Trees]) =>
    find_df(P, Tree) ?
          1
        : find_in_subtrees(P, Trees);

Depth-first search of a tree for a node with property P.

Here find_in_subtrees iterates over the sub-trees performing a search on each until
either there is success or until there are no more trees.

This is an example of mutual recursion. There are two functions, find and
find_in_subtrees and each calls the other. Each function has a different set of
responsibilities: find checks the root of its tree, while find_in_subtrees checks each
sub-tree. The latter is essentially an iterative process. Both functions are tail-recursive.

Often mutual recursion can be replaced with use of one or more higher-order functions.
For example, the following definition using the function some is equivalent, but more
succinct:

find_df(P, [Root | Subtrees]) => P(Root) ? 1;

find_df(P, [Root | Subtrees]) => some((T)=>find_df(P, T), Subtrees);

The type of search exhibited above is called depth-first search. If there are several nodes
in the tree satisfying the property, the first one is detected is the one that is encountered
on a trajectory that plunges downward before it traverses laterally. The pattern of depth-
first search in this case is shown below:
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1

2

4 5 6

3

7

9

8

done

Figure 35: Depth-first search of a tree

A depth-first search establishes an ordering of the nodes, the order in which P is applied
to test the node in the search. In this example, the ordering is [1, 2, 4, 5, 6, 3, 7, 9, 8].
This ordering is known as the depth-first ordering.

A complementary style of search is known as breadth-first search. Here the nodes are
checked in order of increasing distance from the root. In order to accomplish this kind of
search, we need to simulate a structure called a queue, which holds subtrees in the order
the nodes are encountered until they can be revisited later. The algorithm is then as
follows:

To find a node with property P in a tree, breadth-first:

• Start with the tree as the only element in the queue.

• Repeat the following until success, or until queue is empty:

• Consider the first tree in the queue. If the root of the tree
satisfies P, then return success.

• Add each of the sub-trees to the rear of the queue.

• (Queue is empty). Return failure.

Let’s make this algorithm more precise by presenting it in rex. Here we are using the
same tree representation as before: The tree is represented as a list, with the first element
of the list being the root and the rest of the list being the sub-trees.
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find_bf(P, Tree) => find_in_queue(P, [Tree]);

find_in_queue(P, [ ]) => 0;

find_in_queue (P, [[Root | Subtrees] | Trees]) =>
    P(Root) ?
      1
    : find_in_queue(P, append(Trees, Subtrees));

Breadth-first search of a tree for a node with property P.

The following is a simulation of this algorithm, using the previous example tree. Suppose
we are searching for a node equal to 7. Since the queue is a sequence of trees, we show
that sequence at each stage. The initial queue is a sequence of one tree, the original tree:

1

2

4 5 6

3

7

9

8

The root 1 is not equal to 7. The queue becomes the sequence of two trees:

2

4 5 6

3

7

9

8

The first tree in the queue is the one with root 2, which is not equal to 7, so its sub-trees
are appended to the end of the queue, resulting in:

4 5 63

7

9

8

The first tree in the queue is now the one with root 3, which is not equal to 7. So its sub-
trees are added to the end of the queue, resulting in the queue:
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4 5 6 7

9

8

The next three trees to be examined have roots not equal to 7 and the sub-trees are empty,
so the queue becomes, in three steps:

7

9

8

At this point, the root of the first sub-tree is equal to 7, so we stop with success.

As with depth-first search, breadth-first search also induces an ordering of the nodes,
called the breadth-first ordering. This ordering is exactly what we would see if we read
off the tree level by level, left-to-right. In the present example, this ordering is: [1, 2, 3, 4,
5, 6, 7, 8, 9].

Exercises

1 •• Consider the following tree. What are the depth-first and breadth-first
numberings?

1

2

4

5

6

3 7

98 10

11

12

13

2 •• In the preceding tree, suppose P(n) is the property “n is a prime number greater
than 5”. What node would be found in a depth-first search?  in a breadth-first
search?

3 ••• Modify the depth-first search algorithm so that, rather than merely returning
success, the algorithm returns a list representing the path from the root to the node
found. For example, if we were searching the tree above for node 10, the list
returned would be [1, 6, 7, 10].
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4 ••• Repeat the preceding problem for the breadth-first search algorithm.

5 ••• A tree address is a sequence of numbers indicating a path from the root of the tree
to one of its nodes:

The root of the tree has address [ ].

If the node occurs in the ith subtree, the tree address of the node is i
followed by the tree address of the node relative to the subtree.

We’ll use the convention of numbering the subtrees starting at 0. For example, in
the diagram above, the tree address of node 10 is

[1, 0, 2]

since the node occurs as root of subtree 2 of subtree 0 of subtree 1 of the overall
tree.

Modify the depth-first search algorithm so that it returns the tree address of the
node it finds, if any.

6 ••• Repeat the preceding problem for the breadth-first search algorithm.

7 ••• Define in rex a function that will return the node in a tree given its tree address. It
is possible that there is no node corresponding to a given address. Handle this
possibility by returning a list of the node in the case the node is found, and the
empty list in case of failure.

4.15 Searching Graphs

Searching a directed graph depth-first is similar to searching a tree, except that there are
additional complications arising from the possibility the graph is not necessarily a tree.
These are:

A given node may be the target of more than one other node (this is sometimes
called “fan-in”). We do not want to search from this node more than once. Thus
we need some way of remembering that we’ve seen it before.

A node may be in a cycle. Even though the node might be a target of just one
node, unless we remember whether we’ve seen the node before, we could cycle
forever and the search would not terminate.

The following graph is obtained by a slight modification of the previous tree. We see that
fan-in occurs at nodes 5 and 9. A cycle occurs among nodes 1, 3, and 8, and also node 5
by itself.
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1

2

5 6

3

7

9

8

We see that both non-tree phenomena can be handled by a common technique: refuse to
search from a node from that we’ve already searched.

For the present, we will modify the search algorithms to keep a list of nodes that have
been encountered. Loosely speaking, we check that list before searching the node a
second time. There are other ways of doing this that do not involve scanning the list, but
we will save them for an appropriate time later.

Another issue to be dealt with is that a general graph does not admit the representation we
have been using for trees. Thus we have to use a different representation for general
graphs. The one we will use now, for sake of concreteness, was introduced in Information
Structures:

A graph is a list. Each element is a list consisting of the name of a node
followed by the targets of that node.

The list representation for the preceding graph would thus be:

[ [1, 2, 3],
  [2, 5, 6],
  [3, 7, 8],
  [5, 5],
  [6, 9],
  [7, 9],
  [8, 1],
  [9] ]

Despite this assumption, we shall try to cast the search algorithms to be relatively free of
the assumption itself. We will do this by creating a function

get_targets(Node, Graph)

that, given a node and the graph, will return the list (possibly empty) of targets of the
node. Only this function needs to know how the graph is represented. So if we change the
representation, this is all we will need to change, not the search algorithm itself. The
algorithm consists of the following rules:
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Consider defining a depth-first search. The first rule is an interface function:
find_dfg(P, Node, Graph) tries to find a node satisfying P in the graph, that is
reachable from node Node.

find_dfg(P, Node, Graph) => find_dfg(P, [Node], Graph, [ ]);

The interface function calls the auxiliary function, with the set of “seen” nodes empty. If
the set of nodes remaining to be searched is empty, then failure is reported.

find_dfg(P, [ ], Graph, Seen) => 0;

If there is at least one remaining node and the first node satisfies P, then success is
reported.

find_dfg(P, [Node | Nodes], Graph, Seen) => P(Node) ? "1";

If the first node does not satisfy P, then we get the targets of the node. From those targets,
we remove any that have been seen already. We add the remainder to the front of the list
of nodes and continue the search, with the first node now noted as having been seen.

find_dfg(P, [Node | Nodes], Graph, Seen) =>
  Targets = get_targets(Node, Graph),
  New = difference(Targets, Seen),
  find_dfg(P, append(New, Nodes), Graph, [Node | Seen]);

For the particular graph representation described, function get_targets can be
expressed using the built-in rex function assoc. Recall that this function searches a list of
lists for a designated first component. If it finds one, in returns the list having that
component. Otherwise it returns the empty list.

get_targets(Node, Graph) =>
  Found = assoc(Node, Graph),
  Found == [ ] ? [ ] : rest(Found);

A simple version of difference is as follows:

difference([ ], B) => [ ];

difference([A | As], B) =>
  member(A, B) ?
    difference(As, B)
  : [A | difference(As, B)];

For breadth-first search of a graph, we only need modify the find rule by changing the
order of arguments to append:

find_bfg(P, [ ], Graph, Seen) => 0;

find_bfg(P, [Node | Nodes], Graph, Seen) => P(Node) ? "1";

find_bfg(P, [Node | Nodes], Graph, Seen) =>
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  Targets = get_targets(Node, Graph),
  New = difference(Targets, Seen),
  find_bfg(P, append(Nodes, New), Graph, [Node | Seen]);

The effect is to put new targets behind the current queue of targets.

Breadth-first searching a graph finds the node nearest to the starting node, in terms of the
number of arrows that need traversing. A variant of it is used in shortest-path or least-cost
path problems. We shall discuss this further in a later section. The concepts of breadth-
first numbering and depth-first numbering apply to graphs as well as trees, except that a
specific starting node must be specified. Also, the numbering depends on the order in
which the targets of each node are listed.

Exercises

1 •• Consider the following graph. What are valid depth-first and breadth-first
numberings relative to node 1 as a starting node?

1

2 4

3 7

5

6

2 •• In the preceding graph, suppose that P(n) is the property “n is a prime number
greater than 3”. What node would be found in a breadth-first search?

3 ••• Modify the depth-first search algorithm so that, rather than merely returning
success, the algorithm returns a list representing the path from the root to the node
found. For example, if we were searching the graph above for node 6, the list
returned might be [1, 4, 7, 5, 6].

4 ••• Repeat the preceding problem for the breadth-first search algorithm.

5 ••• A third form of search is known as iterative deepening. As with breadth-first
search, it finds nodes in order of increasing distance from the root, but it does not
require storage for a queue. It is effectively a series of depth-first searches with
increasing depth bounds. Construct a function for performing this form of search.

6 •••• Consider the following modification of breadth-first search: The arcs on a
directed graph each have a positive numeric cost (representing, say, distance or
travel time) associated with them. Devise an algorithm that, given a node, called
the source node, computes the least-cost path between this node and all nodes.
The cost of a path is defined to be the sum of the costs on the arcs in the path.
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1

2 4

3 7

5

6

0.1 0.2

0.3

0.1

0.3 0.10.1

0.20.2

The graph in this case can be represented as follows:

[ [1, [0.1, 2], [0.2, 5], [0.3, 4]],
  [2, [0.1, 4]],
  [3, [0.2, 7]],
  [4, [0.3, 7]],
  [5, [0.1, 6]],
  [6, [0.2, 7]],
  [7, [0.1, 5]] ]

The result of the algorithm would be a list of [Cost, Node] pairs. For source node 1 this
would be:

[[0, 1], [0.1, 2], [0.2, 4], [0.2, 5], [0.3, 6], [0.5, 7],
[Infinity, 3]]

4.16 Argument Evaluation Disciplines

It is often the case that there is more than one sub-expression to which rules can be
applied to a term. For example, consider a rule set for add:

add(0, M) => M;
add(N+1, M) => add(N, M)+1;

Suppose we want to evaluate the term

add(0, add(0, 5))

Here we could apply the rule for add(0, M) to the outer term to get

add(0, 5)

or to the inner term add(0, 5), to get the same thing. However, we will not always
rewrite to the same thing immediately. To see this, consider a term of the form

add(N+1, add(K+1, M))
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Applying a rule to the outer term gives us

add(N, add(K+1, M)) + 1

while applying to the inner term gives

add(N+1, add(K, M) + 1)

These two are obviously different, although by another rule application, we could convert
both of them to

add(N, add(K, M) + 1) +1

Applicative Order

Most programming languages adopt a specific discipline about where a rule will be
applied when there is a choice. The most common discipline is known as

applicative-order argument evaluation:

Give priority to applying a rule to an argument of a term before applying a
rule to the entire term.

Example: In f(g(0), h(1)), apply a rule for g or h before applying any
rule for f.

Even this is not without ambiguity, however, since there could be several arguments to
which rules apply. By leftmost applicative-order, we give priority to the leftmost
argument term first, and similarly for rightmost applicative-order.

Examples

In add(N+1, add(K+1, M)), we have an argument add(K+1, M) to which a rule is
applicable. Moreover, this is the leftmost such argument, so the rewritten term under
leftmost applicative order is add(N+1, add(K, M)+1).

In add(N+1, add(K+1, add(M+1, 2))), under leftmost applicative order, a rule is
applicable to the second argument, add(K+1, add(M+1, 2)). However, this argument
also has an argument to which a rule is applicable, so we must give priority to that
argument rather than the outer argument. Thus, the rewritten term would be
add(N+1, add(K+1, add(M, 2)+1)).
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Normal Order

Another evaluation-order discipline with important uses is known as

normal order argument evaluation:

Give priority of applying a rule to the entire term over applying a rule to
an argument of the term.

Example:  In f(g(0), h(1)), apply a rule for f before applying any rule
for g or h.

Examples

Under normal order we would have the following series of rewrites:

add(N+1, add(K+1, add(M+1, 2))) ==>
add(N, add(K+1, add(M+1, 2)))+1 ==>
add(N, add(K, add(M+1, 2))+1)+1 ==>
add(N, add(K, add(M, 2)+1)+1)+1

Contrast this with applicative order, where the rewrite series would be:

add(N+1, add(K+1, add(M+1, 2))) ==>
add(N+1, add(K+1, add(M, 2)+1)) ==>
add(N+1, add(K, add(M, 2)+1)+1) ==>
add(N, add(K, add(M, 2)+1)+1)+1

The end results are the same, but the intermediate details differ.

Even though applicative order is the most common, normal order has the advantage of
terminating in some cases where applicative order does not. As an example, consider the
following rules:

if(1, A, B) => A;
if(0, A, B) => B;

foo(N) => foo(N+1);

Consider the term

if(0, foo(0), 1)

Applicative order would require that foo(0) be evaluated before using the definition of
if. However, foo(0) will never converge. Therefore applicative order will never use the
definition of if and the entire computation diverges. On the other hand, with normal
order, the second rule for if will be used immediately and there will be no call for the
evaluation of foo(0).
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It can be shown that normal order is strictly more general, in the sense that there will
never be a case where applicative order gives an answer but normal order fails to give
one. Unfortunately, applicative order is the norm in most programming languages, not
normal order. One might remember this by the following quip:

Normal order isn't.

The reason that normal order is not "normal" has to do with normal order being more
complicated to implement, not that it is undesirable for mathematical reasons.

Normal Order in rex and Delayed Evaluation

As with most languages, the rex evaluator uses applicative order for all functions, except
for a few "special forms" such as the conditional form __ ? __ : __ , logical
conjunction &&, and logical disjunction ||, that evaluate arguments left to right as they
need them.

It is possible to achieve a custom normal order effect through what we will call the defer
operator. Any expression, including an argument to a function, can be "wrapped" as the
argument to an operator $ (read "defer"). The expression is not evaluated until it is
absolutely necessary. Thus, if we have an actual argument wrapped in $:

h($f(X, Y), Z)

this argument will effectively be treated as if a normal-order argument, while others will
be treated as applicative order. Only when, if ever, it becomes necessary for h to know
the value of f(X, Y) will the latter be evaluated. For example, in a conditional
expression

p(X) ? $f(X, Y) : g(Y, Z)

even if p(X) evaluates to 1, we do not need to know the value of f(X, Y). The value of
this expression is just $f(X, Y). If, on the other hand, we used f(X, Y) in a numeric
expression, such as

Z + $f(X, Y)

it becomes necessary to know what the value of $f(X, Y) is. At this point the expression
would be evaluated.

One of the key uses of $ in rex will be explained in the section Infinite Lists.
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Using Function Arguments to Achieve Delay

A traditional device for achieving the effect of delaying the evaluation of an argument
expression (i.e. the defer operator, as discussed with normal order evaluation) is to embed
the expression in question into the body of an additional function with no arguments.
Then, when we want to evaluate this expression, we apply the function (to no arguments).
For example, suppose that the expression we want to delay is

X + g(X, Y)

To pass this expression unevaluated, we actually pass the 0-argument function

() => X + g(X, Y)

Suppose that this function is bound to a variable D. Then when we want the evaluation of
the original expression to take place, we would compute

D()

(D applied to no arguments). This scheme differs slightly from the defer scheme in rex. In
the scheme being discussed, the program must know to expect the 0-argument function
and arrange for its application (to no arguments). Thus a function cannot be written that
will take either a delayed argument or an ordinary argument, unless some sort of tag is
also passed along to indicate which.

4.17 Infinite Lists (Advanced)

This topic describes a programming paradigm that is available in very few languages (rex
is one, of course!). It can be "engineered" in others, but sometimes with great difficulty.
However, due to the substantial power that this approach provides, it will likely be in
many high-level languages at some point in the future (how distant we hesitate to
speculate).

The rewriting approach provides an ideal way to describe and implement an unusual
feature that is available in some languages: the ability to manipulate lists as if they were
infinite. This requires delaying the computation of the tail of the list, as in [ A | $ L ],
until the tail is needed. Otherwise an attempt would be made to evaluate the tail, resulting
in divergence.

The List of All Natural Numbers

The simplest non-trivial example of an infinite list is the list of all natural numbers,
conceptually shown as

[0, 1, 2, 3, …]
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We want from to be a function that, with argument N, will generate the infinite list of
numbers from N on. The list above is the special case from(0). The definition of from
must use a normal-order list constructor. As discussed earlier, this can be achieved by the
delay wrapper $, as in:

from(N) => [ N | $ from(N+1)];

The idea here is that the recursive call to from(N+1) is not evaluated until needed. So if
we are showing the result of from(0), we would do these evaluations as it comes time to
print each successive element. Let us check this by giving a few rewrites of from(0):

from(0) ==>
[ 0 | $ from(1) ] ==>
[ 0 | [ 1 | $ from(2) ] ] ==>
[ 0 | [ 1 | [ 2 | $ from(3) ] ] ] ==>
[ 0 | [ 1 | [ 2 | [ 3 | $ from(4) ] ] ] ]

which is the same as

[0, 1, 2, 3 | $ from(4) ]

When applying a rule for a function that has such a list as an argument, the usual rules
apply: a formal argument [A | L] matches the actual argument so that A is the first
element of the infinite list and L is the rest of the infinite list. For example, define
functions first and rest by

first( [A | L] ) => A;

rest( [A | L] ) => L;

Then rest would force the evaluation of the delayed expression as necessary:

rest(from(0)) ==> rest( [0 | $ from(1)] ) ==> $ from(1)

If the result of rest were used, e.g. in evaluating

5 + first(rest(from(0)))

then $from(1) would be further expanded to get [1 | $ from(2)] and first would
extract the 1, rewriting to 5 +1, then to 6.

Using this idea, we can construct functions that have infinite lists as arguments and
results. For example, the function partial_sums produces a list of the sum of the first, first
two, first three, and so on, elements of its argument:

partial_sums( [1, 3, 5, 7, …] ) ==>
    [1, 4, 9, 16, …]

The rules are, using an auxiliary function partial_sums2:
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partial_sums(X) => partial_sums2(0, X); // 0 is initial accumulator

partial_sums2(Acc, [ ]) => Acc;

partial_sums2(Acc, [A | X]) => [(Acc + A) | $ partial_sums2(Acc+A, X)];

Unzipping an Infinite List

The following function "unzips" a finite or infinite list into two lists.

unzip(X) = [evens(X), evens(rest(X))];

evens([ ]) => [ ];
evens([A]) => [A];
evens([A, _ | X]) => [A |$ evens(X)];

Unzipping a list

Pipe Composition

A very attractive aspect of functions on infinite lists is that they can be composed as with
pipe composition discussed earlier. An example of pipe composition for infinite lists
occurs in the next example, and is previewed here.

3 [3, 5, 7, 9, ...] [3, 5, 7, 11, 13 ...]
odds sift

Figure 36: Piping an infinite stream through a function

This type of composition gives infinite lists value for certain computing applications,
such as digital signal processing, where the application is typically structured as a set of
interconnected stream-processing functions: integrators, filters, scalars, and the like.

Prime Number Sieve

The function primes below produces the infinite list of prime numbers beginning with 3.
It does this using the technique of "sieving". Consider the infinite list of odd numbers:

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, …

From this list, drop all those, other than the first (i.e. 3), that are multiples of the first:

3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, …

Now do the same for the next number that is left (5), i.e. drop all multiples of it:
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 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, …

Continue this way, dropping multiples of 7, then 11, …  The numbers that survive the
drops are the primes. At every major step, the first number survives, so this insures that
every prime will eventually be produced.

The program is:

primes() = sift(odds(3));

odds(N) = [N | $ odds(N+2)];

sift([A | X]) => [A | $ drop((X) => divides(A, X), sift(X))];

Function primes generates the infinite list of primes.

To gain maximum utility from this paradigm, it is helpful to be able to compose programs
with loops, as will be discussed in the next section.

Functional Programs with Loops

Another technique that can be used to generate infinite lists is to have "loops" in the
defining equations. For example, the following equation:

Ones = [ 1 |$ Ones ];

defines Ones to be the infinite list [1, 1, 1, 1, … ]. The figure below shows how this
works, by piping the output back into the | (followed-by) function.

|

1

[1, 1, 1, ... ]

Figure 37: A simple functional program with a loop.

Here | represents the "followed-by" function used to construct lists.

Example - Another way to get the partial sums of an infinite sequence X is to use:

Psums = map(+, X, [0 | $ Psums]);

Here + is applied to two sequences, so this is the map form of +, rather than the simple
arithmetic form. The definition of Psums has a "loop" in the sense that the definition
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itself uses the quantity Psums. The two programs with loops for Ones and Psums can be
shown as follows:

|

0

+

[1, 2, 3, 4, ... ]

[1, 3, 6, 10, ...]

Figure 38 A functional program with a loop showing result for an example input.

Here + represents map(+, . , .)

Here is an example of how this works in rex:

rex > X = from(1);
1

rex > X;
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, …

rex > Psums = map(+, X, [0 | $ Psums]);
1

rex > Psums;
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, …

Fibonacci sequence using a recursive group

The examples above both defined fixed infinite sequences using loops. If we want to
define functions using loops, we need something like an equational guard, yet slightly
different. Consider the following attempt to define the function fib that generates the
Fibonacci sequence:

fib() = Result = [1, 1 | $ map(+, Result, rest(Result)) ],
  Result;

This definition first defines the quantity represented by variable Result using an
equational guard, then gives that value as the result of the function. Syntactically this
definition is well-formed. However, the value of Result used on the right-hand side of
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the equation is not the same as the one on the left; the value is, by definition, the value of
Result in the ambient environment (it may or may not be defined). What we want is an
environment where both uses of Result mean the same thing. We had this in the global
environment in earlier examples. But how do we get it inside the function fib?  The
answer is that we need a special construct called a recursive group that creates a
recursive environment. In rex this is shown by giving a series of equations inside braces
{…}. Each variable defined in that environment has the same meaning on the left- and
right-hand sides of the equations. The last thing inside the braces is an expression, the
value of which is the value of the group. The correct version of fib() is as follows:

fib() = { Result = [1, 1 | $ map(+, Result, rest(Result)) ];
    Result};

Here the first equation defines the variable Result to be a list starting with [1, 1, …]. The
rest of the list is the pairwise sum of the list itself with the rest of the Result , [1, …].
Thus the first element in this sum is 2, the next element is therefore 1+2 ==> 3, the next
2+3 ==> 5, and so on. A rex dialog show this:

rex > fib();
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, …

|

1

[1, 1, 2, 3, 5, 8, 13, . . .]

|

1

+

Result

X

Figure 39: A functional program generating the Fibonacci sequence.

The use of rest in the program was eliminated by using
the fact that rest([A | X]) == X

A definition that conforms directly to the diagram, using an additional variable X, is:
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fib() = { Result = [1 | $ X];
          X = [1 | $ map(+,Result, X)];
          Result};

Simulating Differential Equations

Differential equations are equations that are to be solved for functions, rather than
numbers, as unknowns. These equations are constructed using differential, as well as
algebraic, operators. A typical type of differential equation involves real-valued functions
of one variable. Often that variable is identified as a time parameter. We can simulate
such equations by using a discrete approximation to time. In this case, a function of time
can be represented by the sequence of values sampled at discrete time instants. With this
in mind, it is possible to use our infinite lists as these sequences, i.e. to represent real-
valued functions of time.

As an example, the derivative operator can be simulated by taking differences of adjacent
argument values. The definition is:

deriv([A, B | X]) = [(B - A) | $ deriv([B | X]) ];

As it turns out, however, we do not use this operator directly in the solution method to be
presented.

The usual algebraic operators +, -, *, etc. have to be mapped as pairwise operators on
infinite lists. Thus to add the values of two "functions" F and G represented as sequences,
we would use map(+, F, G).

First-Order Equation

Suppose that we wish to solve a first-order (meaning that the highest-order derivative is
1) linear homogenous (meaning that the rhs is 0) equation:

dX
dt   + a*X(t) = 0

subject to an initial value X(0) = X0. A solution entails finding a function X that satisfies
this equation. We will represent the function X by a sequence. The sequence corresponds
to the values of the true function X at points 0, 0 + dt, 0 + 2dt, …, treating dt as if it were
an actual interval. This interval is known as the “step size”. It will become implicit in our
solution method. Solving the equation for dX:

dX = -a*X(t)*dt

But also
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dX = X(t+dt) - X(t)

Combining these two and solving for X(t+dt):

X(t+dt) = X(t) - a*X(t)*dt

Taking dt to be 1, we have

X(t+1) = X(t) - a*X(t)

Now we have the approximation X(t+1) expressed in terms of X(t). Combining that with
the known initial value X0, we can write in rex:

X = [X0 |$ map(-, X, scale(a, X))];

(Note that this equation has a “loop”.)  As before, we are using the map version of
operator - that works on two sequences pairwise. For a given values of X0 and a, the
sequence X is thus determined. For example, the following figure shows the points in
sequence X when X0== 1 and a == -0.01.

1

2.8

0 100

Graph of the solution to a first-order differential equation.

Analytically, we know that the solution to the equation is X(t) = e0.01t, which jibes with
the numerical solution obtained; at t = 100, we have X(100) == 2.70481, which is
approximately equal to e == 2.71828.

The solution method represented above is effectively what is called Euler’s method. It is
not the most accurate method, but it is believed that the same solution technique using
infinite lists can also be applied to more refined methods, such as the Runge-Kutta
method.

Second-Order Equation

To show that the method presented above is general, we apply it to a second-order
equation, of general form:
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d2X
dt2   + a* 

dX
dt   + b*X(t) = 0

Where initial values are given for both X and 
dX
dt   . It is common to introduce a second

variable Y to represent  
dX
dt   , transforming the original single equation to a system of

equations:

dY
dt   + a*Y(t)+ b*X(t) = 0

Y(t) = 
dX
dt   

As before, we treat dt as if it were a discrete interval. As before, we solve for dX and dY,
and equate these to X(t+1) - X(t) and Y(t+1) - Y(t) respectively. This gives:

X(t+1) = X(t) + Y(t)*dt

Y(t+1) = (1 - a)*Y(t) - b*X(t)

Translating into rex, using infinite lists:

X = [X0 | $ map(+, X, Y)];

Y = [Y0 | $ map(-, scale((1-a), Y), scale(b, X))];

Here when a scalar is multiplied by a sequence, the result is that of multiplying each
element of the sequence by the scalar. The diagram below shows the first 100 values of X
when a == 0.1, b == 0.075, X0 == 1, and Y0 == 0.

1

-1

0
0 100

Graph of the solution to a second-order differential equation.
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Exercises

1 • Trace the first few rewrites of partial_sums(from(0)) to verify that the partial
sums of the integers are [0, 1, 3, 6, 10, 15, …]

2 • Give rewrite rules for a function odds such that

odds(1) ==> [1, 3, 5, 7, 9, …]

3 •• Certain sets of rules on lists also make sense on infinite lists. An example is map,
as introduced earlier. For example,

map(square, odds(1)) == [1, 9, 25, 49, 81, …]

Review the previous examples we have presented to determine which do and
which don't make sense for infinite lists. Indicate where $ needs to be introduced
to make the definitions effective.

4 •• Give rules for a function that takes a function, say f, as an argument, and produces
the infinite sequence of values

[f(0), f(1), f(2), f(3), …]

5 ••• Give rules for a function that take a function, say f, and an argument to f, say x, as
arguments, and produces the sequence of values

[f0(x), f1(x), f2(x), f3(x), …]

where fi(x) means f(f(…f(x)…)) (i times).

6 •• Suppose we use infinite lists to represent the coefficients of Taylor's series. That

is, a
0 +a

1
x +a

2
x2 + a

3
x3 + … is represented by the infinite list [a

0
, a

1
, a

2
, a

3
,  …].

Present rex functions that add two series and that multiply them by a constant.

7 ••• Continuing the above representation of series, construct a rex function that
multiplies two series. The corresponding operation on infinite lists is called the
convolution of the lists.

8 •••• Continuing the above thread, construct a rex function that derives the
coefficients of

1
1 - s 

where s is a series.
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9 •••• Derive rex functions that generate the series of coefficients for your favorite
analytic functions (exp, sin, cos, sinh, etc.).

10 ••• ["Hamming's problem"] Develop a function that generates, in order, the infinite

list of numbers of the form 2
i
3

j
5

k
, where i, j, and k are natural numbers, i.e.

[2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, …]

11 •••• Referring to the earlier problem regarding transposing a matrix, construct a
function that will transpose an infinite matrix, represented as an infinite list of
infinite lists. For example, if the function's argument is:

[[0, 1, 3, 6, 10, …], [2, 4, 7, 11, …], [5, 8, 12, …],
 [9, 13, …], [14, …], …]

the transpose is

[[0, 2, 5, 9, 14, …], [1, 4, 8, 13, …], [3, 7, 12, …],
 [6, 11, …], [10, …], …]

12 ••• Referring to the previous problem, construct a function that will linearize an
infinite matrix by "zig-zagging" through it. For example, zig-zagging through
the first matrix above would give us:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, …]

13 ••• Construct a function that is the inverse of the zig-zag function in the previous
problem.

14 ••• Define a version of 'pairs' that will work in the case that either or both argument
lists are infinite, e.g.

pairs(from(0), from(0)) ==>

[[0, 0], [1, 0], [0, 1], [2, 0], [0, 2], [1, 1], [0, 3], …
]

Thus, such a definition demonstrates the mathematical result that the Cartesian
product of a countable set is countable.

15 ••• Derive solutions for cases in which the right-hand side of the above equations
are replaced by “forcing functions” of t, which in turn are represented as
sequences.

16 ••• Derive solutions for cases in which the coefficients of the equation are functions
of t rather than constants..
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17 •••• Explore the adaptation of more refined solution methods, such as Runge-Kutta
(if you know this method) to the above approach.

4.18 Perspective: Drawbacks of Functional Programming

Functional programming is important for a number of reasons:

• It is one of the fundamental models of computability.

• It provides succinct and elegant means of manipulating potentially very large
information structures without deleterious side-effects on data used by some
models.

• Consequently, it is a useful model for parallel computation, which can be
prone to anomalous behavior if side-effects are not managed carefully.

Functional programming can also fit well with other models, such as object-oriented and
logic programming, as will be seen. Despite these desirable traits, we hesitate to
recommend it as the only model one consider for software development. Instead we
would prefer to see its use where it fits best.

An example of where functional seems less than ideal is computations that need to
repeatedly re-assign to large arrays destructively. Here "need" is used subjectively; there
is no widely-accepted theoretical definition of what it means to require destructive
modification. Intuitively however, the following sort of computation is a canonical
example: Consider the problem of maintaining a histogram of a set of integer data. In
other words, we have an incoming stream of integers in some range, say 0 to N-1, in no
particular order. We want to know: for each integer in the range, how many times does it
appear in the stream. The natural way to solve this problem is to use linear addressing:
for each data item in the stream, use the item to index an array of counts, adding 1 each
time that integer is encountered. This method is straightforward to implement using
destructive assignment to the array elements. However, a functional computation on
arrays would create a new array for every element in the stream, which will obviously be
costly in comparison to using destructive modification. Some functional programming
languages are able to get around this problem by using clever compilation techniques that
only apparently create a new array at each step but that actually re-use the same array at
each step. However, it does not appear that such techniques generalize to all possible
problems.

A place where functional programming seems to yield to object-oriented programming
techniques is in programming with structures that seem to inherently require modification
because there is only one of them. An example is in graphical user interface
programming. Here there is only one of each widget showing on the screen, which
contains the state of that widget. It does not make sense to speak of creating a new widget
each time a modification of the state is made.
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4.19 Chapter Review

Define the following concepts or terms:

accumulator argument
append
applicative order
auxiliary function
beta reduction
breadth-first search
copy rule
delayed evaluation
depth-first search
equational guard
Euclid's algorithm
Euler's method
Horner's rule

insertion sorting
interface function
guarded rule
inductive definition
radix representation
merge sorting
mutual recursion
normal order
radix principle
recursion
selection sorting
sieve
tail recursion

4.20 Further Reading

L.C. Paulson, ML for the working programmer, Cambridge University Press, Cambridge,
MA, 1991.

Simon Thompson, Haskell - The craft of functional programming, Addison-Wesley,
Reading, MA,1999.



5. Implementing Information Structures

5.1 Introduction

This chapter discusses some of the key principles for constructing information structures,
such as lists and trees, and discusses primitive implementation in Java as an example.
Such structures provide a foundation for the understanding of algorithm design
considerations that play a central role in computer science, some of which will be
presented in later chapters.

We have already discussed arrays extensively. Arrays are one of the key components of
structural computing. The other components are records (as they are called in Pascal) or
structs (as they are called in C). In Java, the class concept is used as an extension of this
notion, in the sense that a class provides methods for accessing the data as well as a way
to represent the data internally. Classes, coupled with arrays, are the key building blocks
for constructing a wide variety of "data structures". Further discussion of the object
concept and its uses appears in the following chapter.

5.2 Linked Lists

Linked lists are one of the key structuring devices in computer software. Generally
speaking, lists are used to build sequences of data items incrementally, especially when
we have no advanced notion of how large the sequence will ultimately be. Instead of
having to estimate an appropriate initial size, and possible make wholesale adjustments
during population of an array, lists allocate item by item, using only as much storage as is
needed to hold the items plus a per-item overhead. We describe how linked lists provide a
way of implementing the list abstraction found in rex, as well as implementing other list
abstractions.

As an example of where linked lists are useful, consider implementing a text editor
application. Suppose that the text is organized as a series of paragraphs. The editor
provides a way of cutting a paragraph from one part of the document and pasting it in
another. In order to make this operation fast, we would avoid storing the paragraphs as a
linear array, since this cutting and pasting would entail shifting the elements of the array
each time we perform an operation. Instead we would have each paragraph remember the
paragraph after it by a reference to that paragraph. This kind of use of references is seen
whenever we read a newspaper. The blocks of text for an article (which don't coincide
with paragraphs necessarily) are scattered on different pages. At the end of a block is a
"reference" message "continued on page ...". In a computer, references are not simply
pieces of text. Instead they are implemented as memory references or pointers to the next
block. Thus the process of finding the target of a reference is very fast, as it can exploit
the linear addressing principle.

The process of going from a reference to its target is called dereferencing.
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We could effect the cut and paste operation simply by changing references rather than
doing a physical cut and paste. Note that some newspapers also provide reverse
references "continued from page ...". These would be called "doubly-linked lists" and are
mentioned further in the exercises.

1

2

3

4

5

1

2

3

4

5

Figure 40: Exchanging paragraphs 2 and 4 by changing references

The key idea of linked lists is to provide a flexible way of connecting units of information
together even though they reside in non-contiguous units in computer memory. This is
accomplished by constructing a list out of objects, often called cells, where each cell
contains both a data item and a reference to the next cell in the list. In the final cell of the
list, the reference is a special null reference that indicates there are no further cells. The
null reference cannot be dereferenced. In Java, attempting to dereference a null
reference will result in a run-time error. In some languages, attempting to do so may
produce an unpredictable result. Thus one should always make sure, one way or another,
that a reference is not null before dereferencing it.

The same test for a null reference, which tells whether we are at the end of
the list, is also the one that tells whether we have the ability to dereference
the reference, that is, whether there is any target.

The figure below shows how a linked-list cell is viewed. The Java code for declaring this
type of cell might be:
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class Cell
{
Item data;
Cell next;
}

Here Item refers to the type of the data item itself. This can be either a basic type or a
defined type. The field next is the reference to the next cell. The reason it is not
necessary to make any special mention that next is a reference is that it is implicit: In
Java, all variables representing objects are implicitly references. Because the type of
object being defined is named cell and cell is mentioned in the definition, this can also be
viewed as recursive type definition:

Cell_reference = Item x Cell_reference | null

     
 

data 
field

next 
field

Cell

Cell

reference

Figure 41: List cell structure

The figure below shows how we depict the case where the value of next is the null
reference. This form is used because the next field doesn't point to anything.

Figure 42: Representing the case of the last element,
i.e. the next reference does not point to anything

The following is an example of a linked list with data elements a, b, c, d.

a db c

Figure 43: A linked list of four elements

Of course, such structures have already been mentioned in Chapter 2. It is also possible
for the elements in the list to be references to the actual data elements. This is especially
useful in the case that the elements are of non-uniform size, as we might have with a list
of strings.
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We distinguish between two varieties of lists, but many variations in between are also
possible:

Closed lists:
A closed list is a linked list, the cells of which are not normally
shared by other lists.

Open lists:
An open list is a linked list in which the cells are shareable by
other open lists.

5.3 Open Lists

In an open list, sharing is encouraged, to economize on storage space and to reduce
overhead from copying. However, open lists complicate matters of reclaiming unused
storage, since we cannot simply delete a cell just because we are done with it in one: such
a cell might also be one or more other lists. Java takes care of such reclamation
automatically by computing whether each cell is accessible or not when storage becomes
in short supply. Cells that are no longer accessible are recycled (deallocated and made
available for other uses).

Part of the reason we emphasize open lists here is that they correspond in a natural way to
the implementation of lists in rex and related languages. In simplest terms, a list can be
viewed as a reference to a cell. The empty list is identified with the null reference. For
this reason, we could simply rename the Cell class previously presented to be a list class.
The distinction between list and cell in this simple implementation is purely one of
viewpoint. In more complex closed-list implementations to be described later, it will be
important to distinguish between lists and cells.

class List
{
Item First; // data in the first cell
List Rest; // reference to next cell and rest of the list
}

To make this more convincing, we show how to implement the rex functions cons,
first, and rest.

Function cons constructs a new list from an existing list and a new first element. Were it
to be defined anew in rex, the definition would be:

cons(E, L) = [E | L];

With the definition of List used previously, this function would be defined by including it
as a "static method" within the class definition, since Java does not have functions as
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such. A static method is one that applies to all objects in the class in general, rather than a
particular object.

class List
{
Item First;
List Rest;

// return a new list (reference to cell) created from an existing
// list (referenced by Rest) and a data item

static List cons(Item First, List Rest)
  {
  List result = new List;
  result.First = First;
  result.Rest = Rest;
  return result;
  }

}

A more elegant way to accomplish this same effect is to introduce a constructor for a List
that takes the First and Rest values as arguments. A constructor is called in the context of
a new operator, which creates a new List. Adding the constructor, we could rewrite cons:

class List
{
Item First;
List Rest;

// construct a List from First and Rest

List(Item First, List Rest)
  {
  this.First = First;
  this.Rest = Rest;
  }

// return a new list (reference to a cell) created from an item
// First and an existing list Rest

static List cons(Item First, List Rest)
  {
  return new List(First, Rest);
  }
}

The functions first and rest would be defined in rex as follows:

first( [E | L] ) = E; // return the first element in a list

rest( [E | L] ) = L; // return the list of all but the first

We now add corresponding functions to the Java implementation:
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class List
{
Item First;
List Rest;

// construct a List from First and Rest

List(Item First, List Rest)
  {
  this.First = First;
  this.Rest = Rest;
  }

// return a new list (reference to a cell) created from an item
// First and an existing list Rest

static List cons(Item First, List Rest)
  {
  return new List(First, Rest);
  }

// return the first element of a non-empty list

static Item first(List L)
  {
  return L.First;
  }

// return all but the first element of a non-empty list

static List rest(List L)
  {
  return L.Rest;
  }

// return indication of whether list is empty

static boolean isEmpty(List L)
  {
  return L == null;
  }

static boolean nonEmpty(List L)
  {
  return L != null;
  }
}

We took the liberty of also adding the functions isEmpty and nonEmpty to the set of
functions being developed, as they will be useful in the following discussion.
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Now let's use these definitions by presenting the implementation of some typical rex
functions. Consider the definition of function length that, as we recall, returns the length
of its list argument. The rex definition is:

length( [ ] ) => 0;

length( [F | R] ) => length(R) + 1;

The translation into Java, which could go inside the class definition above, is:

static int length(List L)
  {
  if( isEmpty(L) )  return 0;

  return length(rest(L)) + 1;
  }

Notice that each rex rule corresponds to a section of Java code. First we check whether
the first rule applies by seeing if the list is empty. If it is not empty, we apply the function
recursively and add 1.

As an alternate to implementation of the length function, we could use an iterative, non-
recursive, solution:

static int length(List L)
  {
  int result = 0;

  while( nonEmpty(L) )
    {
    L = rest(L); // "peel" the first element from the list
    result++; // record that element in the length
    }

  return result;
  }

Although this version is non-recursive, it is perhaps more difficult to understand at a
glance, as it introduces another variable to worry about. Depending on the compiler,
however, this might well be the preferred way of doing things.

Note that the length function should not, and does not, modify its argument list. It
merely changes the value of the local variable L which is a reference to a cell.

Now let's try another example, the function append. First in rex:

append( [ ], M ) => M;

append( [A | L], M ) => [A | append(L, M)];

then in Java:
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static List append(List L, List M)
  {
  if( isEmpty(L) ) return M;

  return cons(first(L), append(rest(L), M));
  }

Notice that the pattern is very similar to the recursive implementation of length. In the
case of append however, there is no clear and clean way in which the function could be
implemented iteratively rather than recursively.

Finally, let's look at a function which was implemented with an accumulator argument
earlier: reverse. In rex we employed an auxiliary function with two arguments, one of
which was the accumulator.

reverse( L ) = reverse( L, [ ] );

reverse( [ ], R ) => R;

reverse( [A | L], R ) => reverse( L, [A | R]);

A literal translation into Java would be to have two functions corresponding to the two
rex functions:

static List reverse(List L)
  {
  return reverse(L, null);
  }

static List reverse(List L, List R)
  {
  if( isEmpty(L) ) return R;

  return reverse(rest(L), cons(first(L), R));
  }

In the case of reverse, we can get rid of the need for the auxiliary function by using
iteration. An alternate Java definition is:

static List reverse(List L)
  {
  List result = null;
  while( nonEmpty(L) )
    {
    result = cons(first(L), result);
    L = rest(L);
    }
  return result;
  }
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This version is probably the preferred one, despite it being slightly removed from the
original rex definition, since it does not introduce the complication of an auxiliary
function.

Exercises

(You may wish to develop rex versions of these solutions first, then translate them to
Java.)

1 •• Construct a Java function which will test whether an element occurs in an
argument list.

2 •• Construct a Java function which will add an element onto the end of a list,
returning a totally new list (leaving the original intact).

3 •• Construct a Java function which will produce as an open list the digits of an
argument number in a given radix.

4 •• Construct a Java function which will produce a number given the list of digits in a
given radix as an argument.

5 ••• Construct a Java function which will produce a sorted list of the elements from its
argument list.

6 ••• Construct a Java function which will produce the list of all subsets of an argument
list viewed as a set.

7 ••• Construct a Java function which will return, from a sorted list, a sorted list of the
same elements with no duplicates.

5.4 Closed Lists

Some of the techniques for open lists can be used to implement closed lists. Recall that
while open lists generally encouraging tail-sharing, closed lists provide a way to prevent.
While open lists provide a nice mathematical programming style, dealing with closed
lists, e.g. using destructive modification, should also be part of our repertoire. In some
cases we use closed lists to save space. Rather than create a new list: we modify the
elements or references directly in place. Closed lists can also save time: To append one
list to another, we can get by just by modifying references rather than recreating the first
list as function append does. Because modifying lists is more error prone than creating
new ones, we must be more careful if we decide to do any form of sharing. Usually it is
best to avoid sharing whenever lists are being modified destructively.
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In a sense, a closed list can be implemented by putting a wrapper around an open list for
which no sharing is to take place. In the absence of sharing, it makes sense to do things
which we wouldn't wish to do with open lists, such as keep track of the last cell in the list
and modify it destructively.

The usual way to provide a wrapper is through a list header, a particular object which
identifies the list and through which initial accesses are made. Auxiliary information,
such as the length of the list, can also be maintained in the header.

With open lists, we may or may not have a header. Our initial primitive exposition was
without, and corresponds to implementations in rex and related languages.

The figure below shows a closed list, where auxiliary information, namely a reference to
the last cell in the list, is maintained. A type definition for the header might be:

class closedList
{
Cell head;
Cell tail;
}

where Cell is as previously declared.

a b ctop

Figure 44: Example of a closed list with 3 elements: a, b, c.

Common uses of closed lists are data containers which maintain objects in a certain order
and allow addition or removal only according to a pre-specified discipline:

stack - data are removed in the opposite order of insertion

queue - data are removed in the same order of insertion

We will say more about such containers in later chapters. The figures below depict these
uses for linked lists. We leave it to the reader to provide code for the appropriate data
operations for these abstractions.

a b ctop

Figure 45: A stack implemented as a closed list.
The header contains a reference to the top cell.
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a b ctop

Figure 46: A queue implemented as a closed list.
The oldest cell is removed first.

Insertions take place after the youngest cell.

A more complete presentation of a closed list implementation will come once we have
introduced object-oriented concepts in Object-Oriented Computing. For now, we will be
content with a simple example of what can be done.

Appending Closed Lists

We will use the form of closed list described earlier, with a header that points to both the
first and last element in the list. If the list is empty, we will assume that both of these
references are null. Before writing any code, it is helpful to draw of picture of what is to
happen. Then a series of statements can be constructed to carry out the plan. Finally,
special cases, such as empty lists, must be dealt with to make sure the code works for
them.

db c

ge f

Figure 47: Two closed lists before appending
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db c

ge f

Figure 48: Closed list after appending second to first.
The second list is no longer shown as a separate entity,

as it would not be advisable to use it once its cells are implicitly shared.

Assume the following structural definition for the types closedList and cell:

class closedList
{
Cell head;
Cell tail;
}

class Cell
{
Item data;
Cell next;
}

In order to effect the appending of list M to list L, we need to do the following:

L.tail.next = M.head;  // connect the tail of L to the head of M

L.tail = M.tail;   // install the tail of M as the new tail of L

We also have to deal with the null cases. If L is empty, then L.tail is null, so we
certainly don't want to dereference it. However, in this case we need to set L.head to
M.head. On the other hand, if M is empty, then M.head is null, so setting L.tail.next to
M.head does no harm. But in this case, M.tail will also be null. We want to leave
L.tail as it was, pointing to the tail of L. So the final code, packaged as a procedure
which modifies L, is:

void append(closedList L, closedList M)
{
if( L.tail == null )
  L.head = M.head;         // L is null, make L's head be M's
else
  L.tail.next = M.head;    // L is not null, connect L to M

if( M.head != null )
  L.tail = M.tail;         // M is not null, make L's tail be M's
}
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Exercises

1 •• Construct a procedure find which takes a closed list and an argument of type
Item and returns a reference to the first occurrence of a cell containing that
element, or null if the element does not occur.

2 ••• Construct a procedure reverse which reverses a closed list in place. Be sure to
handle the empty list case.

3 ••• Construct a procedure insert which destructively inserts an item into a closed
list given a reference to the cell before which it is to be inserted. Assume that if
this reference is null, the intention is to insert it at the end of the list.

4 ••• Construct a procedure delete which destructively removes an item in a closed
list given a reference to the cell to be deleted.

5 ••• A doubly-linked list (DLL) is a form of closed list in which each cell has two
references, pointing to both the next cell in the list and the previous cell in the
list (the latter reference is 0 if there is no previous cell).

Figure 49: A doubly-linked list of four elements

Give a Java definition for a) the cell of a DLL, and b) a DLL. (Take into
account the possibility of a DLL with no elements.)

Develop a set of procedures that do each of the following:

6 •• Find an item in a DLL based on its value. The result is a reference to the cell, or
0 if no such value was found.

7 •• Delete the cell pointed to by a given reference.

8 •• Insert a new cell with a given value following the cell identified by a reference.

9 •• Insert a new cell with a given value before the cell identified by a reference.

10 •• Concatenate two DLL's to form a new DLL.

11 •• Create a DLL with the same values as are contained in an open list.

a b c d
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12 •• Create an open list with the same values as are in a DLL.

13 ••• Think of some applications where a DLL is a more appropriate structure than an
ordinary linked list.

14 ••• A ring is like a doubly-linked list in which the first and last elements are linked
together, as suggested below. This type of structure is used, for example, in
some text editors where searches for the next occurrence of a specified string
wrap around from the end of the text to the beginning.

Figure 50: A ring of four elements

Repeat the previous two exercises substituting "ring" for DLL.

15 ••• A labeled binary tree  (LBT) is structure constructed from nodes similar to
those in a doubly-linked list, but the references have an entirely different use.
An LBT is a branching version of an open list. Each cell has a data item (called
the "label") and two references which themselves represent LBT's.

a

b

c

d

e

f

g

h

Figure 51: A labeled binary tree

a b c d
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16 ••• Develop a set of abstractions similar to the abstractions cons, first, rest, null,
etc. for open lists.

17 ••• A traversal of an LBT is defined to be a linear list, the elements of which are in
one-to-one correspondence with the nodes of the LBT. There are several
standard types of traversals, enumerated below. Develop functions which
produce each form of traversal from an LBT.

In each of the following cases, the traversal of an empty tree (represented by a
null reference) is the empty list.

In an in-order traversal, the elements are ordered so that the root element is
between an in-order traversal of the left sub-tree and the right sub-tree. An in-
order traversal for the tree in the diagram is:

(a b c d e f g h)

since c is the root element, (a b) is an in-order traversal of the left sub-tree of the
root, and (d e f g h) is an in-order traversal of the right sub-tree of the root.
(These facts are established by applying the definition recursively.)

In a pre-order traversal, the elements are ordered so that the root element is
first, followed by a pre-order traversal of the left sub-tree, then a pre-order
traversal of the right sub-tree. For the example above, a pre-order traversal is

(c b a g e d f h)

In a post-order traversal, the elements are ordered so that the root is last, and is
preceded by a post-order traversal of the left sub-tree, then a post-order traversal
of the right sub-tree. For the example above, a post-order traversal is

(a b d f e h g c)

18 •••• In a level-order or breadth-first traversal, the elements are ordered so that the
root is first, the roots of the two sub-trees are next, then the roots of their sub-
trees, left-to-right, etc. For the example above, the level-order traversal is

(a b g a e h d f)

Develop a function that produces the level-order traversal of a LBT.

19 ••••• Show that the information in a traversal by itself is insufficient to re-establish the
LBT from which it came. Is it possible to use two different traversals to re-
establish the LBT?  If not, demonstrate. If so, which pairs of traversals work?
For those pairs, develop a function that constructs the tree given the traversals.
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 20 ••• Develop a formula for the number of null references in an LBT as a function of
the number of nodes N. Prove your formula by induction.

5.5 Hashing

The principle of hashing combines arrays and lists to achieve an astounding effect:
efficient time access to a large volume of data based on key words, numbers, or phrases
stored in the data. We present here just one of many variations on the concept. The lists
appear to be somewhat closed, but are essentially simple open lists with headers.
Typically all addition can take place at the front end. As such, the lists are functioning as
write-only stacks, the latter being discussed in more generality in the next chapter.

The problem addressed by hashing is to access "records", e.g. structs, according to some
"key" value. The keys could be large numbers or strings for example. If a large number of
such records are stored in an array, it can take considerable time to search the array to
find the one corresponding to a given key. On the other extreme, we could use linear
addressing to access an array by using the key as an index. However, for many such
indices there will typically be no record, so much memory space could be wasted with
unused locations. It would not be feasible to create such an array for more than a few
hundred million keys given current computer technology.

Figure 52: Array of 13 buckets, each a linked list, used for hashing.
The numbers in the buckets represent key values.

bucket
indices

2

0 5 10

3654

248 10

60

18

47

2 4 8 11

bucket
contents

31

56
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Hashing "folds" the indexing array so that the same location is used for multiple records.
These records are linked together in a list. The records corresponding to any one location
are called a "bucket". The bucket is searched linearly. The trick to fast access is to keep
the buckets small. This can be done by keeping the index array nominally large and
having a way of distributing the records more-or-less "randomly" into the buckets. Based
on only the key, we have to know how to find the bucket, both to insert the record in the
bucket in the first place and to find out if a record with a given key is in the bucket. The
overall structure, as illustrated in the figure, is typically called a hash table.

For the example above, we simply took the key value modulo the table size, 13, and used
the result as an index. Thus the bucket for key 18 is 18 % 13 ==> 5, while the bucket for
key 47 is 47 % 13 ==> 8. Typically such a simple bucket computation will not assure
very random distributions. So rather than taking the raw key value mod the table size, we
agree in advance on a function

h: key_values → integers

and use

h(k) % table_size

as our index of the bucket for key k. This kind of function is called a hash function. By
careful choice of h, we can get very random distributions and handle arbitrarily large key
values. We can even use strings or other structures as key values, by considering those
structures to be numerals in a certain radix.

Example Hash Function

The following hash function, hash_pdg (for "pretty darn good") works effectively on
strings, producing an unsigned long. Before using the resulting value to index the hash
table, the value produced by the function is taken modulo the table size. This insures that
indices are within range. The function works by using the integer values of successive
characters in the string. An accumulator h is initialized to 0. Each character is added to h
multiplied by a constant to obtain a new value of h. The multiplier has been chosen to
randomize the result as much as possible.

unsigned long hash_pdg(char str[ ])
{
int multiplier = 131;
unsigned long h = 0;
int N = str.length();
for( int i = 0; i < N; i++ )
  {
  h = h*multiplier + str[i];
  }
return h;
}

The origin of the function is G. H. Gonnet and R. Baeza-Yates, 1991.
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5.6 Principle of Virtual Contiguity

We conclude this chapter with a reference-based structure quite different from linked
lists. This is an array-like structure for simulating large arrays from smaller ones. The key
idea here is to approach the performance availed by the linear addressing principle,
without the need for having a single contiguous array.

This principle is used in the structure of so-called virtual memory computers, which are
now commonplace. We explained above how we need to have data stored in contiguous
memory locations if we are to exploit the linear addressing principle. This requirement
can present a problem when very large arrays are involved: it could happen that, at the
time a request for a large array is made, the memory has become temporarily
"fragmented". That is, there is enough total memory available in terms of the number of
storage locations, but no contiguous block that is large enough to hold an array of desired
size. The principle of virtual contiguity can be used to "piece together" smaller blocks,
with a slight penalty in access time.

Suppose we need to allocate an array requiring 106 bytes of memory but there is no block

available of that amount. Suppose that there are 100 blocks of 104 bytes each available in
various blocks. The principle of virtual contiguity allows us to piece these blocks together

to give us our 106 blocks. This piecing is done by adding a second level of indexing, as
implemented by an index array 100 addresses in length. Call the virtual array A and the
index array T (for "table"). The values T[0] .... T[99] hold the base addresses of our 100

blocks of 104 bytes each. Thus, to access A[i], we first compute i / 100 (using integer
division) to find out which block to use, then use i % 100 to access within this block. In
equations:

&A[i]  ≡ T[i / 100] + i % 100

where &A[i] means the address of A[i] in memory.



Implementing Information Structures        183

A

B

D

C

A

B

C

D

Figure 53: Virtual contiguity:
left: array as perceived by program;

right: array as implemented in linear address-space memory

Virtual Memory

In a true virtual memory system, an additional twist is used along with the
principle of virtual contiguity:  a table entry T[i] can contain either a
memory address or a disk address (as determined by an additional bit in
each word). The block being referenced need not be in memory at the time
the reference is attempted; instead it is on disk and is brought in on
demand. This allows us to "time-share" a relatively small amount of main
memory by swapping blocks to and from the disk, giving the illusion of a
very large amount of memory. The cost paid for this is a slightly slower
overall access time, plus a large penalty if the desired block has to be
brought in from disk.

In a virtual memory system, blocks are referred to as pages and the array T is called a
page table. Systems are designed so that they try to keep the most-likely-to-be referenced
pages in memory whenever possible. The workability of such schemes relies on what is
called the principle of locality: programs tend to refer to the same pages over and over
again in a nominal time interval. Obviously a virtual memory system does not strictly
follow the linear addressing principle of uniform access time when a page is not present
on disk. Nonetheless, most people design algorithms as if the linear addressing principle
still held, relying on the principle of locality to make linear addressing a good
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approximation. Fortunately for the applications programmer, the mechanisms
implementing virtual memory are carried out transparently by the system.

Exercises

1. •• Write a program which will do a fast spelling check by using a dictionary
stored as a hash table. Populate the table from a dictionary file, such as
/usr/dict/words which is available in most UNIX  systems. Compare the
speed of your program to one that searches the dictionary sequentially.

2. •• Implement a system of arrays that uses the principle of virtual contiguity.

5.7 Chapter Review

Define the following terms:

append
bucket
cell
class
closed list
dereferencing
doubly-linked
hash function
hashing
header
labeled binary tree
level-order

linear addressing principle
linked list
null reference
open list
page
pre-order traversal
post-order traversal
queue
recursive type
ring
virtual memory

5.8 Further Reading

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2nd ed.,
Addison-Wesley, 1991. [Concise reference on a wide range of algorithmic techniques,
with code. Moderate to Difficult]



6. States and Transitions

6.1 Introduction

This chapter introduces the idea of states and transitions. It talks about representing
transitions by rules, noting the difference between deterministic and non-deterministic
systems. It indicates how programs can be thought of in terms of states and transitions,
and how ordinary imperative programs can be transformed into functional ones. It also
discusses Turing machines, and a variety of related ideas. Most of these ideas are tied
together with the thread of "functional programming" already introduced. Then in the
next chapter we will see how these ideas play into "object-oriented programming", which
is at the other end of the spectrum.

Among the most pervasive notions in computing is that of "state". We define the state of
a computation as a set of information sufficient to determine the future possible
behaviors. In other words, the state tells us how the system can change. It also can tell us
something about what has happened in the past, if we know it to have been started in a
particular initial state. It doesn't usually tell exactly what has happened, but rather
conveys some abstraction of what has happened.

A typical computational system starts with the initial state that embodies the input to the
computation, and continues until termination, at which point the output can be extracted
from the final state.

Figure 54: The progression of a system from state to state

In the context of a set of rewrite rules, the state determines the possible end results of the
computation, if any. We can stop the computation at any point and resume it, so long as
we are careful to record the state at the stopping point. This is of major importance, for
example, in computer operating systems, which are sets of programs that control the
usage of major resources, such as input-output devices, available on the computer.
Operating systems frequently switch from one computation in progress to another, for
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purposes of best exploiting the available resources. The state of a program is saved in
memory, enabling the system to restart the program later on. For example, if a program
needs to wait for a critical resource to become available, the operating system will
suspend that program and run another program meanwhile. The state concept is also
useful when we wish to simulate a program's execution mentally or with pencil and
paper. If we get tired, we can record the state and resume the activity later.

States in digital computation are a lot like the states we encounter in solving certain kinds
of puzzles. Here the configuration of the puzzle completely determines the state. Many
such puzzles can be solved using the techniques of graph searching, such as breadth-first
search. These entail being able to detect whether we encountered the current state earlier,
in which case we would not want to repeat the same set of moves, for that would lead to
no progress.

Towers of Hanoi Example

In this famous puzzle, N discs of decreasing sizes are stacked on one of three spindles,
the other two of which are initially empty. The problem is to move all N discs, one at a
time, from the first spindle to the second, maintaining the constraint that at no time is a
larger disc placed atop a small one.

The state in the case of this puzzle is the way that the disks are stacked on the spindles.
The initial state for N = 4 would be as shown below.

Figure 55: The Towers of Hanoi puzzle for N = 4, initial state.

The desired final state is:

Figure 56: The Towers of Hanoi puzzle for N = 4, final state.

The following is an example of an illegal state, one that cannot occur during a solution,
since a larger disk is atop a smaller one.
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Figure 57: An illegal state in the Towers of Hanoi puzzle

To provide a tool for discussion of the solution to such puzzles, as well as for
computational systems in general, we can exploit the mathematical concept of "binary
relation" as described in the next section.

6.2 Transition Relations

To apply relations to the discussion of states, the set of pairs of states (s, s') such that one
move will take the system from s to s' is called the transition relation. Typically we will
represent a transition relation by =>. A single pair (s, s') such that s => s’ is called a
transition. We sometimes say that s' is a successor of s when there is a transition (s, s')
and that s is a predecessor of s'.

Below we show some possible transitions between states for the Towers of Hanoi puzzle
with only 2 disks. With this bird's-eye view of the states and transitions, it is possible to
find a sequence of transitions that lead from any state to any other, and, in particular, to
solve the puzzle. While many solutions are possible, there is a unique shortest solution
represented by the path from top center to bottom left. Quite evidently, any deviation
from this path adds more steps than are necessary.

Figure 58: Bird's-eye view of possible state transitions
in the Towers of Hanoi puzzle with 2 disks.

The shortest solution is the sequence of transitions
from the top state downward to the lower left.
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Notice that in this particular puzzle, the transition relation happens to be symmetric, in
that for each move there is an opposite move that returns the puzzle to the previous state.
Accordingly, the state-transition graph can be represented as an undirected graph. Of
course, this is not the case for puzzles in general. Many puzzles have one-way transition
relations.

The scheme of constructing the state-transition diagram can be used to solve the puzzle
for larger values of N as well. The only problem here is that we have a "combinatorial
explosion" of states as we consider larger N. Fortunately, we can get an understanding of
the state-transition structure of this particular puzzle without going to very large N.
Examine the state-transition diagram above. Notice that there are three triangular patterns
embedded within an overall triangular pattern. Consider the top three states. This
triangular pattern shows the motions of the top disk with the bottom disk remaining fixed
on the first spindle. Similarly, the lower-left triangle has the bottom disk fixed to the third
spindle, and finally, the lower-right triangle has the bottom disk fixed to the second
spindle. We could, therefore, have constructed this diagram as follows:

1. Diagram the states for the puzzle with a single disk. This diagram is just a
triangle, with each vertex representing one of the three positions for the
single disk.

2. For two disks, consider a similar triangle with the vertices representing the
positions of the bottom disk. For each of these vertices, embed a single-
disk triangle.

This construction is suggested by the following pattern:

Transitions 
corresponding 
to moving the 
smaller disk

Transitions 
corresponding 
to moving the 
larger disk

Figure 59: Embedding pattern for constructing a 2-disk transition diagram
from 1-disk transition diagrams

In this analysis, we are starting to think "recursively", an important skill we will continue
to hone throughout this book. The same triangular pattern can be used to construct a
diagram for N+1 disks from three N disk diagrams for any N. For example, the following
diagram for 3 disks was obtained by taking three of the diagrams on the right-hand side
above and placing them inside a 1-disk diagram.
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Figure 60: The state-transition diagram corresponding to the 3-disk structure

One thing this construction tells us is that every time we add a new disk, we triple the

number of states that have to be considered. For an N-disk puzzle, there are thus 3N

states. While we are at it, we can make some other observations about these diagrams:

• The start and end points of the puzzle are always at the extreme vertices of
the triangle.

• The shortest path from one of these extremities to another will always

entail 2N nodes, i.e. it takes 2N - 1 moves to solve an N-disk puzzle.

Both of these assertions can be proved by induction. We could also continue this
construction ad infinitum by repeatedly placing the 1-disk triangle inside the inner-most
vertices of the diagram. In the limit, we would have a "self-similar system", sometimes
called a fractal. The limiting case is self-similar because inside each of the outermost
vertices we have contained an exact replica of the entire system. A related geometric
construction is known as the Sierpinski Gasket.
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Figure 61: Approximation to a Sierpinski Gasket

Of course, we don't expect that all state-transition diagrams will generate comparable
artwork.

Reachability Relations

From a transition relation ➪, we will have need for the accompanying reachability
relation (also called the reflexive transitive closure of ➪), which will be represented ➨.
The reachability relation ➨ means that we can get from one state to another by a series of
zero or more intervening states. More precisely:

T0 ➨ Tn

means that there are terms T1, T2, …, Tn-1 (n > 0) such that

T0 ➪ T1 ➪ T2 ➪ … ➪ Tn-1 ➪ Tn

Example – Towers of Hanoi Reachability Relation

In the 2-disk Towers of Hanoi Puzzle, we can assert

based on the following series of individual transitions:
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In later sections, we will have further occasion to use this notation in connection with
computational systems.

6.3 Transition Rule Notation

The transitions for the Towers of Hanoi puzzle are determined by very explicit rules. The
most succinct way we can state these is:

• A transition can involve moving only one disk

• A transition must result in a legal state.

These rules, then, characterize an infinite set of possible transitions (when we consider
the puzzle for all values of N, the number of disks). In like fashion, a computational
system will have transition rules. Unlike puzzles, computational rules will often be
deterministic: that is, there is at most one successor to any state. A system, such as many
puzzles, where for some state there are at least two possible successors, is called non-
deterministic. Non-deterministic systems have some important technical uses outside of
puzzles, as we shall see later. One of these uses is as grammars, ways of representing the
syntax of programming languages.

A state-transition system is called

deterministic if every state has at most one successor.

non-deterministic if a state may more than one successor.
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Figure 62: Scenario not occurring in a deterministic system

To codify the rules of the Towers of Hanoi puzzle, we can represent a state as a pattern

towers(L, M, N)

where L, M, and N represent the disks stacked on each tower. We will then be able to
express rules for changing from one state to another in the form

towers(L, M, N) => towers(L', M', N').

where the primed towers are derived from the unprimed ones according to a particular
pattern, or by

towers(L, M, N) => Condition ? towers(L', M', N').

in the case that the transition holds only if Condition on towers is satisfied. Note that
these look a lot like rex rules. However, they end with a period rather than a semi-colon.
This is because the rules are not actually in rex, but are implemented in a language called
Prolog. A Prolog program is provided that can determine from such a set of rules whether
the puzzle has any solutions, or a shortest solution. It does this by enumerating reachable
states, and therefore will only work in the case that the number of such states is not too
large.

To represent the disks on the towers themselves, we could number the disks 1, 2, 3, 4 and
record the numbers on each of the three spindles as lists from top to bottom. Thus the
initial state is

towers([1, 2, 3, 4],  [ ], [ ])

and the desired final state is

towers([ ], [ ], [1, 2, 3, 4])

(Note that this is not the state representation that we used in counting the number of
states. There is no requirement that it be the same.)  For the 2-disk puzzle, the state-
transitions would be shown as follows, where we have omitted the outer towers( … ) to
keep the diagram from getting too cluttered:
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[1, 2], [], []

[2], [1], [] [2], [], [1]

[], [1], [2] [], [2], [1]

[], [1,2], [[1], [2], [][1], [], [2][], [], [1,2]

Figure 63: Coded state transitions for the Towers of Hanoi puzzle

For a fixed value of N, one could enumerate all of the states and transitions possible for
an N-disk Towers of Hanoi problem. However, none of these enumerations expresses the
general rules for transitions, because we don't yet have a way to describe manipulations
on arbitrary lists. We now digress to describe a notation for presenting such rules. Then
we will give a complete set of rules for the puzzle.

The transition rules are represented in one of the following forms:

S => S'.
or

S => C ? S'.

where S and S' are state forms and C is a guard condition. The condition states additional
constraints governing when the use of the rule is possible. So the rules for moving a disk
from the first spindle are:

towers([A | L], [], N) => towers(L, [A], N).                     % 12e

towers([A | L], M, []) => towers(L, M, [A]).                     % 13e

towers([A | L], [B | M], N) => A < B ? towers(L, [A, B | M], N). % 12n

towers([A | L], M, [B | N]) => A < B ? towers(L, M, [A, B | N]). % 13n

The characters on lines following % are comments. The first two rules govern movement
of a disk from the first spindle to an empty spindle. The third and fourth rules govern
movement of a disk from the first to a non-empty spindle, and require that the disk being
moved is smaller than the disk already on top of that spindle. Here we are assuming that
the disks are identified with numbers, so that A < B means that disk A is smaller than disk
B. The naming of the rules is of the form i j S, where i and j are spindle numbers (1, 2, or
3) giving the number of the "from" and "to" spindles, and S is either e or n, designating
whether the target spindle is empty or non-empty. For example, rule 12n designates
moves from spindle 1 to spindle 2, where spindle 2 is non-empty. The reason we have to
separate the empty and non-empty cases is so that we can make the necessary comparison
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to determine whether a disk is being put atop a larger disk or not, in the case of a non-
empty spindle.

There are eight more rules in two sets paralleling these, showing how disks can be moved
from the second spindle and from the third spindle, respectively.

towers(N, [A | L], []) => towers(N, L, [A]).                     % 23e

towers([], [A | L], M) => towers([A], L, M).                     % 21e

towers(N, [A | L], [B | M]) => A < B ? towers(N, L, [A, B | M]). % 23n

towers([B | N], [A | L], M) => A < B ? towers([A, B | N], L, M). % 21n

towers([], N, [A | L]) => towers([A], N, L).                     % 31e

towers(M, [], [A | L]) => towers(M, [A], L).                     % 32e

towers([B | M], N, [A | L]) => A < B ? towers([A, B | M], N, L). % 31n

towers(M, [B | N], [A | L]) => A < B ? towers(M, [A, B | N], L). % 32n

There are thus twelve rules in all, six for each combination of ij to an empty spindle, and
six to a non-empty spindle. Because there is no limit on the size of the lists, each
transition rule represents an infinite set of transitions.

For example, in the previous figure, one series of state transitions (going downward and
to the left) is the following:

towers([1, 2, 3, 4], [], [])
towers([2, 3, 4], [1], [])
towers([3, 4], [1], [2])
towers([3, 4], [], [1, 2])
towers([4], [3], [1, 2])

To see that the rules justify these transitions,

towers([1, 2, 3, 4], [], []) => towers([2, 3, 4], [1], []) by 12e

towers([2, 3, 4], [1], []) => towers([3, 4], [1], [2]) by 23e

towers([3, 4], [1], [2]) => towers([3, 4], [], [1, 2]) by 23n

towers([3, 4], [], [1, 2]) => towers([4], [3], [1, 2]) by 12e

It should be emphasized that these rules by themselves do not solve the puzzle. They only
articulate the legal transitions. However, these rules can be the input of a relatively
simple program that does solve the puzzle without additional intellectual effort. Such a
program will be further discussed in chapter Computing Logically. Later on in the current
chapter, we will give a different set of rules for solving the puzzle directly, i.e. rules that
program the solution.
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Deterministic Solution of the Towers of Hanoi

This example makes use of recursive rules to solve the Towers of Hanoi puzzle. Let us
try to discover a general method for solving this problem for N discs. We want to create a
function that takes the number of discs N as an argument and returns a list of
"instructions" for moving the discs. Each instruction will itself be a list, of the form:

["move disk ", D, " from ", A, " to ", B]

where D, A, and B are numbers of disks and spindles.

It is reasonable to try to get recursion to work for us. This would entail breaking an N
disc problem down into lesser problems, e.g. N-1 disc problems. In order to move N discs
from a spindle A to a spindle B, we might try the following:

Move top disc from spindle A to spindle C.

Move N-1 discs from spindle A to spindle B.

Move top disc from spindle C to spindle B.

Unfortunately, this doesn't work. When the top disc has been moved to spindle C, it
blocks the use of spindle C for subsequent moves from A, since in a legal state the top
disc must be smaller than the other discs below it on A.

A different attempt would be to recursively move the top N-1 discs from A to C, move
the bottom one disc to B, then move N-1 discs from C to B. This approach has the virtue
that the bottom disc can be ignored while all of the other motion is taking place, since it
must be larger than all of the other N-1 discs: no illegal states will be introduced.

This second attempt can be converted into a method, expressed recursively as follows:

To move N discs from a spindle A to a spindle B:

If N = 0, there is nothing to do.

If N > 0, then:

move (N-1) discs from A to C, where C is the third spindle other
than A and B;

move one disc from A to B;

move (N-1) discs from C to B.
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Since the first and third steps of the recursion can be done with the one disc in the
second step unaffected, the desired constraint is maintained.

Obviously we are letting recursion work for us here, in fact with two recursive task calls
to solve one task. We wish to give a set of rules that will solve this problem, in the sense
that the ultimate result will be a list of pairs indicating single moves from one spindle to
another. The spindles will be numbered 1, 2, 3. The discs will be numbered 1, 2, …, N to
smallest to largest. We will represent a stack of discs to be moved as a list [d0, d1, …, dN],
smallest first.

We transcribe our rules into rex as follows, where towers(L, A, B, C) means move the
stack of discs L from spindle A to B, with C as the other spindle (A, B, and C will vary from
term to term).

towers([ ], A, B, C) => [ ];

towers([ D | L ], A, B, C ) =>
  append( towers(L, A, C, B), [move(D,A,B) | towers(L, C, B, A)] );

programmed rex solution rules for the Towers of Hanoi problem

Here move(D, A, B) rewrites to some term depending on how we wish to represent the
move, e.g. we could use the rule

move(D, A, B ) => ["move disk ", D, " from ", A, " to ", B];

Since the exact form of move is not important, we shall not rewrite terms of the form
move(D, A, B) further in the answers but just leave them as is. To complete the solution
to our problem's specification, we need an interface function that takes the number of
discs as an argument and calls solve. Given the number N, we need to create a stack of
discs numbered [1, 2, …, N]. This can be accomplished by the function range given
earlier. So the interface function, which we call tower, is

tower(N) => towers(range(1, N), a, b, c);

where a, b, and c are the names of the three spindles.

A different version of solve that eliminates the append use in favor of an accumulator
argument (the last argument of towers1 in this case) can be expressed as:

towers(L, A, B, C) => towers1(L, A, B, C, [ ]);

towers1( [ ], A, B, C, Moves) => Moves;

towers1( [D | L], A, B, C, Moves) =>
  towers1(L, A, C, B, [ move(D,A,B) | towers1(L, C, B, A, Moves)] );

programmed solution rules for the Towers of Hanoi problem using an accumulator
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A Basic Counting Principle

In order to get an idea of the magnitude of certain problems such as those involving
states, it is helpful to be able to count the sizes of sets without actually enumerating their
members. One intuitive way to count is to describe a thought experiment that would, if
actually conducted, enumerate the members and use it to determine the number of
members, or at least an upper bound on the number of members.

Perhaps the simplest counting principle involves the notion of the Cartesian product of
sets, designated by x. If A and B are two sets, then

A x B

stands for the set of all ordered pairs, the first element drawn from A and the second
drawn from B. Similarly, if N sets are mentioned, then

A1 x A2 x … x AN

designates the set of all ordered N-tuples, the ith component of which is drawn from Ai.

For example, if A = {1, 2} and B = {a, b, c}, then A x B = {(1, a), (1, b), (1, c), (2, a),
(2, b), (2, c)}.

Let’s use |S| to denote the size of S, i.e. the number of elements in S. Then the counting
principle is:

| A1 x A2 x … x AN | =  | A1|  | A2 | …  | AN |

basic counting principle

where the juxtaposition on the right is ordinary numeric product. To describe this as a
thought experiment, consider the case N = 2. Each element of | A1 x A2 | consists of a
pair, the first element of which is drawn from A1 and the second element of which is
drawn from A2. The experiment consists of enumerating all possible ways to construct
such a pair. There are | A1 |  ways to choose the first element in the pair. For each of those
choices, there are | A2 | ways to choose the second element in the pair. Therefore we have
a total of | A1|  | A2 | ways to choose pairs.

The extension of this argument to the general case is straightforward. We would use
induction on N. For N = 1, there is nothing to prove. For N > 1, we can adopt the
inductive hypothesis that

| A1 x A2 x … x AN-1 | =  | A1|  | A2| …  | AN-1|
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Now consider this as a single set and add on AN. That is, A1 x A2 x … x AN has the same
number of elements as

(A1 x A2 x … x AN-1 ) x AN

(although these two sets are technically slightly different; why?). So perform the same
argument that we did for N = 2 to conclude that

| A1 x A2 x … x AN-1 x AN | =  | A1|  | A2| …  | AN-1|  | AN|

As a special case, consider the situation where each Ai is the same, say A. Then we have

| A x A x … x A | =  |A|N

where the superscript denotes raising |A| to the Nth power.

Example

The number of (legal) states in the N-disk Towers of Hanoi puzzle is 3N. To see this,

consider that each state is representable by an N-tuple over the set {1, 2, 3}. The ith

element of the N-tuple is the tower on which the ith disk resides.

Exercises

The following are various puzzles used as test cases in computer science. For each
puzzle, describe the legal states. Devise a linear notation for the states. Describe the
possible state-transitions informally (you need not use the formal rule notation we
presented, although it is worth trying to see if it will work. When necessary, just state
guard conditions informally.). Sketch a portion of the state-transition diagrams.

Note that in some cases (e.g. peg solitaire) it is possible to give a single set of rules that

fit many sizes of puzzle. You should do this whenever possible. In others (e.g. the N2-1
puzzles), formulating a general rule for many sizes of puzzle appears more difficult; the
rules seem to need to be tailored to the size of the puzzle. This is not to say it can't be
done. In such cases, it is acceptable to use a small instance of the puzzle, e.g. the 8-
puzzle.

1 •• The linear peg solitaire(N) puzzle (a different puzzle for each N). This puzzle is
played on a board of 2N-1 holes in which N pegs of each of two colors are placed,
as shown below. The objective is to interchange all the pegs of the two colors. A
legal transition involves either (a) moving a peg forward into an adjacent hole in
the direction of its intended home; (b) jumping a peg forward over another peg
and into an adjacent hole.
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Figure 64: Peg solitaire: white pegs move or jump a peg only to the right.
Colored pegs move or jump a peg only to the left.

The following shows another possible state of the puzzle:

Figure 65: Peg solitaire after a few moves and jumps

The desired final state of the puzzle is as shown below:

Figure 66: Desired final state of peg solitaire

[Hint: Model the sequence of pegs on either side of the hole as separate lists,
constructing the left-hand list in the right-to-left peg direction.]

2 ••• Water jugs puzzles. There are several jugs of known capacities, each an integer
number of units. One of the jugs is filled with water. The problem is to get a
specified number of units of water into one of the jugs. A common example is that
the jugs have capacities of 3, 5, and 8 liters, the 8 liter jug is the full one, and the
objective is to obtain exactly 4 liters.

8 5 3

Figure 67: A water jug puzzle. The 8 liter jug is full.
What transitions give us 4 liters in one jug?
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3 ••• Give a rex program for generating a solution to the Towers of Hanoi puzzle given
an arbitrary (legal) starting state.

4 ••• Suppose we wished to construct the state-diagram for a puzzle similar to the
Towers of Hanoi, but with four towers instead of three. Describe the structure of
the state-transition diagram.

5 ••• The N2-1 puzzles (e.g. the 15 puzzle, the 8 puzzle, the 3 puzzle, etc.)  This puzzle

is played on an N-by-N board. There are N2-1 tiles, numbered 1 through N2-1.
This leaves one space for a tile blank. The objective is to get from a given state of
the puzzle to the state in which the tiles are all in order, by sliding blocks
vertically or horizontally (not diagonally) onto the adjacent blank space.

151413

1211109

8765

3 421

1514

13 12

11

10

9 8

7

6

5 3

42

1

Figure 68: Two states of the 15 puzzle

Draw the complete state transition diagram for the 3 puzzle (played on a 2-by-2
board).

6 ••• The previous exercise introduced the N2-1 puzzles. Express the 8-puzzle in the
rule notation.

7 •• A puzzle (or its underlying transition relation) is called strongly connected if for
any two states T0 and T1, it happens to be the case that T0 ➨ T1. Is the 3-puzzle
(described in the preceding problem, with N = 2) strongly connected?

8 ••• Give an argument that shows that the Towers of Hanoi puzzle, for any fixed
number of disks, is strongly connected. (Hint: Use induction on the number of
disks.)

9 ••• The Chinese rings puzzle. N rings are wired in a particular way through an
elongated loop. Each loop is permanently attached to a wire, the opposite end of
which is permanently connected to a bar. On its way from the bar to the ring, the
wire passes through the ring on the immediate right. The objective is to remove
the loop from all of the wires and their rings, so that the loop can be completely
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separated from the rest of the puzzle. Give a set of rules that produce a list of
moves for solving the puzzle deterministically.

Ring

Wire

Bar

Figure 69: The Chinese rings with N = 6,
before the loop has been removed from any ring

[Hint: Pursue an analysis similar to the deterministic solution to the Towers of
Hanoi. This can be done purely based on the following analysis of the constraints
of the puzzle:  (a)  The loop can be removed from the leftmost wire, or put back
through it, in any state. (b)  The loop can be removed from a non-leftmost wire w,
or put back through w, provided that the wire w' to the immediate left of w goes
through the loop and none of the wires to the left of w' go through the loop. So,
for example, the first few states in the solution of the puzzle might be (numbering
the wires 1, 2, 3, … left-to-right):

Take loop off wire 1.
Take loop off wire 3.
Put loop on wire 1.
Take loop off wire 2.
Take loop off wire 1.
Take loop off wire 5.

…

10 ••• What is the minimum number of moves required to solve the 6-ring puzzle?

11 ••• How many states are there in an N2-1 puzzle (e.g. 15-puzzle) as described
earlier), for a given N?

12 ••• How many states are there in an N-ring Chinese ring puzzle?

6.4 Rules for Assignment-Based Programs

In this section, we demonstrate how programs constructed in terms of sequences of
assignment statements, loops, etc. can be recast as rule sets in rex, even though rex itself
does not have an assignment construct. This demonstration is important in understanding
the relationship between iteration and recursion.
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Assignment-based programs use assignment to (i.e. changing the value of) various
program variables to do their work. A program variable is an object, the value of which
can change through an appropriate command. The form of an assignment will be assumed
to be (using Java syntax)

Variable =  Expression

meaning that the value of Expression is computed, then the value of Variable becomes
that computed value. To give an equivalent rule-based program, we can use rule
argument variables to play the role of assignable variables.

The state of an assignment-based program is a mapping from the names of variables to
their values, in combination with the value of the instruction pointer (or "program
counter") indicating the next instruction to be executed. To convert an assignment-based
program to a rule-based one, associate a function name with each point before an
instruction. Associate the arguments of the function with the program variables. We will
then show how to derive appropriate rules.

Factorial Flowchart Example

Consider the following flowchart for a program that computes N-factorial. There are 6
places at which the instruction pointer can be, labeled 0..5. There are three program
variables: F, K, and N. N is unchanging and represents the value for which the factorial is
to be computed. F is supposed to contain the value of N factorial upon exit. K is used as an
internal counter.

0

1

2 3

F = 1

K = 1

{ K > N }
{ K =< N } 4

F = F * K

K = K + 1

5

Figure 70: Flowchart for a factorial program.
The labels in braces {…} represent test conditions.

Labels of the form Var = Expression represent assignments.

We will first present the rules corresponding to the flowchart program, then indicate how
they were derived. We let fac be the function being computed. We introduce symbols
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f0, …, f5 as auxiliary functions. We use arb to indicate an arbitrary value (used for
example to denote the value of an uninitialized assignable variable). The rules
corresponding to the factorial flowchart are:

fac(N) => f0(N, arb, arb);

f0(N, K, F) => f1(N, K, 1); // corresponds to assignment F = 1;

f1(N, K, F) => f2(N, 1, F); // corresponds to assignment K = 1;

f2(N, K, F) => (K <= N) ? f3(N, K, F);

f2(N, K, F) => (K > N) ? f5(N, K, F);

f3(N, K, F) => f4(N, K, F*K); // corresponds to assignment F = F*K;

f4(N, K, F) => f2(N, K+1, F); // corresponds to assignment K = K+1;

f5(N, K, F) => F;

Let us verify that these rules give the correct computation of, say, fac(4):

fac(4) =>
f0(4, arb, arb) =>
f1(4, arb, 1) =>
f2(4, 1, 1) =>
f3(4, 1, 1) =>
f4(4, 1, 1) =>
f2(4, 2, 1) =>
f3(4, 2, 1) =>
f4(4, 2, 2) =>
f2(4, 3, 2) =>
f3(4, 3, 2) =>
f4(4, 3, 6) =>
f2(4, 4, 6) =>
f3(4, 4, 6) =>
f4(4, 4, 24) =>
f2(4, 5, 24) =>
f5(4, 5, 24) =>
24

Notice that the successive rewritten expressions correspond precisely to the states of the
factorial flowchart in execution. A term of the form

fi(N-value, K-value, F-value)

corresponds to the state in which the instruction pointer is at node i in the flowchart, and
the values of variables N, K, and F are N-value, K-value, and F-value respectively.
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McCarthy's Transformation Principle

Now we articulate the method for deriving rules from the flowchart. This method was
first presented by Professor John McCarthy, so we call it "McCarthy's Transformation
Principle". We have already indicated that there is one function name for each point in
the flowchart.

McCarthy's Transformation Principle:

Every assignment-based program can be represented as a set of mutually-
recursive functions without using assignment.

First we give the transformation rule when two points are connected by an assignment:

j

i

 Var = Expression

Figure 71: Assignment in the flowchart model

Corresponding to this connection we introduce a rule that rewrites fi in terms of fj. We
identify the argument of fi corresponding to the variable Var on the lhs. On the rhs, we
replace that variable with Expression, to give the rule:

fi(…, Var, …) => fj(…, Expression, …);

The justification for this rule is as follows:  The computation from point i will take the
same course as the computation from point j would have taken with the value of Var
changed to be the value of Expression.

Next we give the transformation rule when two points are connected by a test condition:

j

i

{Condition}

Figure 72: Conditional test in the flowchart model

In this case, the rule will be guarded, of the form
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fi(…) => Condition ? fj(…);

The justification for this rule is:  The computation from point i, in the case Condition is
true, will take the same course as the computation from j. In most flowcharts, conditions
come paired with their negations. Such a rule would usually be accompanied by a rule for
the complimentary condition, recalling that ! means not

fi(…) => !Condition ? fk(…);

where fk will usually correspond to a different point than fj. Alternatively, we could use
the sequential listing convention to represent the negation implicitly:

fi(…) => Condition ? fj(…);
fi(…) => fk(…);

Finally, to package the set of rules for external use, we introduce a rule that expresses the
overall function in terms of the function at the entry point and one that expresses the
function at the exit point to give the overall result. In the factorial example, these were:

fac(N) => f0(N, arb, arb);

f5(N, K, F) => F;

The rule-based model allows some other constructions not found in some flowcharts:

Parallel Assignment

With a single rule, we can represent the result of assigning to more than one variable at a
time. Consider a rule such as

fi(…, Var1, … Var2, …) => fj(…, Expression1, … Expression2, …);

The corresponding assignment statement would evaluate both Expression1  and
Expression2, then assign the respective values to Var1 and Var2. This is not generally
equivalent to two assignments in sequence, since each expression could entail use of the
other variable. Some languages include a parallel assignment construction to represent
this concept. For two variables a parallel assignment might appear as

(Var1, Var2) =  (Expression1, Expression2)
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Combined Condition and Assignment

With a single rule, we can represent both a conditional test and an assignment. Consider a
rule such as

fi(…, Var, …) => Condition ? fj(…, Expression, …);

Here the computation of fi is expressed in terms of fj with a substituted value of
Expression for Var only in case that Condition holds   This is depicted in the flowchart
as:

j

i

{Condition} Var = Expression

Figure 73: Combined condition and assignment in the flowchart model

List Reverse Example

One way to approach the problem of reversing a list by a recursive rule is to first give an
assignment-based program for doing this, then use the McCarthy transformation. The
idea of our assignment-based program is to loop repeatedly, in each iteration
decomposing the remaining list to be reversed, moving the first symbol of that list to the
result, then repeating on the remainder of the first list. This could be described by the
following program, which is intentionally more "verbose" than necessary. An assignment
of the form [A | M] = L decomposes the list L (assumed to be non-empty) into a first
element A and a list of the rest of the elements M. This is pseudo-code, not a specific
language.

L = list to be reversed;

R = [ ];
while( L != [ ] )
  {
  [A | M] = L; // decompose L into first element A and rest M
  L = M;
  R = [A | R]; // compose list R
  }
assert R is reverse of original list

For example, here is a trace of the program through successive loop bodies:
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L

[1, 2, 3]

[2, 3]

[3]

[]

R

[]

[1]

[2, 1]

[3, 2, 1]

Figure 74: Flow of data in reversing a list

The flowchart version of this program could be expressed as follows:

0

2

{ L == [ ] }

R = [ ]

1

R = [A | R]

4
{ L != [ ] } [A | M] = L

3
L = M

Figure 75: Flowchart for reversing a list

According to the McCarthy Transformation Principle, we can convert this to rewrite rules
using the four program variables L, R, M, A.

f0(L) => f1(L, [ ], arb, arb);

f1(L, R, M, A) =>  L == [ ] ? f2(L, R, M, A);

f1(L, R, _, _) => L != [ ] ? L = [A | M], f3(L, R, M, A);

f3(L, R, M, A) => f4(M, R, M, A);

f4(L, R, M, A) => f1(L, [A | R], M, A);

f2(L, R, M, A) => R;

In the second rule for f1,

f1(L, R, _, _) => L != [ ] ? L = [A | M], f3(L, R, M, A);

we use _ arguments to avoid confusion of the third and fourth arguments with the
element A and list M decomposed from list L. We could simplify this further by using
matching on the first argument to:

f1([A | M], R, _, _) => f3([A | M], R, M, A);
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In the following section we will show why this set of rules is equivalent to:

f0(L) => f1(L, [ ]);

f1([ ], R) => R;

f1([A | L], R) => f1(L, [A | R]);

We can see that f1 is the same function as the two-argument reverse function described
in Low-Level Functional Programming.

Program Compaction Principle

The rule-based presentation gives us a way to derive more compact representations of
programs. When there is a single rule for an auxiliary function name, we can often
combine the effect of that rule with any use of the name and eliminate the rule itself. For
example, return to our rules for factorial:

fac(N) => f0(N, arb, arb);

f0(N, K, F) => f1(N, K, 1); // corresponds to assignment F = 1;

f1(N, K, F) => f2(N, 1, F); // corresponds to assignment K = 1;

f2(N, K, F) => (K <= N) ? f3(N, K, F);

f2(N, K, F) => (K > N) ? f5(N, K, F);

f3(N, K, F) => f4(N, K, F*K); // corresponds to assignment F = F*K;

f4(N, K, F) => f2(N, K+1, F); // (corresponds to assignment K = K+1;

f5(N, K, F) => F;

We see that f3 is immediately rewritten in terms of f4. Thus anywhere that f3 occurs
could be translated into a corresponding occurrence of f4  by first making a
corresponding substitution of expressions for variables. In our rules, f3 occurs only once,
in the second rule for f2. We can substitute the rhs of the f3 rule in the second rule for f2
to get a replacement for the latter:

f2(N, K, F) => (K <= N) ? f4(N, K, F*K);

We also see that f4 is immediately rewritten in terms of f2, so the rule could be further
changed to:

f2(N, K, F) => (K <= N) ? f2(N, K+1, F*K);

We can similarly re-express f0 in terms of f2, as follows:
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f0(N, K, F) => f1(N, K, 1); // original

f0(N, K, F) => f2(N, 1, 1); // using rule f
1
(N, K, F) => f

2
(N, 1, F);

Finally, we can get rid of f5 since f5(N, K, F) is immediately rewritten as F

f2(N, K, F) => (K > N) ? F;

and we can re-express fac directly in terms of f2. The resulting set of rules is:

fac(N) => f2(N, 1, 1);

f2(N, K, F) => (K <= N) ? f2(N, K+1, F*K);

f2(N, K, F) => (K > N) ? F;

This is obviously much more compact than the original, since it contains only one
auxiliary function, f2. The corresponding compacted flowchart, using combined
conditions and assignment and parallel assignment, could be shown as follows:

0

2

{K > N }

(F, K) = (1, 1)

{ K =< N } (F, K) = (F * K, K + 1)

1

Figure 76: A compact factorial flowchart

List Reverse Compaction Example

Compact the simplified rules for the reverse program:

f0(L) => f1(L, [ ], arb, arb);

f1(L, R, M, A) =>  L == [ ] ? f2(L, R, M, A);

f1([A | M], R, _, _) => f3([A | M], R, M, A);

f3(L, R, M, A) => f4(M, R, M, A);

f4(L, R, M, A) => f1(L, [A | R], M, A);

f2(L, R, M, A) => R;

We can get rid of f4 by compaction, giving us:
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f3(L, R, M, A) => f1(M, [A | R], M, A);

We can get rid of f3 by compaction, giving us:

f1([A | M], R, _, _) =>f1(M, [A | R], M, A);

We can get rid of f2 by compaction, and move the guard into the rule, giving

f1([], R, M, A) =>  R;

The resulting system is:

f0(L) => f1(L, [ ], arb, arb);

f1([], R, M, A) =>  R;

f1([A | M], R, _, _) =>f1(M, [A | R], M, A);

We notice that the third and fourth arguments of f1 after compaction never get used, so
we simplify to:

f0(L) => f1(L, [ ]);

f1([], R) =>  R;

f1([A | M], R) =>f1(M, [A | R]);

Now note that f1 is our earlier 2-argument reverse by a different name. So McCarthy’s
transformation in this case took us to an efficient functional program.

Exercises

1 •• Consider the following Java program fragment for computing k to the nth power,
giving the result in p. Give a corresponding set of rules in uncompacted and
compacted form.

  p = 1;
  c = 1;
  while( c <= n )
    {
    p = p * k;
    c++;
    }

2 •• The Fibonacci function can be presented by the following rules:

fib(0) => 1;

fib(1) => 1;
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fib(N) => fib(N-1) + fib(N-2);

However, using straight rewriting on these rules entails a lot of recomputation.
[See for yourself by computing fib(5) using the rules.] We mentioned this earlier
in a discussion of "caching". Give an assignment-based program that computes
fib(N) "bottom up", then translate it to a corresponding set of rules for more
efficient rewrite computation. [Hint: fib(N) is the Nth number in the series 1, 1, 2,
3, 5, 8, 13, 21, … wherein each number after the second is obtained by adding
together the two preceding numbers.]  Then give an equivalent set of rules in
compacted form.

The use of a bottom-up computation to represent a computation that is most
naturally expressed top-down and recursively is sometimes called the "dynamic
programming principle", following the term introduced by Richard Bellman,
who explored this concept in various optimization problems.

3 ••• Try to devise a set of rules for computing the integer part of the square root of a
number, using only addition and <= comparison, not multiplication or division. If
you have trouble, try constructing an assignment-based solution first, then
translating it. [Hint:  Each square can be represented as the sum of consecutive
odd integers. For example, 25 = 1 + 3 + 5 + 7 + 9.]

6.5 Turing Machines – Simple Rewriting Systems

We conclude this chapter with a different example that can be represented by rewriting
rules, one of major interest in theoretical computer science. The main definitions,
however, should be part of the cultural knowledge of every scientist, since they relate to
certain problems having an unsolvable character, about which we shall say more in
Limitations of Computing.

Turing machines (TMs) are named after the British mathematician Alan M. Turing,
1912-1954†, who first proposed them as a model for universal computability. By
"universal" we mean a model general enough to enable the representation of any
computable function. Although they share this property with the general recursive
functions, Turing machines are much more basic. For example, they do not assume a
general matching capability. For that matter, they do not assume anything about numbers
or arithmetic. Instead, everything, including matching, is done in terms of a finite set of
symbols. Any numeric interpretation of those symbols is up to the user.

                                                  
† For a biography, see the book by Hodges, Alan Turing: The Enigma. The title is a pun. Not only is

Turing regarded as enigmatic, but also one of his principal contributions was a machine which helped
break codes of the German encoding machine known as the Enigma during World War II.
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Each Turing machine has a fixed or "wired-in" program, although through an encoding
technique, it is possible to have a single machine that mimics the behavior of any other
TM. The components of a TM are:

Finite-state controller (sequential circuit)

Movable read/write head

Unbounded storage tape:

On each tape cell, one symbol from a fixed finite alphabet can be written.
One symbol in the alphabet is distinguished as "blank". The distinction of
blank is that, in any given state, at most a finite set of the cells will contain
other than blank.

Figure 77: Depiction of a TM with controller in state q.

Since only a finite set of cells can be non-blank at any time, beyond a certain cell on
either side of the tape, the cells contain only blanks. However, this boundary will
generally change, and the non-blank area may widen.

The controller, in a given state (which includes the controller state and the tape state),
will:

• read the symbol under the head
• write a new symbol (possibly the same as the one read)
• change state (possibly to the same state)
• move one cell left or right, or stay put

Program or Transition Function for a Turing Machine

A description of, or program for, a TM is a partial function, called the transition
function:

States x Symbols → Symbols x Motions x States

where Motions = {left, right, none}

q
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The symbol x here denotes the Cartesian product of sets.

In the present case, we are saying that the transition function of a TM is a partial function
having a domain consisting of all pairs of the form

(State, Symbol)

and a co-domain consisting of all 3-tuples (triples) of the form

(Symbol,  Motion, States)

Such a program could be given by a state transition table, with each row of the table
listing one combination of five items (i.e. a 5-tuple or quintuple)

State, Read, Written, Motion, NewState

Such a 5-tuple means the following:

If the machine's control is in State and the head is over symbol Read, then
machine will write symbol Written over the current symbol, move the
head as specified by Motion, and the next state of the controller will be
NewState.

If no transition is specified for a given state/symbol pair, then the machine is said to halt
in that state. The requirement that the program be a partial function is equivalent to
saying the following:

There is at most one row of the table corresponding to any given combination
(State, Read).

The Partial Function Computed by a Turing Machine

The partial function computed by a TM is the tape transformation that takes place when
the machine starts in a given initial state and eventually halts. Alternatively, the partial
function computed by a TM is the transformation from initial tape to one of a finite set of
halting combinations (state-symbol pairs). If the machine does not halt on a given input,
then we say the partial function is undefined for this input.

Turing Machine Addition Example

We show the construction of a machine that adds 1 to its binary input numeral. It is
assumed that the machine starts with the head to the immediate right of the least
significant bit, which is on the right. The alphabet of symbols on the tape will be
{0, 1, _}, where _ represents a blank cell.
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_ _ _ _ _ 1 0 1 1 0 1 1 1 1 1 _ _ _ _ _ _

                                                         ^
The state transitions for such a machine could be specified as:

State Read     Written Motion NewState

start _ _ left add1
add1 0 1 right end
add1 _ 1 right end
add1 1 0 left add1
end 0 0 right end
end 1 1 right end

Below we give a trace of this Turing machine's action when started on a binary number
100111 representing decimal 39. The result is 101000, representing decimal 40. The first
set of square brackets are around the symbol under the tape head. The second set of
brackets shows the control state.

 1 0 0 1 1 1 [_]  [start]
 1 0 0 1 1 [1] _  [add1]
 1 0 0 1 [1] 0 _  [add1]
 1 0 0 [1] 0 0 _  [add1]
 1 0 [0] 0 0 0 _  [add1]
 1 0 1 [0] 0 0 _  [end]
 1 0 1 0 [0] 0 _  [end]
 1 0 1 0 0 [0] _  [end]
 1 0 1 0 0 0 [_]  [end]

Note the importance of every Turing machine rule-set to be finite. Here we have an
example of an infinite-state system with a finite representation.

The partial function computed by this machine can be thought of as a representation of
the function f where f(x) = x+1, at least as long as the tape is interpreted as containing a
binary-encoded number.

Universal Turing Machines

A universal Turing Machine (UTM) is a Turing Machine that, given an encoding of any
Turing machine (into a fixed size alphabet) and an encoding of a tape for that machine,
both on the tape of the UTM, simulates the behavior of the encoded machine and tape,
transforming the tape as the encoded machine would and halting if, and only if, the
encoded machine halts.

The set of all TMs has no bound to the number of symbols used as names of control
states nor of tape symbols. However, we can encode an infinity of such symbols using
only two symbols as follows: suppose that we name the control states q

0
, q

1
, q

2
, …

without loss of generality. Then we could use something like a series of i 1's to represent
qi. However, we need more than this simplistic encoding, since we will need to be able to
mark certain of these symbols in the process of simulating the machine being presented.
We will not go into detail here.
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Exercises

1 •• Develop the rules for a Turing machine that erases its input, assuming that all
of the input occurs between two blank cells and the head is initially positioned
in this region.

2 •• Develop the rules for a Turing machine that detects whether its input is a
palindrome (reads the same from left-to-right as from right-to-left). Assume the
input string is a series of 0's and 1's, with blank cells on either end.

3 ••• Develop the rules for a Turing machine that detects whether one input string
(called the "search string") is contained within a second input string. The two
strings are separated by a single blank and the head is initially positioned at the
right end of the search string.

4 ••• Develop a Turing machine that determines if one number is evenly divisible by
a second. Assume the numbers are represented as a series of 1's (i.e. in 1-adic
notation). The two numbers are separated by a single blank. Assume the head
starts at the right end of the divisor.

5 •••• Develop a Turing machine that determines if a number is prime. Assume the
number is represented in 1-adic notation. Use the machine in the previous
problem as a subroutine.

6 ••• Present an argument that demonstrates that the composition of two functions
that are computable by a Turing machine must itself be computable by a Turing
machine. Assume that each function takes one argument string.

7 ••••• Develop the rules for a universal Turing machine.

6.6 Turing's Thesis

Turing's thesis, also called Church's Thesis, the Church/Turing Thesis, the Turing
Hypothesis, etc., is the following important assertion.

Every function that is intuitively computable is computable by some TM.

The reason for the assertion's importance is that it is one way of establishing a link
between a formal rule-based computation model and what is intuitively computable. That
is, we can describe a process in informal terms and as long the description is reasonably
clear as a computational method, we know that it can be expressed more formally without
actually doing so.
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Turing's argument in support of this thesis follows†. Note that “computer” should be read
as “person doing computation”. The relation to a machine comes later in the passage.

“Computing is normally done by writing certain symbols on paper. We may
suppose this paper is divided into squares like a child’s arithmetic book. In
elementary arithmetic the two-dimensional character of the paper is sometimes
used. But such a use is always avoidable, and I think that it will be agreed that the
two-dimensional character of paper is no essential of computation. I assume then
that the computation is carried out on one-dimensional paper, i.e. on a tape
divided into squares. I shall also suppose that the number of symbols which may
be printed is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent. The effect of this restriction of
the number of symbols is not very serious. It is always possible to use sequences
of symbols in the place of single symbols. Thus an Arabic numeral such as 17 or
999999999999999 is normally treated as a single symbol. Similarly in any
European language words are treated as single symbols (Chinese, however,
attempts to have an enumerable infinity of symbols). The differences from our
point of view between the single and compound symbols is that the compound
symbols, if they are too lengthy, cannot be observed at one glance. This is in
accordance with experience. We cannot tell at a glance whether
9999999999999999 and 999999999999999 are the same.

The behavior of the computer at any moment is determined by the symbols which
he is observing, and his “state of mind” at that moment. We may suppose that
there is a bound B to the number of symbols or squares which the computer can
observe at one moment. If he wishes to observe more, he must use successive
observations. We will also suppose that the number of states of mind which need
be taken into account is finite. The reasons for this are of the same character as
those which restrict the number of symbols. If we admitted an infinity of states of
mind, some of them will be ‘arbitrarily close’ and will be confused. Again, the
restriction is not one which seriously affects computation, since the use of more
complicated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up into
“simple operations” which are so elementary that it is not easy to imagine them
further divided. Every such operation consists of some change of the physical
system consisting of the computer and his tape. We know the state of the system
if we know the sequence of symbols on the tape, which of these are observed by
the computer (possibly with a special order), and the state of mind of the
computer. We may suppose that in a simple operation not more than one symbol
is altered. Any other changes can be split up into simple changes of this kind. The
situation in regard to the squares whose symbols may be altered in this way is the

                                                  
† from Turing's 1937 paper. I have made minor substitutions in extracting this selection from the context

of the paper.
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same as in regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
'observed' squares.

Besides these changes of symbols, the simple operations must include changes of
distribution of observed squares. The new observed squares must be immediately
recognizable by the computer. I think it is reasonable to suppose that they can
only be squares whose distance from the closest of the immediately previously
observed square does not exceed a certain fixed amount. Let us say that each of
the new observed squares is within L squares of an immediately previously
observed square.

In connection with ‘immediate recognizability’, it may be thought that there are
other kinds of squares which are immediately recognizable. In particular, squares
marked by special symbols might be taken as immediately recognizable. Now if
these squares are marked only by single symbols there can be only a finite number
of them, and we should not upset our theory by adjoining these marked squares to
the observed squares. If, on the other hand, they are marked by a sequence of
symbols, we cannot regard the process of recognition as a simple process. This is
a fundamental point and should be illustrated. In most mathematical papers the
equations and theorems are numbered. Normally the numbers do not go beyond
(say) 1000. It is, therefore, possible to recognize a theorem at a glance by its
number. But if the paper was very long, we might reach Theorem
157767733443477; then, further on in the paper, we might find ‘… hence
(applying Theorem 157767733443477) we have …'. In order to make sure which
was the relevant theorem we should have to compare the two numbers figure by
figure, possibly ticking the figures off in pencil to make sure of their not being
counted twice. If in spite of this it is still thought that there are other ‘immediately
recognizable’ squares, it does not upset my contention so long as these squares
can be found by some process of which my type of machine is capable.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of
mind. The most general single operation must therefore be taken to be one of the
following:

(A) A possible change (a) of symbol together with a possible change of state
of mind.
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(B) A possible change (b) of observed squares, together with a possible
change of state of mind.

The operation actually performed is determined, as has been suggested above, by
the state of mind of the computer and the observed symbols. In particular, they
determine the state of mind of the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To each state
of mind of the computer corresponds an internal state of the machine. The
machine scans B squares corresponding to the B squares observed by the
computer. In any move the machine can change a symbol on a scanned square or
can change any one of the scanned squares to another square distant not more than
L squares from one of the other scanned squares. The move which is done, and
the succeeding configuration, are determined by the scanned symbol and the
internal state. The machines as defined here can be constructed to compute the
same sequence computed by the computer.”

Our definition is the now-customary one with B = 1 and L = 1. That is, there is one
scanned square and the head changes position by at most one in a single move.

Evidence in Support of Turing's Thesis

Turing's thesis has withstood the test of time and many examinations. It is generally
accepted as true, even though it can't ever be proven. To do so would require a
formalization of an informal concept, computability. Then a similar argument would have
to be presented to argue the correctness of this new definition, and so forth. The evidence
for its validity include:

• Turing's argument itself

• No counter-examples to the thesis have ever been found, despite considerable
effort.

• Many other models were developed independently, some of which were
argued similarly to characterize computability, then later shown to be
equivalent to the Turing model.

Some of these models are enumerated below:

Specific universal computing models

Each of these models is known to have computational power equivalent to the Turing
machine model:

Turing machines (Turing)
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We have discussed this model above.

general recursive functions (Kleene)
This model is very similar to the rex rewriting system, except that it
concerned itself only with natural numbers, not lists.

Partial Recursive Functions (Goedel, Kleene)
This model is more rigidly structured than the general recursive function
model. It also deals with computing on the natural numbers. The set of
functions is defined using induction, a principle to be discussed in a
subsequent section. Even though the defining scheme is a little different,
the set of functions defined can be shown to be the same as the general
recursive functions.

register machines (Shepherdson and Sturgis)
A register machine is a simple computer with a fixed number of registers,
each of which can hold an arbitrary natural number. The program for a
register machine is a sequence of primitive operations specifying
incrementation and decrementation of a register and conditionally
branching on whether a register is 0.

lambda-calculus (Church)
The lambda calculus is a calculus of functional forms based on Church's
lambda notation. This was introduced earlier when we were discussing
functions that can return functions as values.

phrase-structure grammars (Chomsky)
This model will be discussed in Computing Grammatically.

Markov algorithms (Markov)
Markov algorithms are simple rewriting systems similar to phrase-
structure grammars.

tag systems (Post)
Tag systems are a type of rewriting system. They are equivalent to a kind
of Turing machine with separate read- and write- heads that move in one
direction only, with the tape in between. The name of the system
apparently derives from using the model to analyze questions of whether
the read-head ever "tags" (catches up with) the write-head.
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Practical uses of Turing's Thesis

The "Turing Tarpit"

Suppose that you have invented a new computing model or programming language. One
test that is usually applied to such a model is whether or not every computable partial
function can be expressed in the model. One way to establish this is to show that any
Turing machine can be simulated within the model. Henry Ledgard calls this scheme the
"Turing Tarpit".

This principle relies on the acceptance of the Turing machine notion being universally
powerful for computability. For most programming languages, another model, known as
a register machine, a machine with two registers, each of which holds an arbitrary
natural number, is simpler to simulate. In turn, a register machine can simulate a Turing
machine. We indicate how this is done in a subsequent section.

The Informal-Description Principle

This principle relies on an informal acceptance of Turing's argument. In order to show a
certain function is computable by a Turing machine, it suffices to give a verbal
description of a computational process, even without the use of a formal model. If
challenged, the purveyor of the argument can usually describe in sufficient detail how to
carry out the computation on a Turing machine, although such details can quickly reach a
laborious level. For many examples of the use of this principle, see a book such as that of
Rogers, 1967.

6.7 Expressing Turing Machines as Rewrite Rules

Given two models that are both claimed to be universal with respect to computability, it
is important to be able to express every partial function expressible in one model in terms
of the other model and vice-versa. Here we show how Turing machine computations can
be expressed in terms of rex rules. We generate rules that manipulate lists, and leave to
the reader the small remaining task of showing that the lists can be encoded as numbers.
In other words, we show in this section:

Every Turing-computable partial function is a general recursive function.

It suffices to give a method for creating rex rules from Turing machine rules. Thus, at the
same time, we are using the Turing Tarpit principle to show:

rex is a universal computing language.
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We must first show how the state of a Turing machine will be encoded. Recall that the
complete state of a Turing machine consists of a control state, a tape, and a head position.
We represent the complete state by the following four components:

• The control state

• A list of symbols to the left of the head, reading left-to-right.

• A list of symbols to the right of the head, reading right-to-left.

• The symbol under the head.

In particular, the list of symbols to the left of the head reads in the opposite direction
from the list to the right of the head. The reason for this is so that we can use the list-
constructing facilities of rex on the symbols around the head.

Recall that a Turing machine is specifiable by a set of 5-tuples:

State, Read, Written, Motion, NewState

where State  and NewState  refer to control states. For each 5-tuple, there will be one rex
rule. The structure of the rule depends on whether Motion is left, right, or none. We
describe each of these cases. Note that in the rewrite rules, the variables State, Read,
Written, Motion, and NewState will be replaced by literal symbols according to the TM
rules, whereas the variables Left, Right, FirstLeft, FirstRight will be left as rex variables.
The partial function tm defined below mimics the state-transitions of the machine.

In the case that Motion is none:

     tm(State, Left, Read, Right)

=> tm(NewState, Left, Written, Right);

In the case that Motion is right:

       tm(State, Left, Read, [FirstRight | RestRight])

=> tm(NewState, [Written | Left], FirstRight, RestRight);

In the case that Motion is left:

      tm(State, [FirstLeft | RestLeft], Read, Right)

=> tm(NewState, RestLeft, FirstLeft, [Written | Right]);

Next, we need one pair of rules to handle the case where the head tries to move beyond
the symbols at either end of the tape. In either case, we introduce a blank symbol into the
tape. We will use ‘ ‘ to designate the blank symbol.
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tm(State, [ ], Read, Right) => tm(State, [‘ ‘], Read, Right);

tm(State, Left, Read, [ ]) => tm(State, Left, Read, [‘ ‘]);

Finally, we need to provide a rule that will give an answer when the machine reaches a
halting state. Recall that these are identified by combinations of states and control
symbols for which no transition is specified. We want a rule that will return the tape
contents for such a configuration. In order to this, we need to reverse the list representing
the left tape and append it to the list representing the right. The two-argument reverse
function, which appends the second argument to the reverse of the first, is ideally suited
for this purpose:

For each halting combination: State, Read, include a rule:

tm(State, Left, Read, Right) => reverse(Left, [Read | Right]);

where, as before,

reverse([ ], M) => M;

reverse([A | L], M) => reverse(L, [A | M]);

Turing Machine Example in rex

We give the rex rules for the machine presented earlier that adds 1 to its binary input
numeral. We show the original TM rules on the lines within /* … */ and follow each with
the corresponding rex rule. Here we use {‘0‘,‘1‘, ' '} for tape symbols (single quotes
may be used for single characters) and {“start”, “add1”, “end”} for control states.

/* start        ' '       ' '       left    add1 */

tm(“start”, [FirstLeft | RestLeft], ' ', Right)
=> tm(“add1”, RestLeft, FirstLeft, [' ' | Right]);

/* add1         0       1       right   end */

tm(“add1”, Left, ‘0‘, [FirstRight | RestRight])
=> tm(“end”, [‘1‘ | Left], FirstRight, RestRight);

/* add1         ' '       1       right   end */

tm(“add1”, Left, ' ', [FirstRight | RestRight])

=> tm(“end”, [‘1‘ | Left], FirstRight, RestRight);

/* add1         1       0       left    add1 */
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tm(“add1”, [FirstLeft | RestLeft], ‘1‘, Right)
=> tm(“add1”, RestLeft, FirstLeft, [‘0‘ | Right]);

/* end  0       0       right   end */

tm(“end”, Left, ‘0‘, [FirstRight | RestRight])
=> tm(“end”, [‘0‘ | Left], FirstRight, RestRight);

/* end  1       1       right   end */

tm(“end”, Left, ‘1‘, [FirstRight | RestRight])
=> tm(“end”, [‘1‘ | Left], FirstRight, RestRight);

As specified in the general scheme, we also add the following rules:

tm(end, Left, ' ', Right) => reverse(Left, [' ' | Right]);

reverse([ ], M) => M;

reverse([A | L], M) => reverse(L, [A | M]);

The following is a trace of the rewrites made by rex on the input tape 100111
representing decimal 39. As discussed in the text, the left list is the reverse of the tape, so
the corresponding initial argument is [‘1’, ‘1’, ‘1’, ‘0’, ‘0’, ‘1’].

tm(“start”,[‘1’,’1’,’1’,’0’,’0’,’1’], ' ', [ ])   =>
tm(“start”,[‘1’,’1’,’1’,’0’,’0’,’1’], ' ', [' ']) =>
tm(add1,   [‘1’,’1’,’0’,’0’,’1’], ‘1’, [' ',' ']) =>
tm(add1,   [‘1’,’0’,’0’,’1’], ’1’, [‘0’,' ',' ']) =>
tm(add1,   [‘0’,’0’,’1’], ’1’, [‘0’,’0’,' ',' ']) =>
tm(add1,   [‘0’,’1’], ’0’, [‘0’,’0’,’0’,' ',' ']) =>
tm(“end”,[‘1’,’0’,’1’], ’0’, [‘0’,’0’,' ',' ']) =>
tm(“end”,[‘0’,’1’,’0’,’1’], ’0’, [‘0’,' ',' ']) =>
tm(“end”,[‘0’,’0’,’1’,’0’,’1’], ’0’, [' ',' ']) =>
tm(“end”,[‘0’,’0’,’0’,’1’,’0’,’1’], ' ', [' ']) =>
reverse([‘0’,’0’,’0’,’1’,’0’,’1’], [' ',' ']) =>
[‘1’,’0’,’1’,’0’,’0’,’0’,' ',' ']

The result 101000 is indeed the representation of the number that would be 40 decimal.

Exercises

1 ••• Show that we can directly convert the function constructed above into a numeric
one. [Hint:  If the TM has an N-symbol tape alphabet, then lists can be viewed
simply as N-adic numerals. Show how to compute, as general recursive
functions, the numeric functions that extract the first symbol and the remaining
symbols from a list.]  Then show how each list rewriting rule can be recast as a
numeric rewriting rule.
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2 ••••• Show that every general recursive function is computable by a Turing machine.

3 ••• The following is a list of possible ideas for extending the “power” of the Turing
machine notion. Give constructions that show that each can be reduced to the
basic Turing machine definition as presented here.

1. Multiple heads on one tape. The transitions generally depend on the symbol
under each tape head, and can write on all heads in one move. [Show that
this model can be simulated by a single head machine by using “markers” to
simulate the head positions.]

2. Multiple tapes, each with its own head.

3. Two dimensional tape. Head can move left, right, up, or down.

4. An infinite set of one-dimensional tapes, with the head being able to
alternately select the next or previous tape in the series.

5. N-dimensional tape for N > 2.

6. Adding multiple registers to the control of the machine.

7. Adding some number of “counters”, each of which can hold any natural
number.

6.8 Chapter Review

• Define the following terms:

Cartesian product
deterministic
dynamic programming
McCarthy's transformation
parallel assignment
reachability
state
transition
transitive closure
Turing machine
Turing's thesis

• Demonstrate the application of McCarthy's transformation principle.

• Demonstrate how to convert a Turing machine program to a rex program.
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1967. [More abstract and advanced treatment of partial recursive functions. Employs the
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7. Object-Oriented Programming

7.1 Introduction

This chapter describes object-oriented computing and its use in data abstraction,
particularly as it is understood in the Java  language, including various forms of
inheritance.

The late 1980's saw a major paradigm shift in the computing industry toward "object-
oriented programming". The reason behind the surge in popularity of this paradigm is its
relevance to organizing the design and construction of large software systems, its ability
to support user-defined data abstractions, and the ability to provide a facility for reuse of
program code. These are aside from the fact that many of the entities that have to be dealt
with in a computer system are naturally modeled as "objects". Ubiquitous examples of
objects are the images and windows that appear on the screen of a typical personal
computer or workstation environment. These have the characteristics that they
(i) maintain their own state information; (ii) can be created dynamically by the program;
(iii) need to interact with other objects as a manner of course.

The paradigm shift is suggested by comparing the two cases in the following figures. In
the first figure, we have the conventional view of data processing:

Figure 78: Conventional (pre-object-oriented) paradigm

Data structures are considered to be separate from the procedures. This introduces
management problems of how to ensure that the data are operated on only by appropriate
procedures, and indeed, problems of how to define what appropriate means for particular
data. In the second figure, many of the procedures have been folded inside the data, the
result being called "objects".

data structuresprocedures

unlimited 
access



228  Object-Oriented Programming

Figure 79: Object-oriented paradigm

Thus each object can be accessed only through its accompanying procedures (called
methods). Sometimes the access is referred to as "sending a message" and "receiving a
reply" rather than calling a procedure, and sometimes it is implemented quite differently.

Figure 80: State transition in a graphical object
as the result of sending it a resize message

In any case, an enforced connection between procedures and data solves the issue of what
procedures are appropriate to what data and the issue of controlling access to the data.
Languages differ on how much can be object-oriented vs. conventional: In Smalltalk,
"everything is an object", whereas in Java and C++, primitive data types such as integers
are not.

7.2 Classes

The concept of object relates to both data abstraction and to procedural abstraction. An
object is a data abstraction in that it contains data elements that retain their values or state
between references to the object. An object is a procedural abstraction, in that the
principal means of getting information from it, or of changing its state, is through the
invocation of procedures. Rather than attempting to access an object through arbitrary
procedures, however, the procedures that access the object are associated directly with

methods

procedures objects

messages
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the object, or more precisely, with a natural grouping of the objects known as their class.
In many languages, the syntactic declaration of a class is the central focus of object
definition. The class provides the specification of how objects behave and the language
permits arbitrarily-many objects to be created from the class mold.

Figure 81: Class vs. Object

7.3 Attributes

Some of the types of information kept in objects may be thought of as attributes of the
object. Each attribute typically has a value from a set associated with the attribute.
Examples of attributes and possible value sets include:

size {small, medium, large, ....}
shape {polygonal, elliptical, ....}
color {red, blue, green, ....}
border {none, thin, thick, ....}
fill {vertical, horizontal, diagonal, brick, ....}

Objects are the principal vehicles for providing data abstractions in Java: Each object can
contain data values, such as those of attributes, that define its state. An object may also
provide access to those values and the provide ability to change them. These things are
preferably done by the methods associated with the object, rather than through direct
access to the state values themselves, although Java does not prevent the latter type of
access. By accessing attribute values only through methods, the representation of the state
of the object can be changed while leaving the procedural interface intact. There are
numerous benefits of providing a methods-only barrier between the object and its users or
clients:

• Principle of Modularity ("separation of concerns"): This principle asserts
that it is easier to develop complex programs if we have techniques for
separating the functionality into pieces of more primitive functionality.
Objects provide one way of achieving this separation.

"Class"

defines the general form of 
an object of the class

"Objects" of the class are 
derived from the class 
definition,customized with 
their own parameter settings
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• Evolutionary Development: The process of developing a program might
begin with simple implementations of objects for testing purposes, then
evolve to more efficient or robust implementations concurrently with testing
and further development.

• Flexibility in Data Representations: An object might admit several different
data representations, which could change in the interest of efficiency while the
program is running. The object notion provides a uniform means of providing
access to such changing objects.

If, on the other hand, the client were permitted direct access to the attributes of an object
without using methods, the representation could never be changed without invalidating
the code that accessed those attributes.

The simplest type of method for setting the value of an attribute is called a setter, while
the simplest type for getting the value of an attribute is called a getter. For example, if we
had some kind of shape class, with fill represented by an int, we would expect to see
within our class declaration method headers as follows:

setFill(int Fill)

int getFill()

7.4 Object Allocation

Objects in Java are always dynamically allocated (created).  It is also possible for the
object to reallocate dynamically memory used for its own variables. The origin of the
term "class" is to think of a collection of objects with related behaviors as a class, a
mathematical notion similar to a set, of those objects. Rather than defining the behavior
for each object individually, a class definition gives the behaviors that will be possessed
by all objects in the class. The objects themselves are sometimes called members of the
class, again alluding to the set-like qualities of a class. It is also sometimes said that a
particular object is an instance of the class.

Using Java as an example language, these are the aspects of objects, as defined by a
common class declaration, that will be of interest:

Name Each class has a name, a Java identifier. The name effectively
becomes a type name, so is usable anywhere a type would be
usable.

Constructor The constructor identifies the parameters and code for initializing
an object. Syntactically it looks like a procedure and uses the name
of the class as the constructor name. The constructor is called when
an object is created dynamically or automatically. The constructor



Object-Oriented Programming 231

does not return a value in its syntactic structure. A constructor is
always called by using the Java new operator. The result of this
operator is a reference to the object of the class thus created.

Methods Methods are like procedures that provide the interface between the
object and the program using the object. As with ordinary
procedures, each method has an explicit return type, or specifies
the return type void.

Variables Each time an object is created as a "member" of a class, the system
allocates a separate set of variables internal to it. These are
accessible to each of the methods associated with the object
without explicit declaration inside the method. That is, the
variables local to the object appear as if global to the methods,
without necessitating re-declaration.

The reason for the emphasis above is that use of objects can provide a convenience when
the number of variables would otherwise become too large to be treated as procedure
parameters and use of global variables might be a temptation.

7.5 Static vs. Instance Variables

An exception to having a separate copy of a variable for each object occurs with the
concept of static variable. When a variable in a class is declared static, there is only
one copy shared by all objects in the class. For example, a static variable could keep a
count of the number of objects allocated in the class, if that were desired. For that matter,
a static variable could maintain a list of references to all objects created within the class.

When it is necessary to distinguish a variable from a static variable, the term instance
variable is often used, in accordance with the variable being associated with a particular
object instance. Sometimes static variables are called class variables.

Similarly, a static method  is one that does not depend on instance variables, and thus
not on the state of the object. A static method may depend on static variables, however.
Static methods are thus analogous to procedures, or possibly functions, in ordinary
languages.

A final note on classes concerns a thread in algorithm development. It has become
common to present algorithms using abstract data types (ADTs), which are viewed as
mathematical structures accompanied by procedures and functions for dealing expressly
with these structures. For example, a typical ADT might be a set, accompanied by
functions for constructing sets, testing membership, forming unions, etc. Such structures
are characterized by the behavioral interaction of these functions, rather than by the
internal representation used to implement the structure.
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Classes seem to be a very appropriate tool for defining ADTs and
enforcing the disciplined use of their functions and procedures.

7.6 Example – A Stack Class

We now illustrate these points on a specific ADT or class, a class Stack. A stack is
simply an ordered sequence of items with a particular discipline for accessing the items:

The order in which items in a stack are removed is the reverse from the order in
which they were entered.

This is sometimes called the LIFO (last-in, first-out) property.

Regardless of how the stack is implemented, into the stack is not part of the discipline.
The Stack class will be specified in Java:

class Stack
{

// .... all variables, constructors, and methods
//      used for a Stack are declared here ....

}

We postulate methods push, pop, and empty for putting items into the stack, removing
them, and for testing whether the stack is empty. Let's suppose that the items are integers,
for concreteness.

class Stack
{
void push(int x)
  {
  // .... defines how to push x ....
  }

int pop()
  {
  // .... defines how to return top of the stack ....
  return .... value returned ....;
  }

boolean isEmpty()
  {
  // .... defines how to determine emptiness ....
  return ....;
  }
}
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Method push does not return any value, hence the void. Method pop does not take any
argument. Method empty returns a boolean (true or false) value indicating emptiness:

Java allows inclusion of a static method called main with each class. For one class, this
will serve as the main program that is called at the outset of execution. For any class, the
main method may be used as a test program, which is what we will do here.

class Stack
{
// .... other methods defined here

public static void main(String arg[])
  {
  int limit = new Integer(arg[0]).intValue();
  Stack s = new Stack(limit);
  for( int i = 0; i < limit; i++ )
    {
    s.push(i);
    }
  while( !s.isEmpty() )
    {
    System.out.println(s.pop());
    }
  }
}

The keyword static defines main as a static method. The keyword public means that it
can be called externally. The argument type String .... [] designates an array of strings
indicating what is typed on the command line; each string separated by space will be a
separate element of the array. The line

  int limit = new Integer(arg[0]).intValue();

converts the first command-line argument to an int and assigns it to the variable limit.
The line

  Stack s = new Stack(limit);

uses the Stack constructor, which we have not yet defined, to create the stack. Our first
approach will be to use an array for the stack, and the argument to the constructor will
say how large to make that array, at least initially.

A second use of limit in the test program is to provide a number of times that information
is pushed onto the stack. We see this number being used to control the first for loop. The
actual pushing is done with

    s.push(i);

Here s is the focal stack object, push is the method being called, and i is the actual
argument.
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The while loop is used to pop the elements from the stack as long as the stack is not
empty. Since by definition of the stack discipline items are popped in reverse order from
the order in which they are pushed, the output of this program, if called with a command-
line argument of 5, should be

4
3
2
1
0

indicating the five argument values 0 through 4 that are pushed in the for loop.

7.7 Stack Implementation

Now we devote our attention to implementing the stack. Having decided to use an array
to hold the integers, we will need some way of indicating how many integers are on the
stack at a given time. This will be done with a variable number. The value of number-1
then gives the index within the array of the last item pushed on the stack. Likewise, the
value of number indicates the first available position onto which the next integer will be
pushed, if one is indeed pushed before the next pop. The figure below shows the general
idea.

Figure 82: Array implementation of a stack

Here is how our Stack class definition now looks, after defining the variables array and
number and adding the constructor Stack:

Address of 
stack base 

number of 
elements on 

the stack

limit
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class Stack
{
int number;               // number of items in stack
int array[ ];             // stack contents

Stack(int limit)
  {
  array = new int[limit]; // create array
  number = 0;             // stack contains no items yet
  }
....
}

Note that the new operator is used to create an array inside the constructor. The array as
declared is only a type declaration; there is no actual space allocated to it until the new
operator is used. Although an array is technically not an object, arrays have a behavior
that is very much object-like. If the new were not used, then any attempt to use the array
would result in a terminal execution error.

Now we can fill in the methods push, pop, and empty:

void push(int x)
  {
  array[number++] = x; // put element at position number
  } // and increment

int pop()
  {
  return array[--number]; // decrement number and take element
  }

boolean isEmpty()
  {
  return number == 0; // see if number is 0
  }

Note that number++ means that we increment number after using the value, and --
number means that we decrement number before using the value. These are the correct
actions, in view of our explanation above.

We can now test the complete program by

java -cs Stack 5

The argument -cs means to compile the source first. A command line is treated as a
sequence of strings. The string "5", the first after the name of class whose main is to be
invoked, is the first command-line argument, which becomes arg[0] of the program.
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7.8 Improved Stack Implementation

This first sketch of a Stack class leaves something to be desired. For one thing, if we try
to push more items onto the stack than limit specified, there will be a run-time error, or
stack overflow. It is an annoyance for a program to have to be aware of such a limit. So
our first enhancement might be to allow the stack array to grow if more space is needed.

A program should not abort an application due to having allocated a fixed
array size. The program should make provisions for extending arrays and
other structures as needed, unless absolutely no memory is left.

In other words, programs that preset the size of internal arrays arbitrarily are less robust
than ones that are able to expand those arrays. In terms of object-oriented programming,
each object should manage its own storage requirements to preclude premature failure
due to lack of space.

To design our class with a growing array, we will add a new method ensure that ensures
there is enough space before insertion into the array is attempted. If there is not enough
space, then ensure will replace the array with a larger one.

Figure 83: Full stack before extension
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Figure 84: Stack after extension

The incremental size will be controlled by a variable increment in the object. For
convenience, we will initialize the increment to be the same as the initial limit. Note that
we also must keep track of what the current limit is, which adds another variable. We will
call this variable limit. The value of the variable limit in each object will be
distinguished from the constructor argument of the same name by qualifying it with this,
which is a Java keyword meaning the current object.

class Stack
{
int number;                // number of items in the stack
int limit;                 // limit on number of items in the stack
int increment;             // incremental number to be added
int array[ ];              // stack contents

Stack(int limit)
  {
  this.limit = limit;      // set instance variable to argument value
  increment = limit;       // use increment for limit
  array = new int[limit];  // create array
  number = 0;              // stack contains no items initially
  }

void ensure()              // make sure push is possible
  {
  if( number >= limit )
    {
    int newArray[] = new int[limit+increment];  // create new array
    for( int i = 0; i < limit; i++ )
      {
      newArray[i] = array[i]; // copy elements in stack
      }
    array = newArray;    // replace array with new one
    limit += increment;    // augment the limit
    }
  }
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void push(int x)
  {
  ensure();
  array[number++] = x; // put element at position number, increment
  }
....    // other methods remain unchanged
}

Exercises

1 • Add to the code a method that returns the number of items currently on the stack.

2 • Add to the stack class a second constructor of two arguments, one giving the
initial stack size and one giving the increment.

3 •• Suppose we wished for the stack to reduce the size of the allocated array
whenever number is less than limit - increment. Modify the code accordingly.

4 ••• Change the policy for incrementing stack size to one that increases the size by a
factor, such as 1.5, rather than simply adding an increment. Do you see any
advantages or disadvantages of this method vs. the fixed increment method?

5 ••• For the methods presented here, there is no requirement that the items in a stack
be in a contiguous array. Instead a linked list could be used. Although a linked list
will require extra space for pointers, the amount of space allocated is exactly
proportional to the number of items on the stack. Implement a stack based on
linked lists.

6 •••• Along the lines of the preceding linked list idea, but rather than linking individual
items, link together chunks of items. Each chunk is an array. Thus the overhead
for the links themselves can be made as small as we wish by making the chunks
large enough. This stack gives the incremental allocation of our example, but does
not require copying the array on each extension. As such, it is superior, although
its implementation is more complicated. Implement such a stack.

Figure 85: A stack using chunked array allocation
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7.9 Classes of Data Containers

A stack is just one form of data container, which in turn is just one form of ADT.
Different types of container can be created depending on the discipline of access we wish
to have. The stack, for example, exhibits a last-in, first-out (LIFO) discipline. Items are
extracted in the reverse order of their entry. In other words, extraction from a stack is
"youngest out first". A different discipline with a different set of uses is a queue.
Extraction from a queue is "oldest out first", or first-in, first-out (FIFO). A queue's
operations are often called enqueue (for inserting) and dequeue for extraction. Yet
another discipline uses an ordering relation among the data values themselves: "minimum
out first". Such a discipline is called a priority queue. The figure below illustrates some
of these disciplines. A discipline, not shown, which combines both and stack and queue
capabilities is a deque, for "double-ended queue". The operations might be called
enqueue_top, enqueue_bottom, dequeue_top, and dequeue_bottom.
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insert remove
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No particular order

two

three

one

four

two

three

one

Figure 86: A container with no particular discipline
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Figure 87: A container with a stack discipline
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Figure 88: A container with a queue discipline
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Figure 89: A container with a priority queue discipline

7.10 Implementing a Queue as a Circular Array

Consider implementing a queue data abstraction using an array. The straightforward
means of doing this is to use two indices, one indicating the oldest item in the array, the
other indicating the youngest. Enqueues are made near the youngest, while dequeues are
done near the oldest. The following diagram shows a typical queue state:
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oldest youngest

d e f g h i j

Figure 90: Queue implemented with an array, before enqueuing k

If the next operation is enqueue(k), then the resulting queue will be:

Figure 91: Queue implemented with an array, after enqueuing k

From this state, if the next operation is dequeue(), then d would be dequeued and the
resulting state would be:

Figure 92: Queue implemented with an array, after dequeuing d

Of course, the value being dequeued need not actually be obliterated. It is the pair of
indices that tell us which values in the queue are valid, not the values in the cells
themselves. Things get more interesting as additional items are enqueued, until youngest
points to the top end of the array. Note that there still may be available space in the
queue, namely that below oldest. It is desirable to use that space, by "wrapping around"
the pointer to the other end of the queue. Therefore, after having enqueued l, m, n, o, and
p, the queue would appear as:

oldest youngest
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oldest youngest

e f g h i j kd
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oldestyoungest

e f g h i j k l mn o p

Figure 93: Queue implemented with an array, after wrap-around

When the index values meet, as they have here, we need to allocate more space. The
simplest way to do this is to allocate a new array and copy the current valid values into it.
From the previous figure, attempting to enqueue q now would cause an overflow
condition to result. Assuming we can double the space allocated were the same as that in
the original queue, we would then have the following, or one of its many equivalents:

youngest

n o p q

oldest

e f g h i j k l m

Figure 94: Queue implemented with an array, after space extension

How do we detect when additional allocation is necessary?  It is tempting to try to use the
relationship between the values of the two indices to do this. However, this may be
clumsy to manage (why?). A simpler technique is to just maintain a count of the number
in the queue at any given time and compare it with the total space available. Maintaining
the number might have other uses as well, such as providing that information to the
clients of the queue through an appropriate call.

Exercises

1 ••• Construct a class definition and implementation for a queue of items. Use the
stack class example developed here as a model. Use circular arrays as the
implementation, so that it is not necessary to extend the storage in the stack unless
all space is used up. Be very careful about copying the queue contents when the
queue is extended.

2 ••• Construct a class definition and implementation for a deque (double-ended queue,
in which enqueuing and dequeuing can take place at either end). This should
observe the same storage economies defined for the queue in the previous
exercise.
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7.11 Code Normalization and Class Hierarchies

"Normalization" is the term (borrowed from database theory) used to describe an on-
going effort, during code development, of concentrating the specification of functionality
in as few places as possible,. It has also come to be called “factoring”.

Reasons to "normalize" code:

Intellectual economy:  We would prefer to gain an understanding of as
much functionality as possible through as little code reading as possible.

Maintainability/evolvability:  Most programs are not written then left
alone. Programs that get used tend to evolve as their users desire new
features. This is often done by building on existing code. The fewer places
within the code one has to visit to make a given conceptual change, the
better.

An example of normalization we all hopefully use is through the procedure concept.
Rather than supporting several segments of code performing similar tasks, we try to
generalize the task, package it as a procedure, and replace the would-be separate code
segments by procedure calls with appropriate parameters.

Other forms of normalization are:

Using identifiers to represent key constants.

The class concept, as used in object-oriented programming, which
encourages procedural normalization by encapsulating procedures for
specific abstract data types  along with the specifications of those data
types.

As we have seen, classes can be built up out of the raw materials of a programming
language. However, an important leveraging technique is to build classes out of other
classes as well. In other words, an object X can employ other objects Y, Z, ... to achieve
X's functionality. The programmer or class designer has a number of means for doing
this:

• Variables in a class definition can be objects of other classes. We say that the
outer object is composed of, or aggregated from, the inner objects.

• A class definition can be directly based on the definition of another class (which
could be based on yet another class, etc.). This is known as inheritance, since the
functionality of one class can be used by the other without a redefinition of this
functionality.
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As an example of composing an object of one class from an object of another, recall the
stack example. The stack was built using an array. One of the functionalities provided for
the array was extendability, the ability to make the array larger when more space is
needed. But this kind of capability might be needed for many different types of container
built from arrays. Furthermore, since the array extension aspect is the trickiest part of the
code, it would be helpful to isolate it into functionality associated with the array, and not
have to deal with it in classes built using the array. Thus we might construct a class
Array that gives us the array access capability with extension and use this class in
building other classes such as stacks, queues, etc. so that we don’t have to reimplement
this functionality in each class.

class Array
{
int increment;                // incremental number to be added
int array[ ];                 // actual array contents

Array(int limit)              // constructor
  {
  increment = limit;          // use increment for limit
  array = new int[limit];     // create actual array
  }

void ensure(int desiredSize)  // make sure size is at least desiredSize
  {
  if( desiredSize > array.length )
    {
    int newArray[] = new int[desiredSize]; // create new array
    for( int i = 0; i < array.length; i++ )
      {
      newArray[i] = array[i]; // copy elements
      }
    array = newArray;         // replace array with new one
    }
  }
}

class Stack             // Stack built using class Array
{
int number;                 // number of items in the stack
int increment;              // incremental number to be added
Array a;                    // stack contents

Stack(int limit)
  {
  a = new Array(limit);     // create array for stack
  increment = limit;        // use increment for limit
  number = 0;               // stack contains no items initially
  }
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void ensure()               // make sure push is possible
  {
  if( number >= a.array.length )
    {
    a.ensure(a.array.length + increment);
    }
  }

void push(int x)
  {
  ensure();
  a.array[number++] = x; // put element at position number, increment
  }

int pop()
  {
  return a.array[--number]; // decrement number and take element
  }
....     // other methods remain unchanged
}

Within class Stack, a reference to an object of class Array is allocated, here identified by
a. Notice how the use of the Array class to implement the Stack class results in a net
simplification of the latter. By moving the array extension code to the underlying Array
class, there is less confusion in the Stack class itself. Thus using two classes rather than
one results in a separation of concerns, which may make debugging easier.

7.12 Inheritance

A concept linked to that of class, and sometimes thought to be required in object-oriented
programming, is that of inheritance.  This can be viewed as a form of normalization. The
motivation for inheritance is that different classes of data abstractions can have functions
that are both similar among classes and ones that are different among classes. Inheritance
attempts to normalize class definitions by providing a way to merge similar functions
across classes.

Inheritance entails defining a "parent class" that contains common
methods and one or more child classes, each potentially with their separate
functions, but which also inherit functions from the parent class.

With the inheritance mechanism, we do not have to recode common functions in each
child class; instead we put them in the parent class.

The following diagram suggests inheritance among classes. At the programmer's option,
the sets of methods associated with the child classes either augment or over-ride the
methods in the parent class. This diagram is expressed in a standard known as UML
(Unified Modeling Language).
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Figure 95: Inheritance among classes

This concept can be extended to any number of children of the same parent. Moreover, it
can be extended to a class hierarchy, in which the children have children, etc.   The
terminology base class is also used for parent class and derived class for the children
classes. It is also said that the derived class extends the base class (note that this is a
different idea from extending an array).

Possible Advantages of Inheritance:

• Code for a given method in a base class is implemented once, but the method may
be used in all derived classes.

• A method declared in a base class can be "customized" for a derived class by
over-riding it with a different method.

• A method that accepts an object of the base class as an argument will also accept
objects of the derived classes.

As an example, let's derive a new class IndexableStack from class Stack. The idea of
the new class is that we can index the elements on the stack. However, indexing takes
place from the top element downward, so it is not the same as ordinary array index. In
other words, if s is an IndexableStack, s.fromTop(0) represents the top element,
s.fromTop(1) represents the element next to the top, and so on.

The following Java code demonstrates this derived class. Note that the keyword extends
indicates that this class is being derived from another.

class IndexableStack extends Stack

child class 2

parent class

child class 1 child class 3
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{
IndexableStack(int limit)
  {
  super(limit);
  }

int fromTop(int index)
  {
  return a.array[number-1-index];
  }

int size()
  {
  return number;
  }
}

Note the use of the keyword super in the constructor. This keyword refers to the object
in the base class Stack that underlies the IndexableStack. The use of the keyword with
an argument means that the constructor of the base class is called with this argument. In
other words, whenever we create an IndexableStack, we are creating a Stack with the
same value of argument limit.

Note the use of the identifiers a and number in the method fromTop. These identifiers are
not declared in IndexableStack. Instead, they represent the identifiers of the same name
in the underlying class Stack. Every variable in the underlying base class can be used in
a similar fashion in the derived class.

Next consider the idea of over-riding. A very useful example of over-riding occurs in the
class Applet, from which user applets are derived. An applet was intended to be an
application program callable within special contexts, such as web pages. However,
applets can also be run in a free-standing fashion. A major advantage of the class Applet
is that there are pre-implemented methods for handling mouse events (down, up, and
drag) and keyboard events. By creating a class derived from class Applet, the
programmer can over-ride the event-handling methods to be ones of her own choosing,
without getting involved in the low-level details of event handling. This makes the
creation of interactive applets relatively simple.

The following example illustrates handling of mouse events by over-riding methods
mouseDown, mouseDrag, etc. which are defined in class Applet. The reader will note the
absence of a main program control thread. Instead actions in this program are driven by
mouse events. Each time an event occurs, one of the methods is called and some
commands are executed.

Another example of over-riding that exists in this program is in the update and paint
methods. The standard applet protocol is that the program does not update the screen
directly; instead, the program calls repaint(), which will call update(g), where g is the
applet’s graphics. An examination of the code reveals that update is never called
explicitly. Instead this is done in the underlying Applet code. The reason that update
calls paint rather than doing the painting directly is that the applet also makes implicit
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calls to paint in the case the screen needs repainting due to being covered then re-
exposed, such as due to user actions involving moving the window on the screen.

// file:    miniMouse.java
// As mouse events occur, the event and its coordinates
// appear on the screen.

// This applet also prescribes a model for the use of double-buffering
// to avoid flicker: drawing occurs in an image buffer, which is then
// painted onto the screen as needed. This also simplifies drawing,
// since each event creates a blank slate and then draws onto it.

import java.applet.*;           // applet class
import java.awt.*;              // Abstract Window Toolkit

public class miniMouse extends Applet
  {
  Image image; // Image to be drawn on screen by paint method
  Graphics graphics; // Graphics part of image, acts as buffer

  // Initialize the applet.

  public void init()
    {
    makeImageBuffer();
    }

   // mouseDown is called when the mouse button is depressed.

  public boolean mouseDown(Event e, int x, int y)
    {
    return show("mouseDown", x, y);
    }

   // mouseDrag is called when the mouse is dragged.

  public boolean mouseDrag(Event e, int x, int y)
    {
    return show("mouseDrag", x, y);
    }

   // mouseUp is called when the mouse button is released.

  public boolean mouseUp(Event v, int x, int y)
    {
    return show("mouseUp", x, y);
    }
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   // mouseMove is called when the mouse moves without being dragged

  public boolean mouseMove(Event v, int x, int y)
    {
    return show("mouseMove", x, y);
    }

  // show paints the mouse coordinates into the graphics buffer

  boolean show(String message, int x, int y)
    {
    clear();
    graphics.setColor(Color.black);
    graphics.drawString(message +

" at (" + x + ", " + y + ")", 50, 100);
    repaint();
    return true;
    }

  // update is implicitly called when repaint() is called
  // g will be bound to the Graphics object in the Applet,
  // not the one in the image. paint will draw the image into g.

  public void update(Graphics g)
    {
    paint(g);
    }

  // paint(Graphics) is called by update(g) and whenever
  // the screen needs painting (such as when it is newly exposed)

  public void paint(Graphics g)
    {
    g.drawImage(image, 0, 0, null);
    }

  // clear clears the image

  void clear()
    {
    graphics.clearRect(0, 0, size().width, size().height);
    }

  // Make image buffer based on size of the applet.

  void makeImageBuffer()
    {
    image = createImage(size().width, size().height);
    graphics = image.getGraphics();
    }
  }
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Drawbacks of Inheritance

While inheritance can be a wonderful time-saving tool, we offer these cautions:

Possible drawbacks of inheritance:

• Once an inheritance hierarchy is built, functionality in base classes cannot
be changed unless the impact of this change on derived classes is clearly
understood and managed.

• The user of a derived class may have to refer to the base class (and its base
class, etc., if any) to understand the full functionality of the class.

There is a fine art in developing the inheritance hierarchy for a large library; each level in
the hierarchy should represent carefully-chosen abstractions.

7.12 Inheritance vs. Composition

Inheritance is just one of two major ways to build hierarchies of classes. The second way,
which is called composition, is for the new class to make use of one or more objects of
other classes. Although these two ways appear similar, they are actually distinct. For
example, whereas inheritance adds a new layer of functionality to that of an existing
class, composition uses functionality of embedded objects but does not necessarily
provide similar functionality to the outside world. The following diagram is meant to
suggest this distinction.

Figure 96: Inheritance vs. Composition

With composition, if the outer classs wishes to provide functionality of inner clases to its
clients, it must explicitly provide methods for that purpose. For example, an alternate way
to have built the Stack class above would be to have Stack inherit from Array, rather
than be composed of an Array. In this case, methods such as extend that are available in
Array would automatically be available in Stack as well. Whether or not this is desirable
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would depend on the client expectations for Stack and other considerations. An
advantage is that there is less code for the extension; a disadvantage is that it exposes
array-like functionality in the Stack definition, upon which the client may come to rely.

Composition should also not be confused with function composition, despite there being
a similarity. Yet another construction similar to composition is called aggregation. The
technical distinction is that with composition the component objects are not free-standing
but are instead a part of the composing object, whereas with aggregation, the components
exist independently from the aggregating object. This means that a single object may be
aggregated in more than one object, much like structure sharing discussed in Chapter 2.

Exercises

1 ••• Using inheritance from class Array, construct a class BiasedArray that behaves
like an Array except that the lower limit is an arbitrary integer (rather than just 0)
called the bias. In this class, an indexing method, say elementAt, must be used in
lieu of the usual [...] notation so that the bias is taken into account on access.

2 ••• Code a class Queue  using class Array  in two different ways, one using
composition and the other using inheritance. Use the circular array technique
described earlier.

3 ••• Code a class Deque using class Array.

4 ••• Using aggregation, construct a class Varray for virtually concatenating arrays,
using the Principle of Virtual Contiguity described in Implementing Information
Structures. One of the constructors for this class should take two arguments of
class Array that we have already presented and provide a method elementAt for
indexing. This indexing should translate into indexing for an appropriate one of
the arrays being concatenated. Also provide constructors that take one array and
one virtual array and a constructor that takes two virtual arrays. Provide as much
of the functionality of the class array as seems sensible. The following diagram
suggests how varrays work:
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Figure 97: Aggregated objects in a class of virtual arrays

5 •••• Arrays can be constructed of any dimension. Create a class definition that takes
the number of dimensions as an argument to a constructor. Use a single-
dimension array of indices to access arrays so constructed.

7.13 The is-a Concept and Sub-Classing

When a class is constructed as a derived class using inheritance, the derived class
inherits, by default, the characteristics of the underlying base class. Unless the essential
characteristics are redefined, in a sense every derived class object is a base class object,
since it has the capabilities of the base class object but possibly more. For example, an
IndexableStack is a Stack, according to our definition. This is in the same sense that
additional capabilities are possessed by people and things. For example, if the base class
is person and the derived class is student, then a student has the characteristics of a
person and possibly more. Another way of saying this is that class student is a sub-class
of class person. Every student is a person but not necessarily conversely.

It is common to find class hierarchies in which branching according to characteristics
occurs. The programmer should design such hierarchies to best reflect the enterprise
underlying the application. For example, if we are developing a computer window
system, then there might be a base class window with sub-classes such as:
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text_window

graphics_window

window_with_vertical_scrollbar

window_with_horizontal_and_vertical_scrollbars

text_window_with_vertical_scrollbar

graphics_window_with_horizontal_and_vertical_scrollbars

and so on. It is the job of the designer to organize these into a meaningful hierarchy for
use by the client and also to do it in such a way that as much code functionality as
possible is shared through inheritance.

7.14 Using Inheritance for Interface Abstraction

The type of inheritance discussed could be called implementation inheritance, since the
objects of the base class are being used as a means of implementing objects of the derived
class. Another type of inheritance is called interface inheritance. In this form, the
specification of the interface methods is what is being inherited. As before, each object in
the derived class still is an object in the base class, so that a method parameter could
specify an object of base type and any of the derived types could be passed as a special
case.

In Java, there is a special class-like construct used to achieve interface inheritance: The
base class is called an interface rather than a class. As an example, consider the two
container classes Stack vs. Queue. Both of these have certain characteristics in common:
They both have methods for putting data in, removing data, and checking for emptiness.
In certain domains, such as search algorithms, a stack or a queue could be used, with
attendant effects on the resulting search order.

We could consider both Stack and Queue to be instances of a common interface, say
Pile. We'd have to use the same names for addition and removal of data in both classes.
So rather than use push and enqueue, we might simply use add, and rather than use pop
and dequeue, we might use remove. Our interface declaration might then be:

interface Pile
{
void add(int x);

int remove();

boolean isEmpty();
}
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Note that the interface declaration only declares the types of the methods. The definition
of the methods themselves are in the classes that implement the interface. Each such class
must define all of the methods in the interface. However, a class may define other
methods as well. Each class will define its own constructor, since when we actually
create a Pile, we must be specific about how it is implemented.

The following shows how class Stack might be declared to implement interface Pile:

class Stack implements Pile  // Stack built using class Array
{
int number;                    // number of items in the stack
int increment;                 // incremental number to be added
Array a;                       // stack contents

Stack(int limit)
  {
  a = new Array(limit);        // create array for stack
  increment = limit;           // use increment for limit
  number = 0;                  // stack contains no items initially
  }

void ensure()               // make sure add is possible
  {
  if( number >= a.array.length )
    {
    a.ensure(a.array.length + increment);
    }
  }

public void add(int x)
  {
  ensure();
  a.array[number++] = x; // put element at position number and increment
  }

public int remove()
  {
  return a.array[--number]; // decrement number and take element
  }

public boolean isEmpty()
  {
  return number == 0;       // see if number is 0
  }
}

Note the public modifiers before the methods that are declared in the interface. Since
those methods are by default public, these modifiers are required in the implementing
class. Similarly we might have an implementation of class Queue:
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class Queue implements Pile     // Queue built using class Array
{
int number;                 // number of items in the Queue
int increment;              // incremental number to be added
int oldest;                 // index of first element to be removed
int newest;                 // index of last element added
Array a;                    // Queue contents

Queue(int limit)
  {
  a = new Array(limit);     // create array for Queue
  increment = limit;        // use increment for limit
  number = 0;               // Queue contains no items initially
  oldest = 0;
  newest = -1;
  }
... definition of methods add, remove, empty ...

}

Now let's give a sample method that uses a Pile as a parameter. We do this in the context
of a test program for this class. We are going to test both Stack and Queue:

class TestPile
{
public static void main(String arg[])
  {
  int limit = new Integer(arg[0]).intValue();
  int cycles = new Integer(arg[1]).intValue();

  testPile(new Stack(limit), cycles);
  testPile(new Queue(limit), cycles);
  }

static void testPile(Pile p, int cycles)
  {
  for( int i = 0; i < cycles; i++ )
    {
    p.add(i);
    }
  while( !p.isEmpty() )
    {
    System.out.println(p.remove());
    }
  }
}

The important thing to note here is the type of the first parameter Pile to testPile.
Since both Stack and Queue are special cases of pile, we can use either type as a
parameter to testPile, as shown in main above.
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7.15 Abstract Classes

An idea similar to implementation of an interface is that of an abstract base class. In Java
terminology, a base class is abstract if it is intended to tie together similar derived
classes, but there is to be no direct creation of objects of the base class itself. Unlike an
interface, objects can actually exist in the abstract class. There might be methods and
constructors defined in the abstract class as well. However, similar to an interface, those
objects are never created by calling their constructors directly. Instead, their constructors
are called in the constructors of classes derived from the abstract class.

Abstract classes can also contain abstract method declarations. These methods are
similar to the declarations in an interface; they do not specify an implementation; instead
this is done in the derived classes.

An interesting example of abstract classes is in a shape-drawing program. There are
typically several different types of shapes that can be drawn with the mouse, for example:

Box
Oval
Line

Each of these is an object of a different class. Each has a different way of drawing itself.
At the same time, there are certain things we wish to do with shapes that do not need to
differentiate between these individual classes. For example, each shape has some
reference position that defines a relative offset from a corner of the screen. We would
expect to find a move method that changes this reference position, and that method will be
the same for all shapes.

Our inheritance diagram would appear as in Figure 98, with Shape being the abstract
class. Shape would have an abstract method draw, which would be defined specially by
each shape class, and a concrete method move that changes its reference coordinates.
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Figure 98: Implementing shapes with inheritance

abstract class Shape
  {
  int x, y; // coordinates

  Shape(int x, int y) // constructor
    {
    this.x = x;
    this.y = y;
    }

  void move(int x, int y) // concrete method
    {
    this.x = x;
    this.y = y;
    }

  abstract void draw(int x, int y); // defined in derived classes
  }

class Box extends Shape
  {
  Box(int x, int y, ....) // Box constructor
    {
    super(x, y); // call base constructor
    }

  void draw(int x, int y)       // draw method for Box
    {

....
    }
  }
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class Oval extends Shape
  {
  Oval(int x, int y, ....) // Oval constructor
    {
    super(x, y); // call base constructor
    }

  void draw(int x, int y)       // draw method for Oval
    {

....
    }
  }
....

As in the case of interfaces, where both Stack and Queue could be used for a Pile, here
both Box and Oval can be used for a Shape. If we have a variable of type Shape, we can
call its draw method without knowing what kind of shape it is:

Box box = new Box(....);
Oval oval = new Oval(....);

Shape shape;

shape = box;
shape.draw(....);

shape = oval;
shape.draw(....);

Exactly the same statement may be used to draw either kind of object.

An interesting further step would be to add a class Group as a sub-class of Shape, with
the idea being that a Group could hold a list of shapes that can be moved as a unit.

Another example of a class hierarchy with some abstract classes occurs in the Java
Abstract Window Toolkit (awt). We show only a portion of this hierarchy, to give the
reader a feel for why it is structured as it is. The classes in this hierarchy that we'll
mention are:

Component:  An abstract class that contains screen graphics and methods to paint
the graphics as well as to handle mouse events that occur within.

Specific sub-classes of Component that do not contain other components include:

TextComponent, which has sub-classes
TextField
TextArea.

Label
Scrollbar
Button
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List (a type of menu)

Container: An abstract sub-class of Component containing zero or more
components. Two specific sub-classes of Container are:

Window, a bordered object that has sub-classes
Frame, which is a Window with certain added features
Dialog

Panel, which has a sub-class Applet. A panel has methods for catching
mouse events that occur within it.

7.16 The Object Class

In Java, there is a single master class from which all classes inherit. This class is called
Object.  If we view the inheritance hierarchy as a tree, then Object is the root of the
tree.

One approach to creating container classes for different classes of objects is to make the
contained type be of class Object. Since each class is derived from class Object, each
object of any class is a member of class Object. There are two problems with this
approach:

1. Not everything to be contained is an object. For example, if we wanted to
make a stack of int, this type is not an object.

2. Different types of objects can be stored in the same container. This might lead
to confusion or errors. The code for accessing objects in the container may get
more complicated by the fact that the class of the object will need to be
checked dynamically.

Problem 1 can be addressed by wrapper classes, to be discussed subsequently. In order to
implement checking called for in problem 2, we can make use of the built-in Java
operator instanceof. An expression involving the latter has the following form:

Object-Reference instanceof Class-Name

As an example, we could have constructed our class Stack using Object rather than int
as the contained type. Then the value returned by the pop method would be Object. In
order to test whether the object popped is of a class C, we would have code such as:
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Stack s = new Stack();
....

Object ob = s.pop();

if( ob instanceOf C )
  { .... }

7.17 Wrapper Classes

In Java, primitive data items such as int and float are not objects. However, it is
frequently desired to treat them as such. For example, as discussed above, rather than
create a different stack class for each different type of datum that we may wish to put in
stacks, we could create a single class of type Object. The Java language libraries provide
classes that serve the purposes of making objects out of primitive objects. But if they
didn't, we could still define them ourselves. Frequently used wrapper classes, and the
type of data each contains, are:

Wrapper class Wrapped Type
Integer int
Long long
Float float
Double double
Char char
Boolean boolean

Each wrapper object contains a single object of the wrapped type. Also, these objects are
immutable, meaning that their values cannot be changed once created.

Methods of the wrapper classes provide ways to extract the wrapped data, and also to
construct objects from other types, such as from Strings. Consult the reference manual
for details. The first four of the wrappers mentioned above extend an abstract class called
Number. By using Number as a type, one can extract information using methods such as
floatValue, without requiring knowledge of whether the actual number is an Integer,
Long, Float, or Double.

Object ob = s.pop();

if( ob instanceOf Number )
  {
  float v = ((Number)ob).floatValue();
  ....
  }
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7.18 Copying Objects

What does it mean to copy an object? Suppose, for example, an object is a list of lists.
Does copying this object mean copying the entire list but allowing the elements to be
shared among both copies, or does it mean that the elements are copied too?

By shallow copying, we mean copying only the references to the elements of the list. A
consequence of shallow copying is that the lists cells themselves are shared between the
original and the copy. This might lead to unintended side-effects, since a change made in
the copy can now change the original. By deep copying, we mean copying all of the
elements in the list and, if those elements are lists, copying them, and so on. If the list
elements are each deep copied recursively, then there is no connection between the copy
and the original, other than they have the same shape and atomic values. Obviously we
can have types of copying between totally shallow and totally deep copying. For
example, we could copy the list elements, but shallow copy them. If those elements are
only atoms there would be no sharing. If they are pointers to objects, there still would be
some sharing.

Below we illustrate shallow vs. deep copying of an object that references an array. For
example, this could be the implementation of a stack as discussed earlier.

Figure 99: Shallow vs. deep copying

7.19 Equality for Objects

Similar to the copying issue, there is the issue of how objects are compared for equality.
We could just compare references to the objects, which would mean that two objects are
equal only when they are in exactly the same storage location. This is not a very robust
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form of comparison, and is generally meaningful only if an object with a given structure
is stored in one unique place, or if we are trying to determine literal identity of objects
rather than structural equality. Alternatively, we could compare them more deeply,
component-by-component. In this case, there is the issue of how those components are
compared, e.g. by reference or more deeply, and so on. It is important to be aware of
what equality methods are really doing. The same is true for inequality methods.

7.20 Principle of Interning

For certain cases of read-only objects, such as a set of strings, it is sometimes useful to
guarantee that there is at most one copy of any object value. Not only does this save
space, it allows objects to be compared for equality just by comparing references to them
and not delving into their internal structure. This generally improves speed if there are
many comparisons to be done. The principle of interning, then, is: prior to creating a
new (read-only) object, check to see if there is already an object with the same value. If
there is, return a reference to the pre-existing object. If not, then create a new object and
return a reference to it. The principle of interning is built into languages like Lisp and
Prolog: every time a string is read, it is "interned", i.e. the procedure mentioned above is
done.

Figure 100: Illustrating use of interning for pointers to read-only strings

A special case of interning can be useful in Java: If we store references to the objects in
an array, and refer to the objects by the array index, generally a relatively small index, we
can use the switch statement to dispatch on the value of an object. Let us call this special
case small-integer interning.
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Figure 101: Illustration of small-integer interning

With either ordinary or small-integer interning, a table or list of some kind must be
maintained to keep track of the objects that have been allocated. This allows us to search
through the set of previously-interned items when a request is made to intern a new item.
The use of an array rather than a list for the table, in the case of small-integer interning,
allows us to quickly get to the contents of the actual object when necessary.

Exercise

•• 1 Determine whether any standard Java class provides interning. If so, explain how
this feature could be used.

7.21 Linked-Lists in Object-Oriented Form

To close this section, we revisit the linked-list implementation discussed in chapter 5. In
that implementation, all list manipulation was done with static methods. In our current
implementation we will replace many of these with regular methods. For example, if L is
a list, we will use

L.first()

to get its first element rather than

first(L)

One reason this is attractive in Java programming is that to use the static method outside
of the list class itself, we would have to qualify the method name with the class name, as
in:

List.first(L)

whereas with the form L.first() we would not, since the class is implied from the type
of L itself.
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In presenting our list class, we will use Object as the type of a member of list. This is
similar in philosophy to some standard Java classes, such as Vector. The implication of
this choice is that lists may be highly heterogeneous due to the polymorphic nature of the
Object class. For example, some of the elements of a list may be lists themselves, and
some of those lists can have lists as elements, and so on. This gives an easy way to
achieve the list functionality of a language such as rex, which was heavily exercised in
the early chapters.

Due to the attendant polymorphism of this approach, we call our list class Polylist.
Another purpose of doing so is that the class List is commonly imported into
applications employing the Java awt (abstract window toolkit) and we wish to avoid
conflict with that name.

We can also introduce input and output methods that are capable of casting Polylists to
Strings in the form of S expressions. This is very convenient for building software
prototypes where we wish to concentrate on the inner structure rather than the format of
data. We can change the input and output syntax to a different form if desired, without
disturbing the essence of the application program.

public class Polylist
  {
  // nil is the empty-list constant

  public static final Polylist nil = new Polylist();

  private polycell ptr;

  // The constructors are not intended for general use;
  // cons is preferred instead.

  // construct empty Polylist

  Polylist()
    {
    ptr = null;
    }

   // construct non-empty Polylist

  Polylist(Object First, Polylist Rest)
    {
    ptr = new polycell(First, Rest);
    }

   // isEmpty() tells whether the Polylist is empty.

  public boolean isEmpty()
    {
    return ptr == null;
    }
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  // nonEmpty() tells whether the Polylist is non-empty.

  public boolean nonEmpty()
    {
    return ptr != null;
    }

  // first() returns the first element of a non-empty list.

  public Object first()
    {
    return ptr.first();
    }

  // rest() returns the rest of a non-empty Polylist.

  public Polylist rest()
    {
    return ptr.rest();
    }

   // cons returns a new Polylist given a First, with this as a Rest

  public Polylist cons(Object First)
    {
    return new Polylist(First, this);
    }

   // static cons returns a new Polylist given a First and a Rest.

  public static Polylist cons(Object First, Polylist Rest)
    {
    return Rest.cons(First);
    }
  }

public class polycell
  {
  Object First;
  Polylist Rest;

  // first() returns the first element of a NonEmptyList.

  public Object first()
    {
    return First;
    }

  // rest() returns the rest of a NonEmptyList.

  public Polylist rest()
    {
    return Rest;
    }
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  // polycell is the constructor for the cell of a Polylist,
  // given a First and a Rest.

  public polycell(Object First, Polylist Rest)
    {
    this.First = First;
    this.Rest = Rest;
    }
  }

One possible reason for preferring the static 2-argument form of cons is as follows:
suppose we construct a list using the 1-argument cons method:

nil.cons(a).cons(b).cons(c)

This doesn't look bad, except that the list constructed has the elements in the reverse
order from how they are listed. That is, the first element of this list will be c, not a.

To give an example of how coding might look using the object-oriented style, we present
the familiar append method. Here append produces a new list by following elements of
the current list with the elements in the argument list. In effect, the current list is copied,
while the argument list is shared.

   // append(M) returns a Polylist consisting of the elements of this
   // followed by those of M.

  public Polylist append(Polylist M)
    {
    if( isEmpty() )
      return M;
    else
      return cons(first(), rest().append(M));
    }

Exercises

•• 1 Implement a method that creates a range of Integers given the endpoints of the
range.

•• 2 Implement a method that returns a list of the elements in an array of objects.

••• 3 Implement a Stack class using composition of a Polylist.

••• 4 Implement a Queue class using linked lists. You probably won't want to use the
Polylist class directly, since the natural way to implement a queue requires a
closed list rather than an open one.
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7.22 Enumeration Interfaces

A common technique for iterating over things such as lists is to use the interface
Enumeration defined in java.util. To qualify as an implementation of an Enumeration, a
class must provide two methods:

public Object nextElement()
public boolean hasMoreElements()

The idea is that an Enumeration is created from a sequence, such as a list, to contain the
elements of the sequence. This is typically done by a method of the underlying sequence
class of type

  public Enumeration elements()

that returns the Enumeration. The two methods are then used to get one element of a
time from the sequence. Note that nextElement() returns the next element and has the
side-effect of advancing on to the next element after that. If there are no more elements,
an exception will be thrown.

Using Enumeration interfaces takes some getting used to, but once the idea is
understood, they can be quite handy. A typical use of Enumeration to sequence through
a Polylist would look like:

for( Enumeration e = L.elements(); e.hasMoreElements(); )
  {
  Object ob = e.nextElement();

  .... use ob ....
  }

This can be contrasted with simply using a Polylist variable, say T, to do the sequencing:

for( Polylist T = L; T.nonEmpty(); T = T.rest() )
  {
  Object ob = T.first();

  .... use ob ....
  }

Note that the for statement in the Enumeration case has an empty updating step; this is
because updating is done as a side effect of the nextElement method. A specific example
is the following iterative implementation of the reverse method, which constructs the
reverse of a list. Here elements() refers to the elements of this list.
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  // reverse(L) returns the reverse of this

  public Polylist reverse()
    {
    Polylist rev = nil;
    for( Enumeration e = elements(); e.hasMoreElements(); )
      {
      rev = rev.cons(e.nextElement());
      }
    return rev;
    }

Another example is the method member that tests whether a list contains the argument:

   // member(A) tells whether A is a member of this list

  public boolean member(Object A)
    {
    for( Enumeration e = elements(); e.hasMoreElements(); )
      if( A.equals(e.nextElement() )
        return true;
    return false;
    }

This form of iteration will not be used for every occasion; for example, recursion is still
more natural for methods such as append, which build the result list from the outside-in.

One possible reason to prefer an Enumeration is that it is a type, just as a class is a type.
Thus a method can be constructed to use an Enumeration argument without regard to
whether the thing being enumerated is a list, an array, or something else. Thus an
Enumeration is just an abstraction for a set of items that can be enumerated.

Now we have a look at how the Polylist enumeration is implemented. As with most
enumerations, we try not to actually build a new structure to hold the elements, but rather
use the elements in place. This entails implementing some kind of cursor mechanism to
sequence through the list. In the present case, the Polylist class itself serves as the cursor,
just by replacing the list with its rest upon advancing the cursor.

The class that implements the enumeration is called PolylistEnum. The method elements
of class Polylist returns an object of this type, as shown:

  //  elements() returns a PolylistEnum object, which implements the
  //  interface Enumeration.

  public PolylistEnum elements()
    {
    return new PolylistEnum(this);
    }

The implementation class, PolylistEnum, then appears as:

public class PolylistEnum implements Enumeration
  {
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  Polylist L; // current list ("cursor")

  // construct a PolylistEnum from a Polylist.

  public PolylistEnum(Polylist L)
    {
    this.L = L;
    }

  // hasMoreElements() indicates whether there are more elements left
  // in the enumeration.

  public boolean hasMoreElements()
    {
    return L.nonEmpty();
    }

  // nextElement returns the next element in the enumeration.

  public Object nextElement()
    {
    if( L.isEmpty() )
      throw new NoSuchElementException("No next in Polylist");

    Object result = L.first();
    L = L.rest();
    return result;
    }
  }

 Let's recap how this particular enumeration works:

1. The programmer wants to enumerate the elements  of a Polylist for some
purpose. She calls the method elements() on the list, which returns an
Enumeration (actually a PolylistEnum, but this never needs to be shown in
the calling code, since PolylistEnum merely implements Enumeration.)

2. Method elements() calls the constructor of PolylistEnum, which initializes
L of the latter to be the original list.

3. With each call of nextElement(), the first of the current list L is reserved,
then L is replaced with its rest. The reserved first element is returned.

4. nextElement() can be called repeatedly until hasMoreElements(), which
tests whether L is non-empty, returns false.

Exercises

•• 1 Implement the method nth that returns the nth element of a list by using an
enumeration.
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•• 2 Implement a method that returns an array of objects given a list.

•• 3 Locate an implementation of Enumeration for the Java class Vector and achieve
an understanding of how it works.

••• 4 Implement an Enumeration class for an array of Objects.

••• 5 Implement an Enumeration class that enumerates an array of Objects in reverse
order.

7.23 Higher-Order Functions as Objects

The preceding material has shown how we can implement nested lists as in rex. We
earlier promised that all of the functional programming techniques that we illustrated
could be implemented using Java. The one item unfulfilled in this promise is higher-order
functions"higher-order functions" : functions that can take functions as arguments and
ones that can return functions as results. We now address this issue.

Java definitely does not allow methods to be passed as arguments. In order to implement
the equivalent of higher-order functions, we shall have to use objects as functions, since
these can be passed as arguments. Here's the trick: the objects we pass or create as
functions will have a pre-convened method, say apply, that takes an Object as an
argument and returns an Object as a result. We define this class of objects by an
interface definition, called Function1 (for 1-argument function):

public interface Function1
  {
  Object apply(Object x);
  }

To be used as a function, a class must implement this interface. An example of such a
class is one that concatenates the string representation of an object with the String "xxx":

Object concatXXX implements Function1
  {
  Object apply(Object arg)
    {
    return "xxx" + arg.toString();
    }

  concatXXX() // constructor
    {}
  }

Note that this particular implementation has a static character, but this will not always be
the case, as will be seen shortly. An application of a concatXXX method could be shown
as:

(new concatXXX()) . apply("yyy"); // note: Strings are Objects
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which would return a String "xxxyyy".

Here's the way map, a method which applies a Function1 to each element of a Polylist,
would be coded:

  // map maps an object of class Function1 over a Polylist returning a
  // Polylist

  Polylist map(Function1 F)
    {
    if( isEmpty() )
      return nil;
    else
      return cons(F.apply(first()), rest().map(F));
    }

For example, if the list L contained  ["foo", "bar", "baz"] then

L.map(new concatXXX)

would produce a list containing ["xxxfoo", "xxxbar", "xxxbaz"].

More interesting is the case where the object being applied gets some data from "the
outside", i.e. through its constructor. Suppose we want a function that returns a function
that concatenates a specified prefix, not just "xxx" invariably. Here's how we can modify
the class definition concatXXX to one, call it concat, that does this:

Object concat implements Function1
  {
  String prefix; // prefix to be concatenated

  Object apply(Object arg)
    {
    return prefix + arg.toString();
    }

  concat(String prefix) // constructor
    {
    this.prefix = prefix;
    }
  }

Now we can use map to create a method that concatenates an argument string to each
element of a list:

static Polylist concatToAll(String prefix, Polylist L)
  {
  return L.map(new concat(prefix));
  }

In rex, the same idea could be shown as:
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concatToAll(prefix, L) = map((X) => prefix + x, L);

We are now just one step away from functions that return functions as results. All such a
function needs to do is to call the constructor of a Function1 object to return a new
object that can be applied. For example, the rex definition:

f(X) = (Y) => X + Y;

represents a function that takes an argument (X) and returns a function. In Java this
would be the method:

static Object f(Object X)
  {
  return new concat(X.toString());
  }

The object-oriented version of higher-order functions might be a little harder to
understand than the rex version, which is one reason we wanted to present the rex version
first. Underneath the syntax, the implementation using objects is very similar to standard
implementations using functions, where the function objects are called closures (meaning
that they are a closed environment in which otherwise free variables are bound).

Exercises

••• 1 The higher-order function reduce takes a function argument that has two
arguments. Define an interface definition Function2 analogous to Function1
above, then give the implementation of reduce so as to take a Function2 as an
argument.

•••• 2 Define a method compose that takes two Function1 arguments and returns their
composition as a Function1 argument.

••• 3 Develop a class FunctionFromArray that implements a Function given an array.
The function applied to the integer i is to give the ith element of the array.

7.24 Conclusion

This chapter has presented a number of ideas concerning object-oriented programming.
Java is an object-oriented language accompanied by a rich library of classes, including an
abstract window toolkit for doing graphics, menus, etc. As this book does not attempt to
be a tutorial on Java, we recommend other books that can be studied for the finer details.
Attempting to program applications in Java is the best way to understand the concepts
described here, including inheritance and interfaces.
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7.25 Chapter Review

Define the following terms:
abstract base class
abstract data type (ADT)
aggregation
applet
attribute
circular array
class
client
composition
constructor
container class
deep copying
deque
derived class
enumeration (Java-style)
equality
extend (a class)
getter
inheritance
implement (an interface)

interface
interning
is-a
message
method
modularity
normalization (of code)
object
Object class
over-ride
priority-queue
queue
setter
shallow copying
stack
static method
static variable
sub-class
wrapper
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8. Induction, Grammars, and Parsing

8.1 Introduction

This chapter presents the notion of grammar and related concepts, including how to use
grammars to represent languages and patterns, after first discussing further the general
idea of inductive definitions.

The general mathematical principle of inductive definition will be presented first. We
then focus on the use of this principle embodied within the notion of grammar, an
important concept for defining programming languages, data definition languages, and
other sets of sequences. We devote some time to showing the correspondence between
grammars and programs for parsing statements within a language.

8.2 Using Rules to Define Sets

In Low-Level Functional Programming, we used rules to define partial functions. A
partial function can be considered to be just a set of source-target pairs, so in a way, we
have a preview of the topic of this section, using rules to define sets. There are many
reasons why this topic is of interest. In computation, the data elements of interest are
generally members of some set, quite often an infinite one. While we do not usually
construct this entire set explicitly in computation, it is important that we have a way of
defining it. Without this, we would have no way to argue that a program intended to
operate on members of such a set does so correctly. The general technique for defining
such sets is embodied in the following principle.

Principle of Inductive Definition

A set S may be defined inductively by presenting

(i) A basis, i.e. a set of items asserted to be in S.

(ii) A set of induction rules, each of which produces, from a set of
items known to be in S, one or more items asserted to be in S.

(iii) The extremal clause, which articulates that the only members of set
S are those obtainable from the basis and applications of the
induction rules.

For brevity, we usually avoid stating the extremal clause explicitly. However, it is always
assumed to be operative.
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The Set ω of Natural Numbers

Here is a very basic inductive definition, of the set of natural numbers, which will be
designated ω :

Basis: 0 is in ω .

Induction rule: If n is in ω, then so is the number n+1.

Unfortunately, this example can be considered lacking, since we haven't given a precise
definition of what n+1 means. For example, the definition would be satisfied in the case
that n+1 happens to be the same as n. In that case, the set being defined inductively ends
up being just {0}, not what we think of as the natural numbers.

We could give more substance to the preceding definition by defining +1 in the induction
rule in a more elementary way. Following Halmos, for example, we could define the
natural numbers purely in terms of sets. Intuitively, we think of a number n as being
represented by a certain set with n items. The problem then is how to construct such a set.

There is only one set with 0 items, the empty set {}, so we will take that to represent the
number 0. To build a set of one item, we could take that one item to be the empty set, so
the first two numbers are:

0 is equated to {}
1 is equated to {0} i.e., to {{}}

How do we get a set of 2 items?  We can't just take two copies of 1, since according to
the notion of a set, repetitions don't really count: {{}, {}} would be the same as {{}}, and
our 2 would equal 1, not what we want. So instead, take the two elements to be 0 and 1,
which we know to be distinct, since 0 is an empty set whereas 1 is a non-empty set:

2 is equated to {0, 1} i.e., to {{}, {{}}}

Continuing in this way,

3 is equated to {0, 1, 2} i.e., to {{}, {{}}, {{}, {{}}}}

How do we form n+1 given n in general?  Since n is a set of "n" items, we can get a set of
"n+1" items by forming a new set with the elements of n and adding in n as a new
element. But the way to add in a single element is just to form the union of the original
set with the set of that one element, i.e.

n + 1 is equated to n  ∪ {n}

Since {n} is distinct from every element of n, this new set has one more element than n
has.
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The representation above is not the only way to construct the natural numbers. Another
way, which gives more succinct representations, but one lacking the virtue that n is
represented by a set of elements, is:

0 is equated to { }
n + 1 is equated to {n}

For the same reason as before, 0 is distinct from 1. Similarly, n+1 is distinct from n in
general, because at no stage of the construction is {n} ever a member of n. In this
definition, numbers are characterized by the number of times an element can be extracted
iteratively before arriving at the empty set, e.g.

{ } 0 times
{ { } } 1 time
{ { { } } } 2 times

and so on.

Finite, Infinite, and Countable Sets

Using the first definition of the natural numbers, we are able to give a more accurate
definition of what is meant by "finite" and "infinite", terms that get used throughout the
book:

A set is finite if there is a one-to-one correspondence between it and one of the
sets in ω using the first definition above (i.e. one of the sets of n elements for
some n).

A set that is not finite is called infinite.

The set of all natural numbers ω, is the simplest example of an infinite set. Here's how we
know that it is infinite:  For any element n of ω, there is no one-to-one correspondence
between n and a subset of n. (This can be proved by induction). However, for  itself, there
are many such one-to-one correspondences. The following shows one such
correspondence:





0 1 2 3 4 5 6 7 ...

2 4 6 8 10 12 14 16  

the general rule being that n corresponds to 2(n + 1). Thus ω and the individual members
of  ω have substantially different properties.

A set such that there is a one-to-one correspondence between it and ω is called
countably-infinite. A set is called countable if it is either finite or countably infinite. A
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set can be shown to be countable if there is a method for enumerating its elements. For
example, the display above indicates that the even numbers are countable.

Example: The set of all subsets of ω is not countable.

For a justification of this assertion, please see the chapter Limitations of Computing.

The Set of All Finite Subsets of ω

Let fs(ω) stand for the set of all finite subsets of ω. Obviously fs(ω) is infinite. We can
see this because there is a subset of it in one-to-one correspondence with ω, namely the
set {{0}, {1}, {2}, {3}, ...}. To show fs(ω) is countable, we can give a method for
enumerating its members. Here is one possible method:  Let fs(n) represent the subsets of
the set {0, 1, 2, ...., n-1}. An initial attempt at enumeration consists of a concatenation:

fs(0), fs(1), fs(2), fs(3),....

i.e.
fs(0) = {},
fs(1) = {}, {0},
fs(2) = {}, {0}, {1}, {0, 1},
fs(3) = {}, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2},
...

There are some repetitions in this list, but when we drop the repeated elements, we will
have the enumeration we seek:

{}, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}, ...

The Set Σ* of Strings over a Given Finite Alphabet Σ

This is another example of a countabley-infinite set defined by induction. It is used very
frequently in later sections.

Basis: The empty string λ is in Σ*.

Induction rule:  If x is in Σ* and σ is in Σ, then the string σx is in Σ*.

(where σx means symbol σ followed by symbols in x.)

As a special case, suppose that Σ = {0, 1}. Then elements of Σ* could be introduced in
the following order:
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λ, by the basis
0, as λ0, since 0 ∈ Σ and λ is in Σ*
1, as λ1, since 1 ∈ Σ and λ is in Σ*
00, since 0 ∈ Σ and 0 is in Σ*
10, since 1 ∈ Σ and 0 is in Σ*
01, since 0 ∈ Σ and 1 is in Σ*
11, since 1 ∈ Σ and 1 is in Σ*
000, since 0 ∈ Σ and 00 is in Σ*
100, since 1 ∈ Σ and 00 is in Σ*
...

For reemphasis, note that the length of every string in Σ* is finite, while Σ* is a set with
an infinite number of elements.

The Sets Ln of Strings of Length n over a Given Alphabet   

Often we will want to define a set inductively using an indexed series of previously-
defined sets. For example, L0, L1,  L 2,  ... could be a family of sets indexed by the
natural numbers and the set we are defining inductively is their union.

Basis:  L0 is {λ}, the set consisting of just the empty string.

Induction rule:  Ln+1 is the set {σx  |  σ is in Σ and x is in Ln}

Another way to define Σ* is then Σ* = L0 ∪ L1 ∪ L2 ∪ ... .

The set of Hypercubes

A hypercube is a particular type of undirected graph structure that has recurrent uses in
computer science. The hypercube of dimension n is designated as Hn

Basis: H0 consists of just one point.

Induction rule:  Hn+1 consists of two copies of Hn, with lines connecting the
corresponding points in each copy.

The figure below shows the how the first four hypercubes emerge from this definition.
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Figure 102: Hypercubes H0 through H4.

The Partial Recursive Functions (Advanced)

The partial recursive functions (PRF's) are those functions on the natural numbers that are
defined inductively by the following definition. The importance of this set of functions is
that it is hypothesized to be exactly those functions that are computable. This was
discussed in States and Transitions as the Church/Turing Hypothesis.

Basis:

1. Every constant function (function having a fixed result value) is a PRF.

2. Every projection, a function having the form πi(x1, ..., xn) = xi for fixed i and n,

is a PRF. )

3. The successor function σ, defined by σ(x) = x + 1, is a PRF.

Induction rules:

3. Any composition of PRF’s is a PRF, i.e. if f is an n-ary PRF, and g
1
, ...., gn are n

m-ary PRF’s, then the m-ary function h defined by

      h(x
1
, ..., x

m
) = f(g

1 ( x
1
, ..., x

m
), g

2
(x1

, ..., x
m
), ...., g

n
(x1

, ..., x
m
))

is also a PRF.

4. If f is a n-ary PRF and g is an (n+2)-ary PRF, then the (n+1)-ary function h
defined by primitive recursion,  i . e .  o n e  d e f i n e d
by following the pattern:                                                                                
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        h(0, x
1
, ..., x

m
) = f(x

1
, ..., x

m
)

     h(y+1, x
1
, ..., x

m
) = g(y, h(y, x

1
, ..., x

m
), x

1
, ..., x

m
)

is a PRF. Note that primitive recursion is just a way to provide definite iteration,
as in the case of for-loops.

6. If f is a (n+1)-ary PRF, then the n-ary function g defined by the µ operator

g(x1
, ..., x

m
) = µy[f(y, x

1
, ..., x

m
) = 0]

is a PRF. The right-hand side above is read “the least y such that f(y, x
1
, ..., x

m
) =

0”. The meaning is as follows:  f(0, x
1
, ..., x

m
) is computed. If the result is 0, then

the value of µy[f(y, x
1
, ..., x

m
) = 0] is 0. Otherwise, f(1, x

1
, ..., x

m
) is computed. If

the result is 0, then the value of µy[f(y , x
1
, ..., x

m
) = 0] is 1. If not, then

f(2, x
1
, ..., x

m
) is computed, etc. The value of µy[f(y, x

1
, ..., x

m
) = 0] diverges if

there is no value of y with the indicated property, or if any of the computations
of f(y, x

1
, ..., x

m
) diverge.

Notice that primitive recursion corresponds to definite iteration in programming
languages, such as in a for loop, whereas the µ operator corresponds to indefinite
iteration (as in a while loop).

Exercises

1 •• Using the first definition of natural numbers based on sets, give the set
equivalents of numbers 4, 5, and 6.

2 •• Give a rex program for a function nset that displays the set equivalent of its
natural number argument, using lists for sets. For example,

nset(0) ==> [ ]

nset(1) ==> [ [ ] ]

nset(2) ==> [ [ [ ] ], [ ] ]

nset(3) ==> [ [ [ [ ] ], [ ] ], [ [ ] ], [ ]  ]

etc.

3 ••• Let fswor(n) (finite sets without repetition) refer to the nth item in the list of all
finite subsets of natural numbers presented above. Give a rex program that
computes fswor, assuming that the sets are to be represented as lists.
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4 ••• Construct rex rules that will generate the infinite list of finite sets of natural
numbers without duplicates. The list might appear as

[ [], [0], [1], [0, 1], [2], [0, 2], [1, 2], [0, 1, 2], ... ]

5 •• Let ω − n mean the natural numbers beginning with n. Show that there is a one-
to-one correspondence between ω and ω − n for each n.

6 ••• Show that no natural number (as a set) has a one-to-one correspondence with a
subset of itself. (Hint: Use induction.)

7 ••• Construct a rex program that, with a finite set Σ as an argument, will generate
the infinite list of all strings in Σ*.

8 •• Draw the hypercube H5.

9 •• Prove by induction that the hypercube Hn has 2n points.

10 ••• How many edges are in a hypercube Hn?  Prove your answer by induction.

11 ••• A sub-cube of a hypercube is a hypercube of smaller or equal dimension that
corresponds to selecting a set of points of the hypercube and the lines
connecting them. For example, in the hypercube H3, there are 6 sub-cubes of
dimension 2, which correspond to the 6 faces as we usually view a 3-
dimensional cube. However, in H4, there are 18 sub-cubes of dimension 3, 12
that are easy to see and another 6 that are a little more subtle. Devise recursive
rules for computing the number of sub-cubes of given dimension of a
hypercube of given dimension.

12 ••• Refer to item 5 in the definition of partial recursive functions. Assuming that f
and g are available as callable functions, develop both a flowchart and rex code
for computing h.

13 ••• Refer to item 6 in the definition of partial recursive functions. Assuming that f
is available as callable functions, develop both a flowchart and rex code for
computing h.

14 ••• Show that each of the general recursive functions on natural numbers defined
in Low-Level Functional Programming is also a partial recursive function.
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8.3 Languages

An important use of inductive definition is to provide a definition of a formal language.
Programming languages are examples of formal languages, but we shall see other uses as
well. Let us consider a set of symbols Σ. We have already defined Σ* to be the set of all
strings of symbols in Σ.

By a language over Σ, we just mean a subset of Σ*, in other words, any
set of finite sequences with elements in Σ.

Here are a few examples of simple languages over various alphabets:

• For Σ = {1}, {1}* is the set of all strings of 1's. We have already encountered this
set as one way to represent the set of natural numbers.

• For Σ = {1}, {λ, 11, 1111, 111111, ... } is the language of all even-length strings
of 1's.

• For Σ = { '(', ')'}, {λ , (), ()(), (()), ()(()), (())(), (())(()), (()()), ((())), ...} is the
language of all well-balanced parentheses strings.

• For any Σ, Σ* itself is a language.

• All finite sets of strings over a given set of symbols (which includes the empty
set) are all languages.

When languages are reasonably complex, we have to resort to inductive definitions to
define them explicitly.

The language of all well-balanced parenthesis strings

This language L is defined inductively as follows:

Basis: λ (the empty string) is in L.

Induction rules:

a. If x is in L, then so is the string (x).

b. If x and y are in L, then so is the string xy.

For example, we derive the fact that string (()(())) is in L:

1. λ is in L from the basis
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2. () is in L, from 1 and rule a.

3. (()) is in L, from 2 and rule a.

4. (()(())) is in L, from 1, 2, and rule b.

Although we have presented languages as sets of strings, there is another way to use
language-related concepts: to talk about patterns. Think of a set (of strings) as
corresponding to a (possibly abstract) "pattern" that matches all strings in the set (and
only those). For example, the pattern could be "every 0 in the string is immediately
followed by two 1s". This corresponds to the language of all strings in which every 0 is
immediately followed by two 1s. (Later on, we shall see how to use regular expressions
as a means for concisely expressing such patterns.)  In summary, there is a one-to-one
correspondence between patterns and languages. The following section on grammars
gives us another, more formal, tool for expressing languages, and therefore patterns.

8.4 Structure of Grammars

The form of inductive definition of languages used above occurs so often that special
notation and nomenclature have been developed to present them. This leads to the
concept of a grammar.

A grammar is a shorthand way of presenting an inductive
definition for a language.

A grammar consists of the following four parts:

• The terminal alphabet, over which the language being defined is a language.

• The auxiliary or non-terminal alphabet, which has no symbols in common
with the terminal alphabet. The symbols in the auxiliary alphabet provide a
kind of "scaffolding" for construction of strings in the language of interest.

• The start symbol, which is always a member of the auxiliary alphabet.

• A finite set of productions. Each production is a rule that determines how one
string of symbols can be rewritten as another.

It is common, but not universal, to write the productions using an arrow, so that
production x → y means that x can be rewritten as y. Thus we have rewriting similar to
rex rules, with the following exceptions:
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With grammars, rewriting is purely string-based; there is no immediate
identification of variables, no arithmetic, no lists, etc. Thus grammars are a lot
more primitive than rex rules in this regard.

With grammars, the choice of rule is non-deterministic; we are not required to
apply the first rule that matches; instead we can apply any rule that matches.

In order to define the language defined by a grammar, we begin with the strings
generated by a grammar. If G denotes our grammar, then S(G) will denote this set of
strings defined inductively:

Basis: The start symbol is in S(G).

Induction step: If u is in S(G) and u can be written as the concatenation vxw and
there is a rule x → y, then vyw is also in S(G). Whenever this relation holds,
between strings vxw and vyw, we can write vxw ⇒ vyw.

w

wxv

v y

Figure 103: Application of a production x → y, in a string vxw to get string vyw

For example, if A → 0B10 is a rule, then the following are both true: 1AA ⇒ 10B10A,
1AA ⇒  1A0B10. Furthermore, 10B10A ⇒  10B100B10 and also 1A0B10
⇒ 10B100B10.

The language L(G) defined by G is just that subset of S(G) the strings of
that consist of only terminal symbols (i.e. no auxiliary symbols in the
string).

The definition of →  and ⇒  applies to grammars in which the left-hand side of →  is an
arbitrary string. However, the applications we will consider will mostly involve a left-
hand side that is one-character long. Grammars with this property are called context-free
grammars. When it is necessary to contrast with the fully general definition of grammar,
the term phrase-structure grammar is sometimes used for the general case.
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Grammar for Well-Balanced Parenthesis Strings

This grammar will exactly mimic the inductive definition for the parenthesis string
language given earlier. The terminal alphabet has two symbols { '(', ')' }. The auxiliary
alphabet has one symbol S. The start symbol is S. The productions are:

S → λ corresponding to the basis of the original inductive definition.

S → ( S ) corresponding to rule a. of the original inductive definition.

S → S S corresponding to rule b. of the original inductive definition.

Let us construct the derivation of (()(())) using the grammar notation. The top line shows
the strings generated, while the bottom line shows the production used at each stepand
the arrow points to the symbol being replaced.

S  ⇒ ( S ) ⇒ ( S S ) ⇒ ( ( S ) S ) ⇒ ( ( ) S ) ⇒ ( ( ) ( S ) ) ⇒ ( ( ) ( ( S ) ) ) ⇒ ( ( ) ( ( ) ) )
↑          ↑           ↑                 ↑                     ↑                 ↑                      ↑
|           |           S → ( S )   S → λ              S → ( S )   S → ( S )        S → λ
|           S → S S
S → ( S )   

Grammar for One-Operator Arithmetic Expressions

This grammar will generate arithmetic expressions of the form a, a+b, a+b+c, etc. The
terminal alphabet is { a, b, c, + }. The auxiliary alphabet is {E, V}. The start symbol is E.
The productions are:

E → V // Every variable is an expression.
E → Ε + V // Every string of the form E + V, where E is an expression

// and V is a variable, is also an expression.
V → a
V → b
V → c

Abbreviation for Alternatives: The | Symbol

The typical programming language definition includes hundreds of productions. To
manage the complexity of such a definition, various abbreviation devices are often used.
It is common to group productions by common left-hand sides and list the right-hand
sides. One meta-syntactic device (i.e. device for dealing with the syntax of grammars,
rather than the languages they describe) for doing this is to use the vertical bar | to
represent alternatives. The bar binds less tightly than does juxtaposition of grammar
symbols. Using this notation, the preceding grammar could be rewritten more compactly
as:
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E → V | Ε + V
V → a | b | c

Here the | symbol, like →, is part of the meta-syntax, not a symbol in the language.

We will adopt the practice of quoting symbols that are in the object language. With this
convention, the grammar above becomes:

E → V  |  Ε  '+'  V

V → 'a'  |  'b'  |  'c'

Notice that, by repeated substitution for E, the productions for E effectively say the
following:

E ⇒ V
E ⇒ Ε  '+'  V ⇒ V  '+'  V
E ⇒ Ε  '+'  V  '+'  V ⇒ V '+'  V  '+'  V
E ⇒ Ε  '+'  V  '+'  V  '+'  V ⇒ V '+'  V '+'  V  '+'  V
...

In other words, from E we can derive V followed by any number of the combination
'+' V. We introduce a special notation that replaces the two productions for E:

E → V { '+' V }

read "E produces V followed by any number of '+' V". Here the braces {....} represent the
any number of operator. Later on, in conjunction with regular expressions, we will use
(....)* instead of {....} and will call * the star operator.

By replacing two productions E → V  |  Ε  '+'  V with a single rule E → V { '+'  V } we
have contributed to an understanding of how the combination of two productions is
actually used.

Other Syntactic Conventions in the Literature

Another related notation convention is to list the left-hand side followed by a colon as the
head of a paragraph and the right-hand sides as a series of lines, one right-hand side per
line. The preceding grammar in this notation would be:

E:
V
E '+' V

V:  one of
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'a'     'b'    'c'

A portion of a grammar for the Java language, using this notation, is as follows:

Assignment:

        LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:

        Name

        FieldAccess

        ArrayAccess

AssignmentOperator: one of

        = *= /= %= += -= <<= >>= >>>= &= ^= |=

AssignmentExpression:

        ConditionalExpression

        Assignment

ConditionalExpression:

        ConditionalOrExpression

        ConditionalOrExpression ? Expression : ConditionalExpression

Grammar for S Expressions

S expressions (S stands for "symbolic") provide one way to represent arbitrarily-nested
lists and are an important class of expressions used for data and language representation.
S expressions are defined relative to a set of "atoms" A, which will not be further defined
in the grammar itself. The start symbol is E. The productions are

S → A // Every atom by itself is an S expression.
S → ( L ) // Every parenthesized list is an S expression.
L  → λ // The empty list is a list.
L  → S L // An S expression followed by a list is a list.

An example of an S expression relative to common words as atoms is:

( This is ( an S expression ) )

Later in this chapter we will see some of the uses of S expressions.
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Grammar for Regular Expressions (Advanced)

Regular expressions are used to represent certain kinds of patterns in strings, or
equivalently, to represent sets of strings. These are used to specify searches in text editors
and similar software tools. Briefly, regular expressions are expressions formed using
letters from a given alphabet of letters and the meta-syntactic operators of juxtaposition
and | as already introduced. However, instead of using {...} to indicate iteration, the
expression that would have been inside the braces is given a superscript asterisk and there
is no more general form of recursion. The symbols  'λ' for the empty string and '∅ ' for the
empty set are also allowable regular expressions. Each regular expression defines a
language. For example,

(0 1)* | (1 0)*

defines a language consisting of the even-length strings with 0's and 1's strictly
alternating. In the notation of this chapter, we could have represented the set as being
generated by the grammar (with start symbol E)

E → { 0 1 } | { 1 0 } 

In the following grammar for regular expressions themselves, the start symbol is R. The
productions are:

R →  S { '|' S }

R → T { T }

T → U '*'

U → 'λ'

U → '∅ '

U → σ (for each symbol σ in A)

U → '(' R ')'

Above the symbol λ is quoted to indicate that we mean that λ is a symbol used in regular
expressions, to distinguish it from the empty string. We will elaborate further on the use
of regular expressions in the chapter Finite-State Machines. Meanwhile, here are a few
more examples of regular expressions, and the reader may profit from the exercise of
verifying that they are generated by the grammar:

(0*1 | 1*0)*

((000)*1)*
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A Grammar for Grammar Rules (Advanced)

This example shows that grammars can be self-applied, that the given structure of a
grammar rule is itself definable by a grammar. We take the set of auxiliary and terminal
symbols to be given (not further defined by this grammar). The start symbol is rule. The
rules are:

rule → lhs '→' rhs

lhs  → auxiliary_symbol

rhs → symbol

rhs →  rhs symbol

symbol → 'λ'
symbol → auxiliary_symbol
symbol → terminal_symbol

Note that in this grammar we have not included the meta-syntactic | and { } operators.
Doing so is left to the reader. It is a simple matter of combining this and the previous
example.

The grammars described above all had the property that the left-hand side of a rule
consists of a single auxiliary symbol. As already mentioned, such a grammar is known as
a context-free grammar. There are languages that are definable by rules with strings of
grammars symbols on the left-hand side that are not definable by context-free grammars.
The multiple-symbol capability for a general grammar allows arbitrary Turing machines
to be simulated by grammar rules. This most general type of grammar is known as a
phrase-structure grammar.

8.5 The Relationship of Grammars to Meaning

So far, our discussion of grammars has focused on the "syntactic" aspects, or "syntax", of
a language, i.e. determining the member strings of the language. A second role of
grammars bears a relation to the "semantics" of the language, i.e. determining meanings
for strings. In particular, the way in which a string is derived using grammar rules is used
by the compiler of a programming language to determine a meaning of strings, i.e.
programs. The grammar itself does not provide that meaning, but the structure of
derivations in the grammar allows a meaning to be assigned.

In the arithmetic expression example, we can think of a meaning being associated with
each use of an auxiliary symbol:
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The meaning of an E symbol is the value of an expression.

The meaning of a V symbol is the value of the corresponding variable (a, b, or c).

The production E → V suggests that the value of a single-variable expression is
just the value of the variable.

The production E → Ε '+' V suggests that the value of an expression of the form E
+ V is derived from the sum of the values of the constituent E and V.

Derivation Trees

The easiest way to relate grammars to meanings is through the concept of derivation
tree. A derivation tree is a tree having symbols of the grammar as labels on its nodes,
such that:

If a node with parent labeled P has children labeled C1, C2, ...., Cn, then there is a
production in the grammar P → C1 C2 ....Cn.

P

C1 C2 Cn. . . .

Figure 104: Depicting a production in a derivation tree

A complete derivation tree is one such that the root is labeled with the start symbol of
the grammar and the leaves are labeled with terminal symbols.

Example

Consider again the grammar for additive arithmetic expressions:

E → V
E → Ε '+' V
V → a | b | c

Here E is the start symbol, and a, b, and c are terminals.

Below we show two derivation trees for this grammar, and a third tree that is not.
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E

V

c

E +

a

E

V

a

E

V

b

+E

VE +

V

a

b

+ E

VE +

V

a

Figure 105: On the left is a derivation tree for the grammar above.
 In the middle is a complete derivation tree.  Despite its similarity,

the tree on the right is not a derivation tree for this grammar,
since there is no production E → V '+' E.

Notice that the leaves of a complete derivation tree, when read left to right, give a string
that is in the language generated by the grammar, for example a+b+a is the leaf sequence
for the middle diagram. In this case, we say the derivation tree derives the string.

E

V

a

b

+E

VE +

V

a

Figure 106: Deriving the string a + b + a in a complete derivation tree

A meaning to the strings in a grammar can be explained by associating a meaning to each
of the nodes in the tree. The leaf nodes are given a meaning of some primitive value. For
example, a, b, and c might mean numbers associated with those symbols as variables.
The meaning of + might be the usual add operator. Referring to the tree above, the
meaning of the V nodes is just the meaning of the symbol nodes below them. The
meaning of the E nodes is either the sum of the nodes below, if there are three nodes, or
the meaning of the single node below. So if a, b, and c had meanings 3, 5, and 17, we
would show the meanings of all nodes as follows:
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E(11)

V(3)

a(3)

b(5)

E(8)

V(5)E(3) +(+)

V(3)

a(3)

+(+)

Figure 107: Complete derivation tree annotated
with meanings (in parentheses) for each node

Processing a string in a language to determine its meaning, known as parsing, is
essentially a process of constructing a derivation tree that derives the string. From that
tree, a meaning can be determined. In some sense, parsing is like working backward
against an inductive definition, to determine whether or not the proposed end result can
be derived. Parsing is one of the tasks that programming language compilers have to
perform.

Ambiguity

In order to convert a string into a derivation tree and then to a meaning, it is helpful for
each string in the language to have a unique derivation tree. Otherwise there might be
ambiguity in the meaning.

A grammar is called ambiguous if there is at least one string in the
language the grammar generates that is derived by more than one tree.

Example – An ambiguous grammar

The grammar below will generate arithmetic expressions of the form a, a+b, a+b+c, a*b,
a+b*c, etc. The terminal alphabet is { a, b, c, + }. The auxiliary alphabet is {E, V}. The
start symbol is E. The productions are:

E → V
E → Ε '+' E
E → Ε '*' E
V → a | b | c

To see that the grammar is ambiguous, we present two different trees for the string
a+b*c.
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a
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E
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Figure 108: Two distinct derivation trees for a string in an ambiguous grammar

For example, if a, b, and c had meanings 3, 5, and 17,  the tree on the left would give a
meaning of 136 for the arithmetic expression, whereas the tree on the right would give a
meaning of 88. Which meaning is correct?  With an ambiguous grammar, we can't really
say. But we can say that in common usage, a+b*c corresponds to a+(b*c) (i.e. * takes
precedence over +), and not to (a+b)*c. The expression usually regarded as correct
corresponds to the right-hand derivation tree.

Although the problem of ambiguity is sometimes resolved by understandings about
which rule should be given priority in a derivation when there is a choice, it is perhaps
most cleanly resolved by finding another grammar that generates the same language, but
one that is not ambiguous. This is usually done by finding a different set of productions
that does not cause ambiguity. For the present language, a set of productions that will do
is:

An unambiguous grammar for simple arithmetic expressions

E → T
E → Ε '+' T
T → V
T → Τ '*' V
V → 'a' | 'b' | 'c'

This implements * taking precedence over +.

Here we have added a new auxiliary T (for "term"). The idea is that value of an
expression (an E) is either that of a single term or that of an expression plus a term. On
the other hand, the value of a term is either that of a variable or a term times a variable.
There is now only one leftmost derivation of each string. For example, the derivation of
a+b*c is
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a
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V*

V

b

T

T

Figure 109: Derivation of a+b*c in an unambiguous grammar

In essence, the new grammar works by enforcing precedence:  It prohibits us from
expanding an expression (i.e. an E-derived string) using the * operator. We can only
expand a term (i.e. a T-derived string) using the * operator. We can expand expressions
using the + operator. But once we have applied the  production, we can only expand the
term, i.e. only use the * operator, not the + operator. Thus the new grammar has a
stratifying effect on the operators.

The new grammar coincidentally enforces a left-to-right grouping of sub-expressions.
That is, a + b + c is effectively grouped as if (a + b) + c, rather than a + (b + c). To see
this, note that the derivation tree for this expression is:

Figure 110:  Derivation tree showing grouping
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E + T
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V
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c
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Exercises

1 •• Try to find another derivation tree for a+b*c in the unambiguous grammar.
Convince yourself it is not possible.

2 •• Show that the grammar for regular expressions given earlier is ambiguous.

3 •• Give an unambiguous grammar for regular expressions, assuming that * takes
precedence over juxtaposition and juxtaposition takes precedence over |.

4 ••• Determine, enough to convince yourself, whether the given grammar for S
expressions is ambiguous.

5 •• The unambiguous grammar above is limited in that all the expressions derived
within it are two-level + and *. That is, we can only get expressions of the form:

V*V*...V + V*V*...V + .... + V*V*...V

consisting of an overall sum of terms, each consisting of a product of variables. If
we want more complex structures, we need to introduce parentheses:

(a + b)*c + d

for example. Add the parenthesis symbols to the unambiguous grammar and add a
new production for including parentheses that represents this nuance and leaves
the grammar unambiguous.

Abstract Syntax Trees

A tree related to the derivation tree is called the abstract-syntax tree. This tree is an
abstract representation of the meaning of the derived expression. In the abstract-syntax
tree, the non-leaf nodes of the tree are labeled with constructors rather than with auxiliary
symbols from the grammar. These constructors give an indication of the meaning of the
string derived.

In the particular language being discussed, it is understood that an expression is a
summation-like idea, and the items being summed can be products, so an abstract syntax
tree would be as follows:

Figure 111: Abstract syntax tree for a+b*c

a product

b c

sum
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Note that abstract syntax does not show the specific operators, such as + and *; it only
shows the type of entity and the constituent parts of each such entity. Using abstract
syntax, we can appreciate the structure of a language apart from its "concrete"
representation as a set of strings.

An abstract syntax tree could be represented as the result of applying constructors, each
of which makes a tree out of component parts that are subtrees. For the language
discussed in preceding examples, the constructors could be as follows (where mk is an
abbreviation for make):

mk_sum
mk_product
mk_variable

Equivalent to the abstract syntax tree is an expression involving the constructors. For the
tree above, this expression would be:

mk_sum(mk_variable('a'),
       mk_product(mk_variable('b'),
                  mk_variable('c')))

The final meaning of the overall expression can now be derived by simply evaluating the
constructor functions appropriately redefined. For example, if we wanted to compute an
arithmetic value,  we would use the following definitions for the constructors:

mk_sum(X, Y) => X + Y;
mk_product(X, Y) => X * Y;

mk_variable(V) => .... code to look up V's value in a symbol table....

On the other hand, if our objective were to generate machine language code, we would
use functions that produce a code list. If we are just interested in verifying that our parser
works, we could use functions that return a description of the abstract syntax of the
expression, such as:

mk_sum(X, Y) => [“sum”, X, Y];
mk_product(X, Y) => [“product”, X, Y];
mk_variable(V) => [“fetch”, V];

One of the nice things about the abstract syntax idea is that we can leave these functions
unspecified until we decide on the type of output desired.

Abstract Grammars (Advanced)

Corresponding to abstract syntax, we could invent the notion of an "abstract grammar".
Again, the purpose of this would be to emphasize structure over particular character-
based representations. For the arithmetic expression grammar, the abstract grammar
would be:
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E → V
E → Ε + E
E → Ε * E

Abstract grammars are frequently left ambiguous, as the above grammar is, with an
understanding that the ambiguity can be removed with appropriate manipulation to
restore precedence. The purpose of such abstract grammars is to convey the general
structure of a programming language as succinctly as possible and issues such as
precedence just get in the way.

Example

Assume that mailing lists are represented the following way: There is a list of all mailing
lists. Each list begins with the name of the list, followed by the people in the list.
(Assume that lists can't appear on lists.)  So, for example, if the lists were "students",
"faculty", and "staff", the overall list of lists might be:

[["students", "Joe", "Heather", "Phil"],
 ["faculty", "Patti", "Sam", "John", "Cathy"],
 ["staff", "Phil", "Cathy", "Sheldon"]]

Suppose we want to specify a grammar for the correct construction of such an overall list
of lists (with an arbitrary number of lists and list members). There are two types of
answer: An ordinary grammar would require that one specify each symbol, including
brackets, commas, and quote marks. An abstract grammar (corresponding to abstract
syntax) gives just the list structure without the specific punctuation marks.

An abstract grammar for this problem, with S as the start symbol, is:

S → { M } // directory of zero or more mailing lists

M → N { N } // list name followed by people names

N → A { A } // a list or person name

A → 'a' | 'b' | .... | 'Z'

An ordinary grammar, with S as the start symbol, is:

S → '[' L ']'

L →> λ | M { ',' M } // directory of zero or more mailing lists

M → '[' N { ',' N } ']' // list name followed by people names

N → '"' A { A } '"' // one or more letters in quotes symbols
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A → 'a' | 'b' | .... | 'Z'

Additional Meta-Syntactic Forms

We mentioned in the previous section how the symbols | and * can be used to fold several
rules together into one. There are several different symbols that are commonly used for
informal and formal communication about patterns.

The Brackets-as-Optional Convention: 

In many descriptions of patterns, brackets around text means that the text is optional. If
we include this convention in grammar rules, for example, then

N → [ '+' ] D

reads: "An N produces an optional + followed by a D."  This can be taken as an
abbreviation for two separate productions, one that includes the + and one that does not.

N → '+' D
N → D

For example, if we are describing numerals with an optional + or - sign, we could use
brackets in combination with |:

Numeral → [ '+'  | '-' ] Digits

This convention is used to describe optional command-line arguments for UNIX
programs. For example, typing 'man awk' produces for the synopsis something like:

awk [ -f program-file] [program] [parameters] [filename]

meaning that there are four optional command-line arguments: a program-file (preceded
by -f), a literal program, some parameters, and a filename. (Presumably there won't be
both a program-file and a program, but the specification does not preclude it.)

The Braces-as-Alternatives Convention:  

In other descriptions of patterns, people use braces to represent a number of different
alternatives rather than any number of as we have been doing. For example, if Bob, Josh,
and Mike all have email addresses at cs.hmc.edu, then one might give their addresses
collectively as

{bob, josh, mike}@cs.hmc.edu
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rather than spelling them out:

bob@cs.hmc.edu, josh@cs.hmc.edu, mike@cs.hmc.edu.

Obviously this convention is redundant in grammars if both | and [...] conventions are
operative. One also sometimes sees the same effect using braces or brackets, with the
alternatives stacked vertically:







bob

josh
mike

 @cs.hmc.edu

The Ellipsis Convention:  

This is another way to represent iteration:

(D ...)

means 0 or more D's.

8.6  Syntax Diagrams

The graphical notation of "syntax diagrams" is sometimes used in place of grammars to
give a better global understanding of the strings a grammar defines. In a syntax diagram,
each left-hand side auxiliary symbol has a graph associated with it representing a
combination of productions. The graph consists of arrows leading from an incoming side
to an outgoing side. In between, the arrows direct through terminal and auxiliary
symbols. The idea is that all strings generated by a particular symbol in the grammar can
be obtained by following the arrows from the incoming side to the outgoing side. In turn,
the auxiliary symbols that are traversed in this process are replaced by traversals of the
graphs with those symbols as left-hand sides. A recursive traversal of the graph
corresponding to the start symbol corresponds to a string in the language.

A syntax diagram equivalent to the previous grammars is shown below. Syntax diagrams
are sometimes preferred because they are intuitively more readable than the
corresponding grammar, and because they enable one to get a better overview of the
connectivity of concepts in the grammar. Part of the reason for this is that recursive rules
in the grammar can often be replaced with cyclic structures in the diagram.
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Figure 112: Syntax diagram for a simple language

Derivation by syntax diagram is similar to derivation in a grammar. Beginning with the
graph for the start symbol, we trace out a path from ingoing to outgoing. When there is a
"fork" in the diagram, we have a choice of going either direction. For example, in the
diagram above, E is the start symbol. We can derive from E the auxiliary T by taking the
upper choice, or derive T + ... by taking the lower choice. Thus we can derive any
number of T's, separated by +'s. Similarly, any T derives any number of V's separated by
*'s. Finally a V can derive only one of a, b, or c. So to generate a+b*c, we would have the
following steps:

E
T+T looping back once through the E graph
V+T going straight through the T graph
V+V*V looping back once through the T graph
a+V*V
a+b*V using the V graph three times, each with a different choice
a+b*c

A syntax diagram for S expressions over an unspecified set of atoms would be:

Sexpr

( )

Atom

Sexpr

Figure 113: S expression syntax diagram
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Actually, there is another more general notion of S expressions, one that uses a period
symbol ‘.’ in a manner analogous to the vertical bar in rex list expressions. For example,
(A B (C D) . E) corresponds to [A, B, [C, D] | E]. This diagram for this generalized form
is:

Sexpr

( )

Atom

Sexpr Sexpr|

Figure 114: Generalized S expression syntax diagram

Exercises

1 •• Give a syntax diagram for the set of well-balanced parenthesis strings.

2 •• Give a syntax diagram, then a grammar, for the set of signed integers, i.e. the set
of strings consisting of the any number of the digits {0, 1, ...., 9} preceded by an
optional + or -.

3 •• Give a grammar corresponding to the generalized S expression syntax given in the
diagram above.

4 ••• Give a syntax diagram, then a grammar, for the set of floating-point numerals, i.e.
the set of strings consisting of an optional + or -, followed by an optional whole
number part, followed by an optional decimal point, an optional fraction, and
optionally the symbol 'e' followed by an optional signed exponent. The additional
constraint is that, with all the options, we should not end up with numerals having
neither a whole number part nor a fraction.

5 ••• Give a syntax diagram for terms representing lists as they appear in rex. Include
brackets, commas, and the vertical bar as terminal symbols, but use A to represent
atomic list elements.

6 ••• Locate a complete copy of the Java grammar and construct syntax diagrams for it.

.
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8.7 Grouping and Precedence

We showed earlier how the structure of productions has an effect on the precedence
determination of operators. To recapitulate, we can insure that an operator * has higher
precedence than + by structuring the productions so that the + is "closer" to the start
symbol than *. In our running example, using the * operator, E is the start symbol:

E → T { '+' T }
T → V { '*' V}
V → 'a' | 'b' | 'c'

Generally, the lower precedence operators will be "closer" to the start symbol.

For example, if we wanted to add another operator, say ^ meaning "raise to a power", and
wanted this symbol to have higher precedence than *, we would add ^ "farther away"
from the start symbol than '*' is, introducing a new auxiliary symbol P that replaces V in
the existing grammar, and adding productions for P:

E → T { '+' T }
T → P { '*' P }
P → V { '^' V }
V → 'a' | 'b' | 'c'

Another issue that needs to be addressed is that of grouping: how multiple operators at
the same level of precedence are grouped. This is often called "associativity", but this
term is slightly misleading, because the discussion applies to operators that are not
necessarily associative. For example, an expression

a + b + c
could be interpreted with left grouping:

(a + b) + c
or with right grouping:

a + (b + c)
You might think this doesn't matter, as everyone "knows" + is associative. However, it
does matter for the following sorts of reasons:

• In floating point arithmetic, + and * are not associative.

• It is common to group related operators such as + and - together as having the
same precedence. Then in a mixed statement such as

a - b + c
grouping matters very strongly: (a - b) + c is not the same as a - (b + c). When
these operators are arithmetic, left-grouping is the norm.
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Let's see how grouping can be brought out in the structure of productions. For an
expression that is essentially a sequence of terms separated by '+' signs, there are two
possible production sets:

E → T vs. E → T
E → Ε '+'  T E → Τ '+'  E

or or
E → T {  '+' T } E → { T  '+' }  T

left grouping right grouping

To see that the production set on the left gives left-grouping, while the one on the right
gives right-grouping, compare the forms of the respective derivation trees:

E

T

TE +

TE +

TE +

TE +

E

T E+

T E+

T E+

T E+

T

Figure 115: Left and right grouping shown by derivation trees

The interpretations of these two trees are:

((((T + T) + T) + T) + T) vs. (T + (T + (T + (T + T))))

respectively. [Do not confuse the parentheses in the above groupings with the meta-
syntactic parentheses in the grammar. They are, in some sense, opposite!]

8.8 Programs for Parsing

One function that computer programs have to perform is the interpretation of expressions
in a language. One of the first aspects of such interpretation is parsing the expression, to
determine a meaning. As suggested earlier, parsing effectively constructs the derivation
tree for the expression being parsed. But parsing also involves the rejection of ill-formed
input, that is, a string that is not in the language defined by the grammar. In many ways,
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this error detection, and the attendant recovery (rather than just aborting when the first
error is detected in the input) is the more complex part of the problem.

We will describe one way to structure parsing programs using the grammar as a
guideline. This principle is known as "recursive-descent" because it begins by trying to
match the start symbol, and in turn calls on functions to match other symbols recursively.
Ideally, the matching is done by scanning the input string left-to-right without backing
up. We will give examples, first using rex rules that correspond closely to the grammar
rules, then using Java methods. Before we can do this, however, we must address a
remaining issue with the structure of our productions. The production

E → Ε '+'  T

has an undesirable property with respect to left-to-right scanning. This property is known
as "left recursion". In the recursive descent method, if we set out to parse an E, we will
be immediately called upon to parse an E before any symbols in the input have been
matched. This is undesirable, as it amounts to an infinite loop. The production

E → Τ '+'  E

does not share this problem. With it, we will not try for another E until we have scanned a
T and a '+'. However, as we observed, this production changes the meaning to right-
grouping, something we don't want to do.

To solve this problem, we already observed that the net effect of the two left-grouping
productions can be cast as

E → T { '+' T }

To represent this effect in a recursive language such as rex, without left recursion, we
change the productions so that the first T is produced first, then as many of the
combination ( '+' T ) are produced as are needed. We add a new symbol C that stands for
"continuation". The new productions are:

E → T C
C →  '+' T C
C → λ

We can see that this is correct, since the last two productions are clearly equivalent to

C →  { '+' T }

and when we substitute for C in E → T C we get

E → T { '+' T }
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as desired. Informally, under recursive descent, these productions say:  "To parse an E,
first parse a T followed by a C. To parse a C, if the next symbol is '+', parse another T,
then another C. Otherwise return."  Evidently, these productions do not have the left-
recursion problem. The rules only "recurse" as long as there is another '+' to parse.

An interesting observation in connection with the above rules is that they correspond
naturally to a certain while loop:

to parse E:
parse T;
while( next char is '+' )

parse T;

We will see this connection in action as we look at a parser written in Java.

A Language Parser in Java

We are going to give a Java parser for an arithmetic expression grammar with two
operators, '+' and '*', with '*' taking precedence over '+'. This parser simply checks the
input for being in the language. Then we will give one that also computes the
corresponding arithmetic value.

    A -> M { '+' M }            sum

    M -> V { '*' V }            product

    V -> a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

To each auxiliary symbol there corresponds a Java method responsible for determining
whether the remainder of the input can be generated by that symbol.

class addMult extends LineBuffer                // addMult parser class
  {
  // Parse method for A -> M { '+' M }

  Object A()
    {
    Object result;
    Object M1 = M();                            // get the first addend
    if( isFailure(M1) ) return failure;

    result = M1;

    while( peek() == '+' )                      // while more '+'
      {
      nextChar();                               // absorb the '+'
      Object M2 = M();                          // get the next addend
      if( isFailure(M2) ) return failure;
      result = mkTree("+", result, M2);  // create tree
      }
    return result;
    }
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  // Parse method for M -> V { '*' V }

  Object M()
    {
    Object result;
    Object V1 = V();                            // get the first variable
    if( isFailure(V1) ) return failure;

    result = V1;

    while( peek() == '*' )                      // while more '*'
      {
      nextChar();                               // absorb the '*'
      Object V2 = V();                          // get the next variable
      if( isFailure(V2) ) return failure;
      result = mkTree("*", result, V2);  // create tree
      }
    return result;
    }

// Parse method for V -> a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

  Object V()
    {
    skipWhitespace();
    if( isVar(peek()) )                         // if there is a variable
      {
      return (new StringBuffer(1).append(nextChar())).toString();
      }
    return failure;
    }

  Object parse()        // TOP LEVEL: parse with check for residual input
    {
    Object result = A();                        // parse an A
    skipWhitespace();                           // ignore trailing whitespace
    if( position < lastPosition )               // see if any residual junk
      {
      System.out.print("*** Residual characters after input: ");
      while( !eof )                             // print residual characters
        {
        char c = nextChar();
        System.out.print(c);
        }
      System.out.println();
      }
    return result;                              // return result of parse
    }

  // isVar indicates whether its argument is a variable

  boolean isVar(char c)
    {
    switch( c )
      {
      case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
      case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
      case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
      case 'v': case 'w': case 'x': case 'y': case 'z':
        return true;
      default:
        return false;
      }
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    }

  // SUPPORT CODE

  static String promptString = "input: ";               // prompt string

  static ParseFailure failure = new ParseFailure();     // failure

  addMult(String input)                                 // parser constructor
    {
    super(input);                                       // construct LineBuffer
    }

  boolean isFailure(Object ob)                          // test for failure
    {
    return ob instanceof ParseFailure;

  static boolean prompt()                               // prompter
    {
    System.out.print(promptString);
    System.out.flush();
    return true;
    }
  }  // class addMult

// ParseFailure object is used to indicate a parse failure.

class ParseFailure
  {
  }

// LineBuffer provides a way of getting characters from a string
// Note that eof is a variable indicating end-of-line. It should
// not be confused with the eof method of LineBufferInputStream.

class LineBuffer
  {
  String input;                 // string being parsed
  boolean eof;                  // end-of-file condition exists

  int position;                 // position of current character

  int lastPosition;             // last position in input string

  LineBuffer(String input)
    {
    this.input = input;         // initialize variables dealing with string
    position = -1;              // initialize "pointer"
    lastPosition = input.length()-1;
    eof = lastPosition == -1;
    }

  char nextChar()                     // get next character in input
    {
    if( position >= lastPosition )    // if no more characters
      {
      eof = true;                     // set eof
      return ' ';                     // and return a space
      }
    return input.charAt(++position);
    }

  void skipWhitespace()               // skip whitespace
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    {
    while( !eof && peek() == ' ' )
      {
      nextChar();
      }
    }
  }  // LineBuffer

// LineBufferInputStream is an input stream capable of reading one line
// at a time and returning the line as a string, by calling method getLine().
// It also provides the method eof() for testing for end-of-file.
// It extends PushbackInputStream from package java.io

class LineBufferInputStream extends PushbackInputStream
  {
  /**
    * LineBufferInputStream constructs from an InputStream
    */

  LineBufferInputStream(InputStream in)
    {
    super(in);               // call constructor of PushbackInputStream
    }

  /**
    *  getLine() gets the next line of input
    */

  String getLine()
    {
    StringBuffer b = new StringBuffer();         // buffer for line
    try
      {
      int c;
      while( !eof() && ((c = read()) != '\n') )  // read to end-of-line
        {
        b.append((char)c);          // input.charAt(++position);
        }
      return b.toString();                       // get string from buffer
      }
    catch( java.io.IOException e )
      {
      handleException("getLine", e);
      return "";
      }
    }

  /**
    *  eof() tells whether end-of-file has been reached.
    */

  public boolean eof()
    {
    try
      {
      int c = read();
      if( c == -1 )
        {
        return true;
        }
      else
        {
        unread(c);
        return false;
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        }
      }
    catch( IOException e )
      {
      handleException("eof", e);
      }
    return false;
    }

  /**
    *  handleException is called when there is an IOException in any method.
    */

  public void handleException(String method, IOException e)
    {
    System.out.println("IOException in LineBufferInputStream: " + e +
                       " calling method " + method);
    }
  }

Extending the Parser to a Calculator

The following program extends the parse to calculate the value of an input arithmetic
expression. This is accomplished by converting each numeral to a number and having the
parse methods return a number value, rather than simply an indication of success or
failure. We also try to make the example a little more interesting by adding the nuance of
parentheses for grouping. This results in mutually-recursive productions, which translate
into mutually-recursive parse methods. The grammar used here is:

    A -> M { '+' M }            sum

    M -> U { '*' U }            product

    U -> '(' A ')' | N          parenthesized expression or numeral

    N -> D {D}                  numeral

    D -> 0|1|2|3|4|5|6|7|8|9    digit

We do not repeat the definition of class LineBuffer, which was given in the previous
example.
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class SimpleCalc extends LineBuffer              // SimpleCalc parser class
  {
  static public void main(String arg[])          // USER INTERFACE
    {
    LineBufferInputStream in = new LineBufferInputStream(System.in);

    while( prompt() && !in.eof() )               // while more input
      {
      String input = in.getLine();               // get line of input
      SimpleCalc parser = new SimpleCalc(input); // create parser
      Object result = parser.parse();            // use parser
      if( result instanceof ParseFailure )       // show result
        System.out.println("*** syntax error ***");
      else
        System.out.println("result: " + result);
      System.out.println();
      }
    System.out.println();
    }

  Object A()                            // PARSE FUNCTION for A -> M { '+' M }
    {
    Object result = M();                // get first addend
    if( isFailure(result) ) return failure;

    while( peek() == '+' )                      // while more addends
      {
      nextChar();
      Object M2 = M();                          // get next addend
      if( isFailure(M2) ) return failure;
      try
        {
        result = Poly.Arith.add(result, M2);    // accumulate result
        }
      catch( argumentTypeException e )
        {
        System.err.println("internal error: argumentTypeException caught");
        }
      }
    return result;
    }

  Object M()                            // PARSE FUNCTION for M -> U { '*' U }
    {
    Object result = U();                // get first factor
    if( isFailure(result) ) return failure;

    while( peek() == '*' )              // while more factors
      {
      nextChar();
      Object U2 = U();                  // get next factor
      if( isFailure(U2) ) return failure;
      try
        {
        result = Poly.Arith.multiply(result, U2);       // accumulate result
        }
      catch( argumentTypeException e )
        {
        System.err.println("internal error: argumentTypeException caught");
        }
      }
    return result;
    }
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  Object U()                    // PARSE FUNCTION for U -> '(' A ')' | N
    {
    if( peek() == '(' )         // Do we have a parenthesized expression?
      {
      nextChar();
      Object A1 = A();          // Get what's inside parens
      if( peek() == ')' )
        {
        nextChar();
        return A1;
        }
      return failure;
      }

    return N();                 // Try for numeral
    }

  Object parse()        // TOP LEVEL: parse with check for residual input
    {
    Object result = A();
    if( position < lastPosition )
      {
      return failure;
      }
    return result;
    }

  static String promptString = "input: ";               // prompt string

  static ParseFailure failure = new ParseFailure();     // failure

  SimpleCalc(String input)      // constructor for parser
    {
    super(input);               // construct LineBuffer
    }

  boolean isFailure(Object ob)          // test for failure
    {
    return ob instanceof ParseFailure;
    }

  static boolean prompt()
    {
    System.out.print(promptString);
    System.out.flush();
    return true;
    }
  }  // class SimpleCalc

8.9 More on Expression Syntax vs. Semantics

The syntax of expressions in programming languages varies widely from language to
language. Less variable is the "semantics" of expressions, that is, the meaning of
expressions. In this note, we discuss some of the different syntaxes both the programmer
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and the user might encounter. It is important for the student to get used to thinking in
terms of semantics apart from specific syntax. In other words, we should try to "see
through" the expressions to the conceptual meaning. Acquiring this knack will make the
programming world less of a blur.

For our initial comparisons, we shall confine ourselves to arithmetic expressions. We will
later discuss more general forms. In arithmetic cases, the meaning of an expression is
defined as follows:

Given any assignment of values to each of the variables in an expression, a value
is determined by "evaluating" the expression.

In the chapter on Information Structures, we described the idea of bindings. Here we are
going to become more precise and make additional use of this idea.

Definition:  A binding (also called assignment ) for an expression is a function from
each of its variable symbols to a value. [Please do not confuse assignment here with the
idea of an assignment statement.]

Example   Consider the expression A + B. There are two variables, A and B. A binding
is any function that gives a value for each of these. For example,

{A → 3, B → 7} is a binding giving a value of 3 to A and 7 to B.
{A → 9, B → 13} is another binding,

and so on.

Definition:  The meaning of an expression is a function from bindings to values.

Example   Considering again the expression A+B, the meaning of A+B is the function
that maps

{A → 3, B → 7}  → 10
{A → 9, B → 13}  → 22

etc.

The exact meaning of a given expression is defined recursively, in terms of meta rules.
To avoid plunging too deeply into the theory at this time, we will rely on the intuitive
meanings of such expressions.

In the chapter on Predicate Logic we will have occasion to extend this idea to other kinds
of expressions.
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Exercises

1 •• Extend the expression evaluator coded in Java to include the subtraction and
division operators, - and /. Assume that these are on the same precedence level as
+ and *, respectively, and are also left-grouping.

2 •• Give a grammar for floating-point numerals.

3 •• Extend the expression evaluator coded in C++ to include floating-point numerals
as operands.

8.10 Syntax-Directed Compilation (Advanced)

A common use of grammars is to control the parsing of a language within a compiler.
Software tools that input grammars directly for this purpose are called syntax-directed
compilers or compiler generators. We briefly illustrate a common compiler generator,
yacc (Yet Another Compiler-Compiler). In yacc, the grammar rules are accompanied by
program fragments that indicate what to do when a rule is successfully applied.

A second way to handle the issue of ambiguity is to leave the grammar in ambiguous
form, but apply additional control over the applicability of productions. One form of
control is to specify a precedence among operators; for example, if there is a choice
between using the + operator vs. the * operator, always use the * first. In yacc, such
precedence can be directed to the compiler, as can the grouping of operators, i.e. should a
+ b + c be resolved as (a + b) + c (left grouping) or a + (b + c) (right grouping).

Yacc Grammar for Simple Arithmetic Expressions

Below is the core of a yacc specification of a compiler for the simple arithmetic language.
The output of yacc is a C program that reads arithmetic expressions containing numerals,
+, and * and computes the result. The yacc specification consists of several productions,
and each production is accompanied by a code section that states the action to be
performed. These actions involve the symbols $$, $1, $2, etc. $$ stands for the value of
the expression on the left-hand side of the production, while $1, $2, etc. stand for the
value of the symbols in the first, second, etc. positions on the right-hand side. For
example, in the production

expr:
         expr '+' expr
             { $$ = $1 + $3; }

the code fragment in braces says that the value of the expression will be the sum of the
two expressions on the right-hand side. ($2 refers to the symbol '+' in this case.)
Although the value in this particular example is a numeric one, in general it need not be.
For example, an abstract syntax tree constructed using constructors could be used as  a
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value. In turn, that abstract syntax tree could be used to produce a value or to generate
code that does.

%left '+'             /* tokens for operators, with grouping          */
%left '*'             /* listed lowest precedence first               */

%start seq            /* start symbol for the grammar                 */

%%                    /* first %% demarks beginning of grammar rules  */

                      /* seq is LHS of first grammar rule.            */

seq :                                /* The "null" event"             */
      expr eol                       /* Parse expression.             */
       { printf("%d\n", $1);}        /* Print value of expr           */
    ;

expr   :
         expr '+' expr
           { $$ = $1 + $3; }         /* forward the sum               */
       | expr '*' expr
           { $$ = $1 * $3; }         /*   etc.                        */
       | number
           { $$ = $1; }
     ;

number :                             /* accumulate numeric value      */
         digit
           { $$ = $1; }
       | number digit
           { $$ = 10 * $1 + $2; }
       ;

digit  :                             /* get digit value               */
          '0' { $$ = 0; } | '5' { $$ = 5; }
        | '1' { $$ = 1; } | '6' { $$ = 6; }
        | '2' { $$ = 2; } | '7' { $$ = 7; }
        | '3' { $$ = 3; } | '8' { $$ = 8; }
        | '4' { $$ = 4; } | '9' { $$ = 9; }

  ;

eol     : '\n';                      /* end of line                   */
%%

yacc source for a simple arithmetic expression calculator

8.11 Varieties of Syntax

So far, we have mostly considered expressions in "infix form", i.e. ones that place binary
(i.e. two-argument) operators between expressions for the operands. As we have
discussed, parentheses, implied precedence, and grouping are used to resolve ambiguity.
Examples are

A + B
A + B * C
 (A + B) * C
A - B - C
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There are several other types of syntax that occur either in isolation or in combination
with the types we have studied already. These are mentioned briefly in the following
sections.

Prefix syntax

Prefix syntax puts the operator before the arguments. It is used in many languages for
user-defined functions, e.g.

f(A, B, C).

The equivalent of the preceding list of expressions in prefix syntax would be:

+(A, B)
+(A, *(B, C))
*(+(A, B), C)
-(-(A, B), C)

Parenthesis-free Prefix Syntax

This is like prefix syntax, except that no parentheses or commas are used. In order for this
form of syntax to work without ambiguity, the arity (number of arguments) of each
operator must be fixed. For example, we could not use - as both unary minus and binary
minus. The running set of expressions would appear as

+ A B
+ A * B C
* + A B C
- - A B C

Parenthesis-free prefix syntax is used in the Logo language for user-defined procedures.

Expressions in the Prolog language using arithmetic operators can be written in either
infix or postfix.

Postfix and Parenthesis-free Postfix

This is like prefix, except the operator comes after the arguments. It is most usually seen
in the parenthesis-free form, where it is also called RPN (reverse Polish notation).

(A, B)+ A B +
(A, (B, C)*)+ A B C * +
((A, B)+, C)* A B  + C *
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((A, B)-, C)- A B - C -

The parenthesis-free version of this syntax also requires the property that each operator
must be of fixed arity.

S Expression Syntax

A grammar for S expressions was presented earlier. The notion of S expressions provide
a syntax that, despite its initially foreign appearance, has several advantages:

The arity of operators need not be fixed. For example, we could use a + operator
that has any number of arguments, understanding the meaning to be compute the
sum of these arguments. [For that matter, prefix and postfix with parentheses
required also have this property.]

The number of symbols is minimal and a parsing program is therefore relatively
easy to write.

In S-expression syntax, expressions are of the form

( operator argument-1 argument-2 .... argument-N )

where the parentheses are required. S-expressions are therefore a variant on prefix syntax.
Sometimes S-expressions are called "Cambridge Polish" in honor of Cambridge, Mass.,
the site of MIT, the place where the language Lisp was invented. Lisp uses S-expression
syntax exclusively.

In S expressions, additional parentheses cannot be added without
changing the meaning of the expression. Additional parentheses are
never necessary to remove ambiguity because there is never any
ambiguity: every operator has its own pair of parentheses.

Example: Arithmetic Expressions in S Expression Syntax

( + A B)
( + A ( * B C ) )
( * (+ A B) C)
( - ( - A B ) C )

S expressions are not only for arithmetic expressions; they can be used for representing
many forms of structured data, such as heterogeneous lists. For example, the
heterogeneous list used in an earlier rex example
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[ my_dir,
  mail,
  [ archive, old_mail, older_mail],
  [ projects,
    [ sorting, quick_sort, heap_sort],
    [ searching, depth_first, breadth_first]
  ],
  [games, chess, checkers, tic-tac-toe]
]

could be represented as the following S expression:

( my_dir
  mail
  ( archive old_mail older_mail)
  ( projects
    ( sorting quick_sort heap_sort)
    ( searching depth_first breadth_first)
  )
  (games chess checkers tic-tac-toe)
)

S expressions are, in many ways, ideal for representing languages directly in their
abstract syntax. The syntax is extremely uniform. Moreover, given that we have a reader
for S expressions available, we don't need any other parser. We can analyze a program by
taking the S expression apart by recursive functions. This is the approach taken in the
language Lisp. Every construct in the language can play the role of an abstract syntax
constructor. This constructor is identified as the first argument in a list. The other
arguments of the constructor are the subsequent items in the list.

We saw above how arithmetic expressions are represented with S expressions.
Assignment in Lisp is represented with the setq constructor:

(setq Var  Expression )

sets the value of variable Var to that of expression Expression. A two-armed conditional
is represented by a list of four elements:

(if Condition   T-branch   F-branch)

and function definitions are represented by the constructor defun. For example, the
following is a factorial program in Lisp:

(defun factorial (N)
 (if ( < N 1 )
   1
   (* N (factorial (- N 1) ) ) ) )

In the next major section, we give examples of extendible interpreters that exploit the S
expression syntax.
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Expression-Tree Syntax

Expression trees are trees in which the leaves are labeled with variables or constants and
the interior nodes are labeled with operators. The sub-trees of an operator node represent
the argument expressions. The advantage of trees is that it allows us to visualize the flow
of values that would correspond to the evaluation of an expression. These correspond
closely to the abstract syntax trees discussed earlier.

+

A B

+

A
*

B C

+

A

*

B

C

A B

C-

-

Figure 116: Expression-tree syntax for the equivalents
of infix A+B, A+(B*C), (A+B)*C, and (A-B)-C

 (reading clockwise from upper-left)

DAG (Directed Acyclic Graph) Syntax

DAG syntax is an extension of expression-tree syntax in which the more general concept
of a DAG (Directed, Acyclic, Graph) is used. The added benefit of DAGs is that sharing
of common sub-expressions can be shown. For example, in

(A + B) * C + D / (A + B)

we might want to indicate that the sub-expression A + B is one and the same. This would
be shown by having two arcs leaving the node corresponding to A + B. Note that is
related to the issue of structure sharing which has appeared several times before.
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+

A B

+

*

C D

/

Figure 117: DAG for an arithmetic expression

DAG syntax is a subset of what is used in dataflow languages. Typically the latter allow
loops as well, assuming that an appropriate semantics can be given to a loop, and are
therefore not confined to DAGs (they can be cyclic). A typical example of languages that
make use of loops are those for representing signal-flow graphs, as occur in digital signal
processing.
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2

+
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1

b
2

∆

b
3

+

Figure 118: Graphical syntax for a digital filter

In the jargon of digital filters, a filter with loops is called "recursive".
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The Spreadsheet Model

The spreadsheet model is a relatively user-friendly computing model that implicitly
employs DAGs to represent computations. In a spreadsheet, the computational
framework is represented in a two-dimensional array of cells. Each cell contains either a
primitive data value, such as an integer or string, or an expression. An expression is
typically an arithmetic or functional expression entailing operators and the names of other
cells as variables. The spreadsheet system computes the values in cells containing
expressions, and displays the value in the cell itself. Whenever the user changes one of
the primitive data values in its cell, the relevant cells containing expressions are changed
by the system to reflect the new value. The underlying mechanism is that of a DAG,
where some nodes are identified with cells.

For simplicity, consider a 2 x 3 spreadsheet, as shown below. The cells in the spreadsheet
are designated A1, A2, A3, B1, B2, B3.

1 2 3
A B1 * B2 + B3 / B1 value of A value of B
B A2 + A3 value of C value of D

Figure 119: A simple spreadsheet representable as a DAG

Cell A1 of this spreadsheet represents the value of the previous DAG expression, if we
associate the values A, B, C, and D with A2, A3, B2, and B3 respectively. The
expression in cell B1 represents the common sub-expression shown in the DAG.

Typical states of the spreadsheet, with values entered by the user for A, B,C, and D,
would show as follows:

1 2 3
A 32.75 3 5
B 8 4 6

1 2 3
A  50.7 4 6
B 10 5 7

Figure 120: Two different states of the simple spreadsheet
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Exercises

1 ••• Give unambiguous grammars for representing arithmetic expressions with
operators + and *:

(a) In postfix form

(b) In prefix form

(c) In S-expression form

2 •• Build an evaluator for expressions in postfix form. Although it could be done with
recursion, such an evaluator is typically described using a "stack" data structure
that retains operand values. Values are removed in the order of their recency of
insertion:

When an operand is scanned, it is pushed on the stack.

When an operator is scanned, the appropriate number of arguments is
removed from the stack, the operator is applied, and the result pushed on
the stack.

Such is the principle on which RPN calculators work. It is also the basis of the
FORTH language, and the PostScript  language that is built on FORTH syntax.

3 ••• Build an evaluator for expressions in postfix form that uses no explicit stack. (An
implicit stack is used in the recursive calls in this evaluator). [Hint: This can be
done by defining recursive functions having arguments corresponding to the top
so many values on the stack, e.g. there would be three functions, assuming at most
2-ary operators). When such a function returns, it corresponds to having used
those two arguments.]

4 •• Having done the preceding two problems, discuss tradeoffs of the two versions
with respect to program clarity, tail recursion, space efficiency, etc.

5 ••• Build an evaluator for expressions in prefix form.

6 •••• Devise an expression-based language for specifying graphics. Develop a
translator that produces PostScript . Display the results on a laser printer or
workstation screen.

7 •••• Develop a spreadsheet calculator, including a means of parsing the expressions
contained within formula cells.
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8 •••• Explore the ergonomics of copying formulas in cells, as are done in commercial
spreadsheet implementations. After devising a good explanation (or a better
scheme), implement your ideas.

9 ••• Implement a system simplifying arithmetic expressions involving the operators +,
-, *, /, and exp (exponent) with their usual meanings. For convenience, use S
expression input syntax, wherein each expression is either:

A numeric constant

An atom, representing a variable

A list of the form (Op E1 E2), where E1 and E2 are themselves
expressions and Op is one of the four operators.

The kinds of operations involved in simplification would include:

removing superfluous constants such as 1's and 0's:

(+ E1 0) → E1

(* E1 1) → E1

carrying out special cases of the operators symbolically:

(- E1 E1) → 0

(exp E 0) → 1

eliminating / in favor of *:

(/ (/ A B) C)  →  (/ A (* B C))

etc.

For example, if your system is given the input expression

(/ (/ A (* B (- C C)) D)

it would produce

(/ A (* B D))

These kinds of simplifications are included automatically in computer algebra systems
such as Mathematica™ and Maple, which have a programming language component.
However, the user is usually unable to customize, in an easy way, the transformations to
suit special purposes.
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10 •••• Implement a system in the spirit of the previous exercise, except include
trigonometric identities.

11 •••• Implement a system in the spirit of the previous exercise, except include
integrals and derivatives.

8.12 Chapter Review

Define the following terms:

abstract syntax tree
ambiguity
assignment
auxiliary symbol
basis
binding
countable
countably-infinite
DAG syntax
derivation tree
expression tree
finite
grammar
hypercube
induction rule
inductive definition
infinite
language
left recursion
natural numbers
parsing
precedence
prefix vs. postfix syntax
production
recursive descent
semantics
S expression
spreadsheet syntax
start symbol
syntax
syntax diagram
terminal alphabet
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8.13. Further Reading

•• Adobe Systems Incorporated, PostScript Language Reference Manual, Addison-
Wesley, Reading, Massachusetts, 1985. [Introduces the PostScript  language, which
uses RPN syntax.]

••• A.V. Aho, R. Sethi, and J.D. Ullman, Compilers – Principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts, 1986. [Demonstrates how grammars are used
in the construction of compilers for programming languages.]

• Alan L. Davis and Robert M. Keller, Data Flow Program Graphs, Computer, February,
1982, pages 26-41. [Describes techniques and interpretations of data flow programs. ]

• Bob Frankston and Dan Bricklin, VisiCalc, VisiCalc Corporation, 1979. [The first
spreadsheet.]

•• Paul R. Halmos, Naive Set Theory, Van Nostrand, Princeton, New Jersey, 1960.
[Develops set theory from the ground up.]

• Brian Harvey, Computer science Logo style, MIT Press, 1985. [One of several possible
references on the Logo language.]

•• S.C. Johnson, Yacc – Yet Another Compiler-Compiler, Computer Science Tech. Rept.
No. 32, Bell Laboratories, Murray Hill, New Jersey, July 1975. [Original reference on
yacc.]

•• John R. Levine, Tony Mason, and Doug Brown,  lex & yacc, O'Reilly & Associates,
Inc., Sebastpol, CA, 1990.

••• J. McCarthy, et al.,  Lisp 1.5 Programmer's Manual, MIT Press, Cambridge, Mass.,
1965. [The original reference on Lisp list processing. Moderate.]

••• J. McCarthy and J.A. Painter, Correctness of a compiler for arithmetic expressions, in
J.T. Schwartz (ed.), Proceedings of a Symposium in Applied Mathematics, 19,
Mathematical Aspects of Computer Science, pp. 33-41, American Mathematical Society,
New York, 1967. [The first mention of "abstract syntax".]

•• C.H. Moore, FORTH: A New Way to Program Minicomputers, Astronomy and
Astrophysics, Suppl. No. 15, 1974. [Introduces the FORTH language.]



9. Proposition Logic

9.1 Introduction

This chapter describes proposition logic and some of the roles this form of logic plays in
computer hardware and software. From early on, computers have been known as “logic
machines”. Indeed, “logic” plays a central role in the design, programming, and use of
computers. Generally, “logic” suggests a system for reasoning. But in computer science,
reasoning is only one use of logic. We also use logic in a fairly mechanistic way in the
basic construction of computers. This form of logic is called “proposition logic”,
“switching logic”, or sometimes (not quite correctly) “Boolean algebra”. There are also
several other, much more powerful, types of logic that are used in other aspects of
computer science. “Predicate logic”, also called “predicate-calculus” or “first-order
logic” is used in programming and in databases. Predicate logic, and “temporal logic”,
which is built upon predicate logic, are used for reasoning about programs and dynamic
systems. Varieties of “modal logic” are used in building artificial intelligence reasoning
systems.

In this course, we will be concerned mostly with proposition logic, and to some extent,
and mostly informally, predicate logic. Proposition logic is used in the design and
construction of computer hardware. It is also related to a simple kind of deductive
reasoning. In proposition logic, we deal with relationships among variables over a two-
valued domain, for these reasons:

• It is simplest to build high-speed calculating devices out of elements that have
only two (as opposed to several) stable states, since such devices are the
simplest to control. We need only to be able to do two things:

• sense the current state of the device

• set the state of the device to either of the two values

• All finite sets of values (such as the control states of a Turing machine or
other computer) can be encoded as combinations (“tuples”) of two-valued
variables.

In this book we shall mostly use 0 and 1 as our two values, although any set of two
values, such as true and false, yes and no, a and b, red and black, would do. When we
need to think in terms of truth, we will usually use 1 for true and 0 for false.
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9.2 Encodings of Finite Sets

As mentioned above, every finite set can be encoded into tuples of 0 and 1. These
symbols are usually called “bits”. Technically the word “bit” stands for “binary digit”,
but it is common to use this term even when we don’t have a binary or base-2 numeral
system in mind. More precisely, an encoding of a set S is a one-to-one function of the
form

S → {0, 1} Ν

for some N. Here {0, 1}Ν means the set of all N-tuples of 0 and 1. A given tuple in this
context is called a “codeword”. Remember that “one-to-one” means that no two elements
of S map to the same value. This is necessary so that a codeword can be decoded
unambiguously. Since { 0, 1}Ν has exactly 2Ν elements, in order for the one-to-one
property to hold, N would therefore have to be such that

2
Ν > |S|

where we recall that |S| means the size, or number of elements, of S. Put another way, N
is an integer such that

N > log2 |S|.

This inequality still gives us plenty of leeway in choosing encodings. There are many
considerations that come into play when considering an encoding, and this motivates the
use of different encodings in different situations. A fair amount of programming ends up
being conversion of one encoding to another. Some of the considerations involved in the
choice are:

• Conciseness: a code that uses as few symbols as possible.

• Ease in decoding: a code that is simple for humans, or circuitry, to decode.

• Difficulty in decoding: a code that is hard to decode, for example, one to be
used in encrypting data for security purposes.

• Error detection: a code designed in such a way that if one of the bits changes
inadvertently, this fact can be detected.

• Error correction: like error detection, except that we can determine the
original value, as well as determining whether a change occurred.

• Other special properties, such as the “one change” property found in Gray
codes, as discussed below.

We already encountered the binary numerals in our earlier discussion of encoding the
infinite set of natural numbers. Obviously, the same idea can be used to encode a finite
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set. It is common to use a fixed number of bits and include all of the leading zeroes when
encoding a finite set.

Binary Code Example   

Encode the set {0, 1, 2, 3, 4, 5, 6, 7} in binary:  We give the encoding by a table showing
the correspondence between elements of the set and {0, 1}3, the set of all 3-tuples of bits:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Figure 121: The binary encoding of {0, ...., 7}

It is easy to see that this is a code, i.e. that the correspondence is one-to-one.

In general, N bits is adequate to encode the set of numbers {0, ...., 2
N

-1}. There are many
other ways to encode this same set with the same number of bits. Not all have any
particular pattern to them. One that does is the following:

Gray Code Example   

A Gray Code is also called “reflected binary”. Encoding the same set as above, this code
starts like binary:

0 000
1 001

However, once we get to 2, we change the second bit from the right only:

1 001
2 011 (instead of 010 as in straight binary)

In general, we wish to change only one bit in moving from the encoding from a number
K to K+1. The trick is to do this without returning to 000 prematurely. By using the
pattern of “reflecting” a certain number of bits on the right, we can achieve coverage of
all bit patterns while maintaining the one-change property.
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0 000
1 001 ↑
              --- last bit reflected above and below
2 011 ↓ read up above the line, copy bit downward
3 010 
            ----- last two bits reflected
4 110
5 111
6 101
7 100
0 000

Figure 122: The Gray encoding of {0, ...., 7}

One-Hot Code Example

This code is far from using the fewest bits, but is very easy to decode. To encode a set of
N elements, it uses N bits, only one of which is 1 in any codeword. Thus, to encode
{0, ...., 5}, a one-hot code is:

0 000001
1 000010
2 000100
3 001000
4 010000
5 100000

Figure 123: A one-hot encoding of {0, ...., 5}

Examples of one-hot codes include a push-button telephone (one out of 12) and a
standard traffic light (one out of 3). An electronic piano keyboard would not be one-hot,
because it allows chords to be struck.

Subset Code Example

This code is useful when the set to be encoded is, in fact, the set of all subsets of a given
set. If the latter has N elements, then exactly 2N elements are in the set of subsets. This
suggests an N-bit code, where one bit is used to represent the presence of each distinct
element. For example, if the set is {a, b, c}, then the set of all subsets is {{}, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. The code would appear as:
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{} 000
{a} 100
{b} 010
{c} 001
{a, b} 110
{a, c} 101
{b, c} 011
{a, b, c} 111

Figure 124: An encoding of all subsets of {a, b, c}

Note that we could use this code and the binary code to establish a relationship between
subsets and the numbers {0, ...., 2N-1}:

number subset binary
 0 {} 000
1 {c} 001
2 {b} 010
3 {b, c} 011
4 {a} 100
5 {a, c} 101
6 {a, b} 110
7 {a, b, c} 111

Figure 125: Correspondence between binary encoding subset encoding

This consideration is of importance in the construction of computers and also in
programming, as will be seen later.

The Pascal language has a built-in subset code feature in the form of a set type, which can
be derived from any enumeration type.

Binary-Coded Decimal  Example

This code, abbreviated BCD, is sometimes used to make it easy to decode into decimal
representations. The number to be encoded is first represented in decimal (radix 10).
Each digit is separately coded in 4-bit binary. The resulting 4-bit codes are concatenated
to get the codeword. For example, the number 497 would encode as 0100 1001 0111.

The Cartesian Encoding Principle   

The BCD encoding illustrates a general principle:  We can achieve economy in the
description of an encoding when we can decompose the set to be encoded as a Cartesian
Product of smaller sets. In this case, we can separately encode each set, then take the
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overall code to be a tuple of the individual codes. Suppose that the set S to be encoded
contains M elements, where M is fairly large. Without further decomposition, it would
take a table of M entries to show the encoding. Suppose that S can be represented as the
Cartesian product T x U, where T contains N and U contains P elements. Then M = NP.
Knowing that we are using a product encoding, we need only give two tables, one of size N
and the other of size P, respectively, to present the encoding. For example, if N and P are
roughly the same, the table we have to give is on the order of 2 times the square root of
M, rather than M. For large M this can be a substantial saving.

Error-Correcting Code Principle (Advanced)

Richard W. Hamming invented a technique that provides one basis for a family of error-
correcting codes. Any finite set of data can be encoded by adding sufficiently many
additional bits to handle the error correction. Moreover, the number of error correction
bits added grows as the logarithm of the number of data bits.

The underlying principle can be viewed as the multiple application of parity bits.

With the parity bit scheme, a single bit is attached to the transmitted data
bits so that the sum modulo 2 (i.e. the exclusive-or) of all bits is always 0.
In this way, the corruption of any single bit, including the parity bit itself,
can be detected. If there are N other bits, then the parity bit is computed as
b1 ⊕ b2 ⊕ .... ⊕ bN, where ⊕  indicates modulo-2 addition (defined by 0 ⊕  1
= 1 ⊕  0 = 1, and 0 ⊕  0 = 1 ⊕  1  = 0). If the sum of the bits is required to
be 0, this is called "even parity". If it is required to be 1, it is called "odd
parity".

The Hamming Code extends the parity error- detection principle to provide single-bit
error correction as follows:  Designate the ultimate codewords as {c0, c1, c2, ...., cK}.
(We haven't said precisely what they are yet.)  Suppose that N is the number of bits used
in the encoding. Number the bits of a generic codeword as b1, b2, b3, ..... The code is to
be designed such that the sum of various sets of bits of each codeword is always 0. In
particular, for each appropriate i, the sum of all bits having 1 as the ith bit of their binary
expansion will be 0 in a proper codeword. In symbolic terms, supposing that there are 7
bits in each codeword, the code requires the following even parities:

b1 ⊕ b3 ⊕ b5 ⊕ b7 = 0

b2 ⊕ b3 ⊕ b6 ⊕ b7 = 0

b4 ⊕ b5 ⊕ b6 ⊕ b7 = 0
....

There is a simple way to guarantee that these properties hold for the code words: Reserve
bits b1, b2, b4, b8, etc. as parity bits, leaving the others b3, b5, b6, b7, ... for the actual data.
Observe that each equation above entails only one parity bit. Hence each equation can be
solved for that bit, thus determining the parity bits in terms of the data bits:
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b1  =  b3 ⊕ b5 ⊕ b7
b2  =  b3 ⊕ b6 ⊕ b7
b4  =  b5 ⊕ b6 ⊕ b7

....

To construct a Hamming code for M data bits, we would begin allocating the bits
between parity (the powers of 2) and data, until M data bits were covered. In particular,
the highest order bit can be a data bit. For example, if M = 4 data bits were desired, we
would allocate b1 as parity, b2 as parity, b3 as data, b4 as parity, b5 as data, b6 as data, and b7

as data. The index numbered 7 is the least index that gives us 4 data bits. We construct
the code by filling in the data bits according to the ordinary binary encoding, then
determining the parity bits by the equations above. The result for M = 4 is shown in the
table below. Note that it takes two bits of parity to provide error-correcting support for
the first bit of data, but just one more bit of parity to provide support for three more bits
of data.

data data data parity data parity parity
decimal binary b7 b6 b5 b4 b3 b2 b1

0 0000 0 0 0 0 0 0 0
1 0001 0 0 0 0 1 1 1
2 0010 0 0 1 1 0 0 1
3 0011 0 0 1 1 1 1 0
4 0100 0 1 0 1 0 1 0
5 0101 0 1 0 1 1 0 1
6 0110 0 1 1 0 0 1 1
7 0111 0 1 1 0 1 0 0
8 1000 1 0 0 1 0 1 1
9 1001 1 0 0 1 1 0 0

10 1010 1 0 1 0 0 1 0
11 1011 1 0 1 0 1 0 1
12 1100 1 1 0 0 0 0 1
13 1101 1 1 0 0 1 1 0
14 1110 1 1 1 1 0 0 0
15 1111 1 1 1 1 1 1 1

Figure 126: The Hamming code for 4 bits of data, requiring a total of 7 bits. The
bold-face bits represent data bits. The plain-face bits are determined from the data

bits by the parity equations.

For example, consider row 14. The data bits are 1110 = b3 b5 b6 b7. According to our
equations,

b1  = b3 ⊕ b5 ⊕ b7    = 0 ⊕ 1 ⊕ 1     = 0

b2  =  b3 ⊕ b6 ⊕ b7   = 0 ⊕ 1 ⊕ 1    = 0

b4  =  b5 ⊕ b6 ⊕ b7   = 1 ⊕ 1 ⊕ 1   = 1
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Thus we have assigned in row 14 b4b2b1 = 1 0 0.

Error-correction rule:  A word in the Hamming code is error-free (i.e. is a code-word)
iff each parity equation holds. Thus, given the word received, compute the sums

b1 ⊕ b3 ⊕ b5 ⊕ b7 = s0
b2 ⊕ b3 ⊕ b6 ⊕ b7 = s1
b4 ⊕ b5 ⊕ b6 ⊕ b7 = s2

....

If any of these is non-zero, then there is an error. A clever part of Hamming's design is
that the sums s2s1s0, when interpreted as a binary numeral, indexes the bit that is
incorrect. For example, consider the codeword for 12:

1 1 0 0 0 0 1

Suppose that bit 2 gets changed, resulting in:

1 1 0 0 0 1 1

Then s2s1s0 will be 0 1 0, indicating b2 is incorrect. On the other hand, if bit 6 were to
change, resulting in

1 0 0 0 0 0 1

s2s1s0 will be 1 1 0, indicating b6 is incorrect.

The total number of encodings possible with 7 bits is 27 = 128. For each 7-bit code, we
need 7 other codes that translate to the same data word, i.e. 8 codes per group.
Fortunately 8 * 16 < 128.

We can visualize what is going with Hamming codes by using a hypercube, a recurrent
theme in computer science. To do so, we will use a smaller example. Below is shown a 3-
dimensional hypercube. The connections on the hypercube are between points that differ
by only one bit-change, Hamming distance 1, as we say. To make an error-correcting
code, we need to make sure that no code differs by one-bit change from more than one
other code. The diagram shows an error-correcting code for one data bit. The dark nodes
000 and 111 are representative code words for 0 and 1 respectively. The nodes with
arrows leaving encode the same data as the nodes to which they point. In order for this to
be error correcting, each node must be pointed to by all the nodes Hamming distance1
away, and no node can point to more than one representative.
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00 0 00 1

01 0 01 1

0 1

11 0 1 1

10 0

Figure 127: Three-dimensional hypercube for an error-correcting code

The above code is "efficient" in the sense that no node goes unused. If we move to a four-
dimensional hypercube, we could try to encode more than one data bit, for example two
data bits. A feasibility test for this encoding is that there must be five code words in each
group: the main representative and its four immediate neighbors (to account for all 1-bit
changes). Also, there are four different combinations of two data bits, so we need at least
5 * 4 == 20 distinct code words. But there are only 16 code words in a four-dimensional
hypercube, so with it we cannot do better than one data bit, the same as with a three-
dimensional hypercube. We need a 5-dimensional hypercube to achieve error-correction
with 2 data bits.

9.3 Encodings in Computer Synthesis

Many problems in synthesis of digital systems involve implementing functions on finite
sets. The relationship of this to proposition logic, discussed in the following section, is
the following:

Combinational Switching Principle

Once an encoding into bits has been selected for the finite sets of interest,
the implementation of functions on those sets reduces to the
implementation of functions on bits.

Addition Modulo 3 Example

Suppose we wish to represent the function "addition modulo 3" in terms of functions on
bits. Below is the definition table for this function.
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b
a + b mod 3 0 1 2

0 0 1 2
a 1 1 2 0

2 2 0 1

We select an encoding for the set {0, 1, 2}. Let us choose the binary encoding as an
example:

element encoded element
0 00
1 01
2 10

We then transcribe the original table by replacing each element with its encoding, to get
an image of the table using bit encodings, calling the encoding of a uv, and the encoding
of b wx:

wx
0 0 0 1 1 0

0 0 0 0 0 1 1 0
uv 0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 1

We then separate this table into two functions, one for each resulting bit value, where we
use [u, v] for the bit encodings of a and [w, x] for the bit encodings of b.

wx
0 0 0 1 1 0

0 0 0 0 0 1 1 0
uv 0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 1
       ^        ^         ^

Carats point to “first result bits”, used to construct following table.

wx
f1 0 0 0 1 1 0

0 0 0 0 1
uv 0 1 0 1 0

1 0 1 0 0

Table for the first result bit of encoded modulo 3 addition.



Proposition Logic 337

wx
f2 0 0 0 1 1 0

0 0 0 1 0
uv 0 1 1 0 0

1 0 0 0 1

Table for the second result bit of encoded modulo 3 addition.

Each table is then a function on 4 bits, two from the side stub and two from the upper
stub, i.e. we have modeled the original function of the form {0, 1, 2}2 → {0, 1, 2} as two
functions of the form {0, 1}4 → {0, 1}. We can compute a + b mod 3 in this encoding by
converting a and b to binary, using the two tables to find the first and second bits of the
result, then convert the result back to the domain {0, 1, 2}.

Let's try to model this process in rex. The encoded domain will be represented as lists of
two elements, each 0 or 1. We will give a specification for the following functions:

encode: {0, 1, 2} → {0, 1}2 is the encoding of the original domain in binary

add: {0, 1, 2}2 → {0, 1, 2} is the original mod 3 addition

f1: {0, 1}4 → {0, 1} is the function for the first bit of the result

f2: {0, 1}4 → {0, 1} is the function for the second bit the result

We expect the following relation to hold, for every value of a and b in {0, 1, 2}:

encode(add(a, b)) == [f1(append(encode(a), encode(b))), f2(append(encode(a), encode(b)))];

We can write a program that checks this. The rex rules for the above relations are:

add(0, 0) => 0; add(0, 1) => 1; add(0, 2) => 2;
add(1, 0) => 1; add(1, 1) => 2; add(1, 2) => 0;
add(2, 0) => 2; add(2, 1) => 0; add(2, 2) => 1;

encode(0) => [0, 0]; encode(1) => [0, 1]; encode(2) => [1, 0];

f1([0, 0, 0, 0]) => 0; f1([0, 0, 0, 1]) => 0; f1([0, 0, 1, 0]) => 1;
f1([0, 1, 0, 0]) => 0; f1([0, 1, 0, 1]) => 1; f1([0, 1, 1, 0]) => 0;
f1([1, 0, 0, 0]) => 1; f1([1, 0, 0, 1]) => 0; f1([1, 0, 1, 0]) => 0;

f2([0, 0, 0, 0]) => 0; f2([0, 0, 0, 1]) => 1; f2([0, 0, 1, 0]) => 0;
f2([0, 1, 0, 0]) => 1; f2([0, 1, 0, 1]) => 0; f2([0, 1, 1, 0]) => 0;
f2([1, 0, 0, 0]) => 0;  f2([1, 0, 0, 1]) => 0; f2([1, 0, 1, 0]) => 1;

The test program could be:

test(A , B ) =>
encode(add(A , B )) == [f1(append(encode(A ), encode(B ))), f2(append(encode(A ), encode(B )))];
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test_all(_) =>
(test(0, 0), test(0, 1), test(0, 2),
 test(1, 0), test(1, 1), test(1, 2),
 test(2, 0), test(2, 1), test(2, 2)),
"test succeeded";

test_all() => "test failed";

The first rule for test_all has one large guard. If any test fails, then that rule is
inapplicable and we use the second rule.

Although the above method of implementing modulo 3 addition is not one we would use
in our everyday programming, it is used routinely in design of digital circuits. The area of
proposition logic is heavily used in constructing functions on bits, such as f1 and f2
above, out of more primitive elements. We turn our attention to this area next.

Exercises

1 •• Suppose that we chose a different encoding for {0, 1, 2}:  0 → 00, 1 → 10, 2
→ 11. Construct the corresponding bit functions f1 and f2 for modulo-3 addition.

2 •• Choose an encoding and derive the corresponding bit functions for the less_than
function on the set {0, 1, 2, 3}.

3 •• If A is a finite set, use |A| to denote the size of A, i.e. its number of elements
(also called the cardinality of A). Express |A x B| in terms of  |A| and  |B|.

4 •• Express |A1 x A2 x .... x AN| in terms of  the N quantities |A1|,  |A2|,  .... |AN|.

5 ••• Let AB denote the set of all functions with B as domain and A as co-domain.
Supposing A and B are finite, express |AB| in terms of |A| and  |B|.

6 • What is the fewest number of bits required to encode the English alphabet,
assuming that we use only lower-case letters?  What if we used both lower and
upper case?  What if we also included the digits 0 through 9?

7 ••• For large values of N, how does the number of bits required to encode an N
element set in binary-coded decimal compare to the number of bits required for
binary?

8 •• Show that a Gray code can be constructed for any set of size 2N. [Hint:  Use
induction.]

9 ••• Devise a rex program for the function gray that, given N > 0, will output a Gray
code on N bits. For example, gray(3) ==> [[0,0,0], [0,0,1], [0,1,1], [0,1,0],
[1,1,0], [1,1,1], [1,0,1], [1,0,0]].
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10 ••• Devise a rex program that will “count” in Gray code, in the sense that given a
codeword in the form of a list, it will produce the next codeword in sequence.
For example, gray_count([1,1,1]) ==> [1,0,1], etc. [Hint:  Review the Chinese
ring puzzle in Compute by the Rules.]

9.4 Propositions

By a “proposition” we mean a statement or condition that can be one of 0 (“false”) or 1
(“true”). In computer science, there are two primary ways in which we deal with
propositions:

• Expressions that contain proposition variables and logical operators

• Functions, the arguments of which range over proposition values.

These two ways are closely related, but sometimes it is more natural to work with
expressions while other times it is simpler to work with functions.

Examples

Let us give some variables representing propositions:

a: Harvey Mudd College is in Claremont.

b: Disneyland is in Claremont.

c: It is raining in Claremont.

Each of these statements can be assigned a truth value, 0 or 1. It turns out that it only
makes sense to assign a the value 1 and b the value 0, but this is irrelevant since
proposition logic is concerned mostly with relationships between hypothetical truth
values. These relationships are expressed by propositional operations or functions. In
expressions, we usually deal with 1-ary or 2-ary operators, whereas we can deal with
functions of arbitrary arity.

The propositional operators are sometimes called “connectives”. A typical example of a
connective is ∧ , read “and”. For example, with the above interpretation,

b ∧  c

would stand for:

“Disneyland is in Claremont and it is raining in Claremont.”
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More than wanting to know whether this overall statement is true or not, we want to
know how its truth depends on the truth of the constituent proposition variables b and c.
This can be succinctly described by giving the value of the statement for all possible
values of b and c in the form of a function table. We have already used such tables
before. When we are dealing with functions on propositions or bits, the table is called a
“truth table”. Such a table can appear many ways. Two common ways are (i) with a stub
enumerating all assignments to b and c in a 1-dimensional array, or (ii) with separate
stubs for b and c, in a 2-dimensional array.

b c b∧ c
0 0 0
0 1 0
1 0 0
1 1 1

Figure 128: Representation (i) of ∧

b∧ c c
0 1

0 0 0b

1 0 1

Figure 129: Representation (ii) of ∧

Any 2-ary function on the truth values can be described by such a table, and any such
table describes a function. Since there are 4 different possible assignments of 0 and 1 to b
and c, and each of these can be assigned a value, either 0 or 1, there are 24 = 16 different
2-ary truth functions. Rather than present a separate table with stubs for each, we can use
form (i) above with a single stub and show all 16 functions.

args Function Number
b c 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Value of Function given Arguments

Figure 130: The sixteen proposition logic functions of 2 arguments.

Notice that in providing this numbering of the functions, we are using one of our
encoding principles mentioned earlier. That is, an encoding of the set of functions is
implied in our presentation. Moreover, we also see that there is a correspondence
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between the set of 2-ary functions and the set of subsets of a four element set. This will
be useful later on when we deal with the need to simplify the presentation of functions,
which will correspond to minimizing the hardware in a digital circuit. Finally note that
the number we give for each function corresponds to the decoded binary represented by
the corresponding column, when read most-significant bit at the top.

The following is a description of functions "in order of importance". For some of the
functions, we give mnemonic rules for help in remembering when the function gives
value 1.

Function also written Explanation Mnemonics
f0  (0000) 0 constant 0 function

f1  (0001) ∧ , ., &, &&, ∩, ','
(comma in Prolog), and
implied by juxtaposition
when no operator is
shown: i.e. if p, q, and r
are understood as
proposition symbols, p
∨ qr means p ∨ ( q ∧  r)

"and" function p ∧  q == 1 when
both p == 1 and q
== 1

p ∧  q == 0 when
either p == 0 or q
== 0

f2  (0010) negation of “implies”
f3  (0011) π1 projection of first

argument
f4  (0100) negation of “if”
f5  (0101) π2 projection of second

argument
f6  (0110) ⊕ , /≡ "exclusive-or" ("xor") p ⊕  q == 1 when p

has the opposite
value of q

f7  (0111) ∨ , +, |, ||, and ∪ "or" function p ∨  q == 1 when
either p == 1 or q
== 1

p ∨  q == 0 when
both p == 0 and q
== 0

f8  (1000) ↓ "nor" (not-or)
Also called the “dagger”
or joint-denial function.

nor(p, q) == 1 when
p == 0 or q == 0

f9  (1001) ≡, ↔, ⇔, and == "iff" ("if and only if") result is 1 exactly
when both
arguments are equal

f10 (1010) ¬ negation of second
argument

f11  (1011) ←, ⇐, ⊂ , and :- “if” function
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(the last in Prolog
f12 (1100) ¬ negation of first

argument
f13  (1101) →, ⇒, ⊃ "implies" function p → q == 1 when p

== 0 or q == 1

p → q == 0 when p
== 1 and q == 0

f14 (1110) | "nand" (not-and)
Clasically called the
“Sheffer stroke” function
or alternative-denial.

nand(p, q) == 1
when p == 0 and q
== 0

f15  (1111) 1 constant 1 function

Aside from the definition of the function in the truth table, there are some associations we
should make with the commonly-used functions. Remember that the value of a function
can only be 1 or 0. So it suffices to state exactly the cases in which the value is 1, the
other cases being implied to be 0. We make these statements using “iff” to mean “if, and
only if”:

(b ∧  c) == 1 iff b == 1 and c == 1
(b ∨ c) == 1 iff b == 1 or c == 1
(b → c) == 1 iff b == 0 or c == 1
(b ⊕  c) == 1 iff b is not equal to c
(¬ b)  == 1 iff b == 0

Stand-Alone Convention

Because 1 is equated to true, we sometimes omit the == 1 in a logical equation. In other
words, we would read

b ∧  c
standing alone as

b and c
i.e. b is true and c is true. Likewise, since == can be regarded as an operator on bits, it
behaves as "iff":

b  iff  c
is the same as

b == c
in the stand-alone convention, or

(b == c) == 1.

Finally, using the stand-alone convention

¬ b
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the negation of b, would be the same as (¬b)  == 1, meaning that b is false (0).

Tautologies

A tautology is a propositional expression that evaluates to 1 for every
assignment of values to its proposition variables.

When we use the stand-alone convention for propositional expressions without any
further qualifications on the meaning of variables, we are asserting that the expression is
a tautology. The following are examples of tautologies:

1
¬ 0

p ∨ ¬ p
p → p

However, there will be many cases where it is not so obvious that something is a
tautology. Here are some examples:

(p → q) ∨ (q → p)
p →  (q → p)

Both of the above tautologies might look unintuitive at first. To prove that they are
tautologies, one can try evaluating each assignment of 0 and 1 to the variables, i.e.
construct the truth table for the expression, and verify that the result is 1 in each case.

Example  Show that (p → q) ∨ (q → p) is a tautology.

For p = 0, q = 0: (0 → 0) ∨ (0 → 0) == 1 ∨ 1  == 1
For p = 0, q = 1: (0 → 1) ∨ (1 → 0) == 1 ∨ 0  == 1
For p = 1, q = 0: (1 → 0) ∨ (0 → 1) == 0 ∨ 1  == 1
For p = 1, q = 1: (1 → 1) ∨ (1 → 1) == 1 ∨ 1  == 1

Part of the reason that this formula might not appear to be a tautology concerns the way
that we English speakers use words like “implies” in conversation. We often use
“implies” to suggest a causal relationship between two propositions, such as:

“Not doing homework” implies “low grade in the course”.

In logic, however, we use what is called the material sense of implication. Two
propositions might be quite unrelated causally, and still an implication holds:

“Disneyland is in Claremont” implies “It is raining in Claremont”
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While there is obviously no relation between the location of Disneyland and whether it is
raining in Claremont, the fact that the lefthand proposition has the value 0 (false) renders
the above a true statement, since 0 → p regardless of the truth value of p.

The other source of misdirection in the tautology (p → q) ∨ (q → p) is that we are not
saying that one can choose any p and q whatsoever and it will either be the case that
always p → q or always q → p. Rather, we are saying that no matter what values we
assign p and q, (p → q) ∨ (q → p) will always evaluate to 1. Thus

     (“It is sunny in Claremont” implies “It is raining in Claremont”)
or (“It is raining in Claremont” implies “It is sunny in Claremont”)

is true as a whole, even though the individual disjuncts are not always true.

Substitution Principle   

The substitution principle is the following:

Substitution Principle

In a tautology, if we replace all occurrences of a given propositional
variable with an arbitrary propositional expression, the result remains a
tautology.

The reason this is correct is that, in a tautology, it matters not whether the original
variable before substitution is true or false; the overall expression is still invariably true.

Example

In the tautology p ∨ ¬ p, replace p with a → b. The result, (a → b) ∨ ¬ (a → b) is also a
tautology.
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Logic Simplification Rules

These rules follow directly from the definitions of the logic functions ∧ , ∨, etc. In part
they summarize previous discussion, but it is thought convenient to have them in one
place.

For any propositions p, q, and r:

¬  (¬ p) == p double negative is positive
(p ∧  0) == (0 ∧  p) == 0 0 absorbs ∧
(p ∧ 1) == (1 ∧  p) == p ∧  ignores 1
(p ∨ 1) == (1 ∨ p) == 1 1 absorbs ∨
(p ∨ 0) == (0 ∨ p) == p ∨  ignores 0
(p ∨ ¬ p) == 1 the excluded middle
(p ∧ ¬ p) == 0 the excluded miracle
(p → q) == (¬p ∨  q) → as an abbreviation
(0 → p) == 1 false implies anything
(0 → p) == 1 anything implies true
(p → 1) == 1 (1 → p) forces p
(p → 0) == ¬ p (p → 0) negates p
¬ (p ∧  q) == ( ¬ p ) ∨ ( ¬ q) DeMorgan's laws
¬  (p ∨  q) == ( ¬ p ) ∧ ( ¬ q) DeMorgan's laws
p ∧  (q ∨ r) == (p ∧  q)  ∨ (p ∧  r) ∧  distributes over ∨
p ∨ ( q ∧  r) == (p ∨ q) ∧  (p ∨ r) ∨ distributes over ∧
p ∨ (¬ p  ∧  q) == (p ∨  q) complementary absorption rules
¬ p ∨ (p  ∧  q) == ( ¬ p ∨  q) complementary absorption rules
p ∧  (p  ∨ q) == (p ∧ q) complementary absorption rules
¬  p ∧  (p  ∨ q) == ( ¬ p ∧  q) complementary absorption rules

The first few of these rules can be used to justify the following convention, used in some
programming languages, such as Java:

Short-Circuit Convention

Evaluation of Java logical expressions involving
&& for "and" (∧ )
|| for "or" (∨ )

takes place left-to-right only far enough to determine the value of the overall expression.

For example, in Java evaluating

f() && g() && h()
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we would evaluate f(), then g(), then h() in turn only so long as we get non-0 results. As
soon as one gives 0, the entire result is 0 and evaluation stops. This is of most interest
when the arguments to && and || are expressions with side-effects, since some side-
effects will not occur if the evaluation of the logical expression is "short circuited". This
is in contrast to Pascal, which always evaluates all of the expressions. Experienced
programmers tend to prefer the short-circuit convention, so that redundant computation
can be avoided.

Exercises

1 • Express the functions f2 and f4 from the table of sixteen functions of two variables
using {∧ , ∨ , ¬}.

2 •• Does the exclusive-or function ⊕  have the property of commutativity?  Of
associativity?

3 •• Which of the following distributive properties are held by the exclusive-or
function?

p ∧  (q ⊕ r) == (p ∧  q) ⊕  (p ∧  r) ∧  distributes over ⊕ 
p ∨  (q ⊕ r) == (p ∨ q) ⊕  (p ∨ r) ∨  distributes over ⊕ 
p ⊕  (q ∧  r) == (p ⊕  q) ∧  (p ⊕  r) ⊕ distributes over ∧
p ⊕ ( q ∨  r) == (p ⊕ q) ∨  (p ⊕ r) ⊕ distributes over ∨ 

9.5 Logic for Circuits

A general problem in computer design is that we need to implement functions on the bit
domain out of a library of given functions. Such a library might include primitive circuits
for implementing ∧ , ∨ , ¬ , etc. It would likely include some multi-argument variants of
these. For example, we have both the associative and commutative properties:

a ∧  b == b ∧  a commutative property of ∧
a ∨  b == b ∨  a commutative property of ∨
a ∧  (b ∧  c) == (a ∧  b) ∧  c associative property of ∧
a ∨  (b ∨  c) == (a ∨  b) ∨  c associative property of ∨

When both the associative and commutative properties hold for a binary operator, we can
derive a function that operates on a bag of values (i.e. repetitions are allowed and order is
not important). For example,

∧  (a, b, c, d) == a ∧  (b ∧  (c ∧  d))
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We do not need to observe either ordering or grouping with such operators; so we could
use the equivalent expressions

 a ∧  b ∧  c ∧  d
∧  (d, c, b, a)

among many other possibilities.

Now consider the following:

Universal Combinational Logic SynthesisQuestion

Given a function of the form {0, 1}N → {0, 1} for some N, is it possible to
express the function using functions from a given set of functions, such as
{∧ , ∨ , ¬}, and if so, how?

As it turns out, for the particular set {∧ , ∨ , ¬ }, we can express any function for any
number N of variables whatsoever. We might say therefore that

{∧ , ∨ , ¬} is universal

However, this set is not uniquely universal. There are other sets that would also work,
including some with fewer elements.

Modulo 3 Adder Synthesis Example

Consider the functions f1 and f2 in our modulo-3 adder example, wherein we derived the
following tables:

wx
f1 0 0 0 1 1 0

0 0 0 0 1
uv 0 1 0 1 0

1 0 1 0 0

Table for the first result bit of encoded modulo 3 addition.

wx
f2 0 0 0 1 1 0

0 0 0 1 0
uv 0 1 1 0 0

1 0 0 0 1

Table for the second result bit of encoded modulo 3 addition.

How can we express the functions f1 and f2 using only elements from {∧ , ∨ , ¬}?  The
reader can verify that the following are true:
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f1(u, v, w, x) ==     (   u  ∧¬ v ∧¬ w ∧  ¬ x)
    ∨  (¬u  ∧    v ∧  ¬ w ∧    x)
    ∨ (¬ u ∧  ¬ v ∧    w ∧  ¬ x)

f2(u, v, w, x) ==     (¬u ∧¬ v  ∧¬ w ∧  x)
    ∨  ( ¬ u ∧   v ∧  ¬ w ∧  ¬ x)
    ∨ (    u ∧  ¬ v ∧  w ∧  ¬ x)

How did we arrive at these expressions?  We examined the tables for those combinations
of argument values uvwx that rendered each function to have the result 1. For each such
combination, we constructed an expression using only ∧  and ¬  that would be 1 for this
combination only. (Such expressions are called minterms. There are three of them for
each of the two functions above.)   We then combined those expressions using ∨ .

We often use other symbols to make the propositional expressions more compact.
Specifically,

It is common to use either a postfix prime (') or an over-bar in place of¬ .

It is common to use . in place of ∧ , or to omit ∧  entirely and simply juxtapose the
literals (where by a "literal" we mean a variable or the negation of a variable). A
term constructed using ∧  as the outer operator is called a product  or a
conjunction.

We sometimes use + instead of ∨.   An expression constructed using ∨  as the
outer operator is called a sum or a disjunction.

Making some of these substitutions then, we could alternatively express f1 and f2 as

f1(u, v, w, x) == u v' w' x' + u' v w' x + u' v' w x'

f2(u, v, w, x) == u' v' w' x + u' v w' x' + u v' w x'

The following diagram indicates how we derive this expression for the first function.
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      00  01  10
00   0    0    1
01   0    1    0
10   1    0    0

uv

wx

u' v' w x'

u v' w' x'

u' v w' x

f 1

Figure 131: Showing the derivation of minterms for a function

Minterm Expansion Principle

We can apply the technique described in the preceding section to any function
represented by a truth table. We call this the

Minterm Expansion Principle

To express a function as a sum of minterms, where a minterm is a product
of literals that includes each of the arguments of the function:

1. Identify those combinations of variable values where the function has
value 1.

2. Construct a product of literals corresponding to each combination. If a
variable has value 1 in the combination, then the variable appears
without negation in the product. If a variable has value 0 in the
combination, then the variable appears with negation in the product.

3. Form the sum of the products constructed in step 2. This is the
minterm expansion representation of the function.

The justification of this principle is straightforward. The function has value 1 for certain
combinations and 0 for all others. For each combination where it has value 1, the
corresponding minterm also has value 1. Since the minterm expansion is exactly the sum
of those minterms, the function will have value 1 iff its minterm expansion has value 1.

The minterm expansion principle also shows us that the set { ∧ , ∨ , ¬ } is universal, since
the minterm expansion is made up of only these operators and variables. It tells us one
way to implement a bit-function from primitive logic elements. Such an implementation
is just a different representation of the minterm expansion, specifically a form of the



350 Proposition Logic

DAG representation for the syntax of the expression. For example, for the expression for
f1 above, the logic implementation would be shown as

u v w x

u v' w' x'

u' v w' x

u' v' w x'

Figure 132: Implementation corresponding to minterm expansion of
f1(u, v, w, x) == u v' w' x' + u' v w' x + u' v' w x'

Here the small circles represent negation, the node with a curved left side is disjunction,
and the nodes with straight left sides are conjunctions.

Later on, we will examine some ways to simplify such implementations, for example to
reduce the amount of hardware that would be required. Meanwhile, it will be useful to
have in our repertoire one other form of expansion that will help our understanding and
analysis. This expansion will lead to an implementation sometimes different from the
minterm expansion. However, the main uses of this principle will transcend those of
minterm expansion.

Programmable Logic Arrays

A programmable logic array  (PLA) is a unit that can be used to implement a variety of
different functions, or several functions simultaneously. It is programmable in the sense
that the functionality can be specified after the manufacture of the unit itself. This is done
by blowing fuse links that are internal to the unit itself. This is allows a single integrated-
circuit package to be used to implement fairly complex functions without requiring
custom design.

PLAs are oriented toward a two-level gate combination, with the output being an OR-
gate fed by several AND-gates of the overall inputs to the unit. Plain or inverted versions
of each input signal are available. The structure of a PLA is depicted below. More than
two levels can be obtained by connecting outputs of the PLA to inputs.
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In the PLA, each AND and OR gate consists of many possible inputs. However, all of
these possibilities are represented abstractly by a single wire. By putting a dot on that
wire, we indicate a connection of the crossing line as an input. Thus functions that can be
represented by two level sum-of-products (SOP) expressions can be coded in the PLA by
reading directly from the expression itself.

Example  Program a PLA to be a 3-bit binary incrementer modulo 8 (function that adds
1, modulo 8). The truth table for the incrementer is

input output
x2 x1 x0 y2 y1 y0
0   0   0 0   0   1
0   0   1 0   1   0
0   1   0 0   1   1
0   1   1 1   0   0
1   0   0 1   0   1
1   0   1 1   1   0
1   1   0 1   1   1
1   1   1 0   0   0

We wire the AND-gates to activate one column corresponding to each row of the truth
table. We then wire the OR-gates to activate on any of the rows for which the
corresponding output is 1. The result is shown below.
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0 1 2 3 4 5 6 7

Figure 133: A PLA programmed to add 1 (modulo 8) to a 3-bit binary numeral
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A less-cluttered, although not often seen, notation would be to eliminate the depiction of
negation wires and indicate negation by open "bubbles" on the same wire. For the above
logic functions, this scheme is shown below.
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Figure 134: An alternate PLA notation for negation

Boole/Shannon Expansion Principle

Another way of establishing the universality of {∧ , ∨ , ¬ }, as well as having other
applications, is this important principle:

Boole/Shannon Expansion Principle
Let E be any proposition logic expression and p some proposition symbol
in E. Let E1 stand for E with all occurrences of p replaced with 1, and let
E0 similarly stand for E with all occurrences of p replaced with 0. Then we
have the equivalence

E == ( p ∧  E1 )  ∨  ( ¬p ∧  E0 )

Proof:  Variable p can only have two values, 0 or 1. We show that the equation holds
with each choice of value. If p == 1, the lefthand side is equal to E1 by definition of the
latter. The righthand side simplifies to the same thing, since ( ¬ 1 ∧  E0 ) simplifies to 0
and ( p ∧   E1 ) simplifies to E1. On the other hand, if  p == 0, the lefthand side is equal to
E0. The righthand side again simplifies E0 in a manner similar to the previous case.
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There are several uses of this principle:

Regrouping an expression by chosen variables (useful in logic circuit synthesis).

Simplifying an expression by divide-and-conquer.

Testing whether an expression is a tautology (whether it is equivalent to 1).

The Boole/Shannon Principle can be used to expand and analyze expressions recursively.
Let us try it on the same expression for f1 as discussed earlier. The righthand side for f1 is

u v' w' x' + u' v w' x + u' v' w x'

If we take this to be E in the Boole/Shannon principle, we can choose any of the four
variables as p. Let us just take the first variable in alphabetic order, u. The principle says
that E is equivalent to

u E1 + u' E0

where E1 is 1 v' w' x' + 1' v w' x + 1' v' w x', which immediately simplifies to v' w' x',
since 1' is 0, which absorbs the other literals. Similarly, E0 is 0 v' w' x' + 0' v w' x + 0' v'
w x', which simplifies to v w' x + v' w x'. So we now have our original expression being
recast as

u (v' w' x') + u' (v w' x + v' w x').

The implementation corresponding to the Boole/Shannon expansion could be shown as
the following, where E1 and E0 can be further expanded.

uv w x

E1

E0

Figure 135: The Boole/Shannon principle applied to logic implementation
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Incidentally, the structure below, which occurs in the Boole/Shannon principle, is known
as a multiplexor or selector. It has a multitude of uses, as will be seen later. The reason
for the name "selector" is that it can select between one of two logical inputs based upon
the setting of the selection control line to 0 or 1. (Later we will call this an "address"
line.)

selection
control

choices

Figure 136: Multiplexor or selector structure

The multiplexor structure can be thought of as the hardware analog to the if statement in
programming languages.

Tautology Checking by Boole/Shannon Expansion Example 1

Let's investigate whether (p → q) ∨ (q → p) is a tautology using the Boole/Shannon
principle. Choose the variable p for expansion. Then

E1 is (1 → q) ∨ (q → 1)

E0 is (0 → q) ∨ (q → 0)

Since we know (q → 1) == 1, E1 simplifies to 1. We also know  (0 → q) == 1, so E0
simplifies to 1. Thus E is equivalent to

p . 1 ∨  p' . 1

which is a known tautology. Therefore the original is a tautology.

Observations  In creating a Boole/Shannon expansion, the original expression is a
tautology iff E1 and E0 both are tautologies. Since E1 and E0 have one fewer variable than
the original expression (i.e. neither contains p, for which we have substituted) we have
recursive procedure for determining whether an expression is a tautology:  Recursively
expand E to E1 and E0, E1 to E11 and E10, E11 to E110 and E110, etc. until no variables
are left. [We don’t actually have to use the numberings in a recursive procedure, since
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only two expressions result in any given stage.]  If any of the limiting expressions is 0,
the original is not a tautology. If all expressions are 1, the original is a tautology.

The following diagram suggests the use of repeated expansions to determine whether an
expression is a tautology:

E

E1 E0

E 0 1 E 0 0E 1 1 E 1 0

E011 E001E111 E101 E010 E000E110 E100

Figure 137: Tree showing the form of recursive use of Boole/Shannon expansion

Tautology Checking by Boole/Shannon Expansion Example 2

Let's determine whether or not  ((a→ b) ∧  (b → c)) → (a→ c) is a tautology.

E is ((a→ b) ∧  (b → c)) → (a→ c).

Looking at E, we see that if we make c = 1, then the whole expression will simplify to 1.
Thus c is a good choice for the first expansion variable.

Expanding E on c:

E1 is ((a→ b) ∧  (b → 1)) → (a→ 1). Since (a→ 1) == 1 independent of a, this simplifies
to ((a→ b) ∧  (b → 1)) → 1, which further simplifies to 1 for the same reason. Thus we
do not have to go on expanding E1.

E0 is ((a →  b) ∧  (b → 0)) → (a→ 0). Since for any p, (p→  0) is ¬ p, E0 simplifies to
((a → b) ∧  ¬b) → ¬a.

Expanding the simplified E0 on a:

E01 is ((1→ b) ∧ ¬ b) → ¬1. This simplifies to (b ∧ ¬ b) → 0, which simplifies to 0 → 0,
which simplifies to 1.

E00 is ((0→ b) ∧ ¬ b) → ¬0, which simplifies to (1 ∧ ¬ b) → 1, which simplifies to 1.



356 Proposition Logic

Thus, by taking some care in choosing variables, we have shown the original E to be a
tautology by expanding only as far as E1, E01, and E00, rather than to the full set E111,
E110, ... E000.

Logic Circuit Simplification by Boole/Shannon Expansion Example

Occasionally when we expand on a particular variable using the Boole/Shannon
expansion, the result can be simplified from what it would be with the full-blown
multiplexor structure. Here once again is the equation for the Boole/Shannon expansion:

E == ( p ∧  E1 )  ∨  ( ¬p  ∧  E0 )

In the special case that E1 simplifies to 0, the term p ∧  E1 also simplifies to 0, so that E
simplifies to ¬p ∧  E0. Since several such simplifications are possible, let's make a table:

Case E simplifies to
E1 simplifies to 0 ¬p ∧  E0
E0 simplifies to 0   p ∧  E1
E1 simplifies to 1    p ∨  E0
E0 simplifies to 1 ¬p ∨  E1
E0 and E1 simplify to 0 0
E0 and E1 simplify to 1 1
E0 and E1 simplify to the same thing E0
E0 and E1 simplify to opposites p ⊕  E0

Table of some simplifications based on the Boole/Shannon expansion

For example, if E0 simplifies to 0 then our original logic implementation based on the
Boole/Shannon expansion could be replaced with the following much simpler one:

uv w x

E1

Figure 138: Simplified logic circuit as a result of Boole/Shannon expansion
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Counterexamples to Propositions

When a logical expression is not a tautology, there must be some assignment of truth
values to the variables under which the expression evaluates to 0 rather than to 1. Such an
assignment is sometimes called a “counterexample”. It is, of course, possible for multiple
counterexamples to exist for a given expression.

The Boole/Shannon expansion tree can be used to produce counterexamples in the case
that the starting expression is not a tautology. As discussed, a non-tautology must result
in a node that simplifies to 0 somewhere in the tree. The path from the root to a given
node corresponds to an assignment of truth values to some of the variables in the
expression. Going to the left in the diagram corresponds to assigning the value 1 and to
the right, the value 0. It is easy to see that the expression at a given node corresponds to a
simplification of the expression under the set of choices made at each branch. Thus, if a
node simplifying to 0 is encountered, the choices represented by the path from that node
to the root for a counterexample.

Exercises

1 •• Show that the set {∨ , ¬ } is universal. [Hint:  Show that ∧ can be expressed using
{∨ , ¬ }. Conclude that anything that could be expressed using only { ∧ , ∨ , ¬ }
could also be expressed using {∨ , ¬ }. Show that { ∧ , ¬ } is also universal.

2 •• Show that {nand} is universal. Show that {nor} is universal.

3 •• Show that the set of functions {→, ¬ } is universal.

4 ••• Let 1 designate the constant 1 function. Is {1, ⊕ } universal?  Justify your answer.

5 •••• Show that the set of functions { ⊕ , ¬ } is not universal. [Hint:  Find a property
shared by all functions that can be constructed from this set. Observe that some
functions don't have this property.]

6 ••• Is { ∧ , ⊕ } universal?  Justify your answer.

7 ••••• Is it possible to devise a computer program to determine whether a set of
functions, say each in the form of a truth table, is universal?

8 •• Show the implementation corresponding to the next phase of expansion using the
Boole/Shannon principle to expand both E1 and E0 above.

9 •• Using the Boole/Shannon expansion principle, show each of the rules listed
earlier in  Simplification Rules Worth Remembering.
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10 ••• Show that the "dual" form of the expansion principle, wherein ∧  and ∨  are
interchanged and 0 and 1 are interchanged.

11 ••• Verify that each of the simplifications stated in the Table of some simplifications
based on the Boole/Shannon expansion is actually correct.

12 •• Think up some other useful simplification rules, such as ones involving ⊕ and ≡.

13 •• Determine which of the following are tautologies using Boole/Shannon
expansion:

 (p ∧ (p→ q)) → q
¬ p → p
¬  (¬ p → p)
(¬ p → p) → p
¬ p → (p → q)
((p→ q)→ p) → p
(p→ q) ∨  ( ¬ p → q)
(p→ q) ∨  (p → ¬ q)
(p→ q) ==  (¬ q→ ¬p)
(p ∨ q) → (p ∧ q)
 (p ∧ q) → (p ∨ q)
(p→ q) ∧ (q→ r) ==  (p→ r)
(p→ q) ∧  (q→ r) ∧  (r→ s) →  (p→ s)

14 •• For those expressions in the last exercise above that turned out not to be
tautologies, produce at least one counterexample.

15 ••• For the Logical Expression Simplifier exercise in the previous section, modify your
program so that it gives a counter example for each non-tautology.

Karnaugh Maps

Karnaugh maps are a representation of truth tables for switching (proposition logic)
functions that has uses in analysis and simplification. The idea can be traced to Venn
diagrams used in visualizing sets. We assume the reader has prior exposure to the latter
idea. To relate Venn diagrams to switching functions, consider a diagram with one region
inside a universe. This region corresponds to a propositional variable, say x. Any 1-
variable switching function corresponds to a shading of the area inside or outside the
region. There are four distinct functions, which can be represented by the logical
expressions x, x', 0, and 1. The corresponding shadings are shown below.
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Figure 139: One-variable switching functions and their Venn diagrams.

Now consider two-variable functions. There are 16 of these and, for brevity, we do not
show them all.

Figure 140: Some two-variable switching functions and their Venn diagrams.

The most important principle about Venn diagrams is that the sum of (the expressions
representing) two or more functions can be depicted by forming the union of the shadings
of the individual diagrams. This frequently leads to a view of the sum that is simpler than
either summand.

Example

Show that x + x'y = x + y.

If we were asked to shade x + y, the result would be as shown below. On the other hand,
the shadings for x and x'y are each shown in the previous figure. Note that combining the
shadings of those figures results in the same shading as with x + y.

Figure 141: Venn diagram for x + y

Quite often, we would like to simplify a logical expression, but we don't know the answer
in advance. To use Venn diagrams for this purpose, we would "plot" each of the
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summands on the diagram, then "read off" a simplified expression. But it is not always
obvious what the simplified result should be.

Example

Simplify xy'z' + x' + y.

The figure shows shadings for each of the summands, followed by the union of those
shadings. The question is, what is the best way to represent the union?  We can get a clue
from the unshaded region, which is xy'z. Since this regions is unshaded, the shaded
regions is the complement of this term, (xy'z)', which by DeMorgan's law is x' + y + z'.

Figure 142: Venn diagrams for various expressions

Karnaugh maps are a stylized form of Venn diagram. They are most useful for
simplifying functions of four variables or fewer. They can be used for five or six
variables with more difficulty, and beyond six, they are not too helpful. However, a
mechanizable method known as "iterated consensus" captures the essence of the
technique in a form that can be programmed on a computer.

From Venn Diagrams to Karnaugh Maps

To see the relationship between a Karnaugh Map and a Venn diagram, let us assume
three variable functions. The transformation from a Venn diagram to a Karnaugh map is
shown below. Note that we are careful to preserve adjacencies between the primitive
regions on the diagram (which correspond to minterm functions). The importance of this
will emerge in the way that Karnaugh maps are used.
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Figure 143: Transforming a Venn diagram into a Karnaugh map.
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Hypercubes

Recall that a sum-of-product (SOP) form is a logical sum of products, where each
product consists of either variables or their negations. For an n-variable function, each
possible product term corresponds exactly to some sub-cube in the n-dimensional
hypercube Hn, defined in an earlier chapter:

H0 is a single point.

Hn+1 is two copies of Hn, where each point of one copy is connected to the
corresponding point in the other copy.

A sub-cube is a set of points in Hn that itself forms a hypercube. Above, the following
sets of points are examples of sub-cubes:  0246, 1357, 0145, 2367, 04, 02, 0, and
01234567.

Conversely, each sub-cube corresponds to such a product term. Examples are shown in
the various attachments. Therefore, any SOP form corresponds to a set of sub-cubes, and
conversely. The truth table corresponding to such a function can be equated with the
union of the points in those sets. These points are the rows of the table for which the
function result is 1. Note that any given point might be present in more than one sub-
cube. The important thing is that all points are "covered" (i.e. each point is included in at
least one). Moreover, no sub-cube can contain points for which the function result is 0.

The means we have for making an SOP simpler are:

Reduce the number of terms.

Reduce the size of terms.

These two objectives translate into:

Use fewer sub-cubes to cover the function (so there are fewer terms)

Use larger sub-cubes (so the terms have fewer literals).

For example, given the choice between two sub-cubes of size 4 and one of size 8, we
would always choose the latter.

One of the contributions of the Karnaugh map is to enable spotting the maximal sub-
cubes, the ones that are not contained in other sub-cubes for the same function. These
sub-cubes are usually called the prime implicants of the function. The word "prime" in
this case carries the same meaning as "maximal". The word "implicant" means that each
term in the SOP for a function implies the function itself, i.e. whenever the assignment to
variables is such that the term is 1, the function itself must be 1. This is because the
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function can be represented as the sum of such terms.

Karnaugh Map Example

Consider function f(x, y, z) = x'y' + x'yz + xy'z + xy

In this SOP, as in all, each term is an implicant. However, only x'y' and xy are prime. The
other two terms correspond to sub-cubes of a larger implicant z, as can be seen from the
following map.

Figure 144: Karnaugh map for x'y' + x'yz + xy'z + xy

By examining the map, we can see that the sub-cube 1-3-5-7 corresponds to an implicant,
in this case z. (It is a sub-cube by definition of "sub-cube", and it is an implicant because
the function's value for all of its points are 1.)  We can thus add this sub-cube to our SOP
without changing the function's meaning:

 f(x, y, z) = x'y' + x'yz + xy'z + xy + z.

z

0 1 2

4 5 6

y

7
x

3

Figure 145: Adding a sub-cube to the map without changing the function

Then we notice that two other terms, xy'z corresponding to sub-cube 5, and x'yz
corresponding to sub-cube 3, are both redundant. They are both subsumed by the new
term z. (C is said to subsume D whenever D implies C.)  Restricted to sub-cubes, C
subsumes D when the points of C include all those of D.

z

0 1 2

4 5 6

y

7
x

3
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As a consequence, we can eliminate the subsumed terms without changing the meaning
of the function:

f(x, y, z) = x'y' + xy + z.

0 1 2

4 5 6

y

7
x

3

Figure 146: Eliminating subsumed terms from the map

Obviously we have achieved our goal of simplifying the function, by both reducing the
number of terms, as well as the complexity of those terms. If we were implementing via
NAND gates, we would have to use one NAND gate of 3 inputs and two of 2 inputs for
this SOP, vs. one of 4 inputs, two of 3 inputs, and two of 2 inputs, for the original SOP,
quite obviously a saving.

Notice that we cannot achieve further simplification by constructing still larger
implicants from this point. Each implicant shown is prime.

What we have suggested so far is:

The simplest SOP is constructed only of prime implicants.

We next observe that including all prime implicants is not necessarily the simplest. Since
prime implicants can overlap, there might be redundancy if we include all. The following
example shows this:

z

0 1 2

4 5 6

y

7
x

3

Figure 147: A Karnaugh map with redundancy among prime implicants
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In the above example, the prime implicants are x'z, yz, and xy, corresponding to 13, 37,
and 67 respectively. However, we do not need the second prime implicant to cover all
points in the function. On the other hand, the first and third prime implicants will be
required in any SOP for the function that consists only of prime implicants. Such prime
implicants are called essential.

It is possible for a non-trivial function to have no essential prime implicants, as the
following example shows:

z

0 1 2

4 5 6

y

7
x

3

Figure 148: A Karnaugh map with no essential prime implicants

(Note that, because a map represents a hypercube, adjacency in the map extends to the
“wrap-around” cases, such as xz’ shown above.)Here there are six prime implicants, yet
none is essential. In each SOP that covers the function, we can leave out one of the prime
implicants. Thus we have six different implementations of the same complexity, five 2-
variable prime implicants each.

The observations about redundancy are part of the reason that simplification of switching
functions is complex. We cannot use a simple, straightforward, algorithm to get the
optimum implementation. Instead it appears that we must generally resort to a more
complex "backtracking" process. We do not pursue this further in these notes.

Karnaugh Maps of Higher Dimension

Karnaugh maps work well for representing hypercubes of dimension up to four. After
that, they become harder to use for visualization. However, the principle on which they
are based, called “consensus”, can still be applied in a computer program, which is not
limited to what can be visualized by human eyes. The figure below shows a 4-
dimensional Karnaugh map obtained by juxtaposing two 3-dimension ones, one of which
has been flipped over so that the cells with x = 1 are adjacent. This allows us to form the
following sub-cubes:

•  any 2 adjacent cells (horizontally or vertically, including wrap-around)
•  any 4 adjacent cells in a 1x 4, 2 x 2, or 4 x 1 configuration, including wrap-around
•  any 8 cells in a 2x 4 or 4 x 2 configuration, including wrap-around
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Figure 149: A 4-dimensional Karnaugh map
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Figure 150: Sample sub-cubes on a 4-dimensional map

Functions and Karnaugh Maps with "Don't Cares"

In proceeding from a natural language problem statement to a switching function
representation of the problem, the resulting function might not always be completely
specified. That is, we will care about the function's results (0 or 1) for some combination
of variables, but not care about its results for other combinations. One reason we might
not care is that we know from the problem statement that these combinations cannot
occur in practice.

Such "don't care" combinations often provide a bonus when it comes to finding
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simplified SOP forms. Rather than stipulating an arbitrary choice of the function's value
for these variables at the outset, we can wait until the simplification process begins. The
technique is summarized as:

Choose the function value for don't care combinations to be 1 if it helps maximize the
size of a covering sub-cube.

Example

Below we show a Karnaugh map for a function, where point 5, corresponding to term
xy'z, is marked with a "d", indicating that we don't care about the function's output for
that combination. In contract, the function's value is to be 0 for combinations x'yz' and
xy'z', and 1 for all other combinations.

Figure 151: A Karnaugh map with "don't care" (marked d)

The choice of whether to cover any given cell marked "d" is up to us. Above, if we chose
not to cover it (make the function have value 0 for xy'z), we would have the simplified
implementation shown below, with SOP x'y' + x'z + yz + xy. Further simplification is
possible in that one of the terms x'z or yz can be dropped without affecting the coverage:
Either of x'y' + yz + xy or x'y' + x'z + xy both work.

Figure 152: The prime implicants when d is assigned 0
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If we choose to cover the cell marked "d" (make the function have value 1 for xy'z), we
have the simplified implementation with SOP x'y' + xy + z, which is simpler than either
of the simplest cases where we don't cover the d:

z

0 1 2

4 d 6

y

7
x

3

Figure 153: The prime implicants when d is assigned 1

In this case, it seems obvious that we should cover the d.

Iterated Consensus Principle for Finding Prime Implicants (Advanced)

Although what we are about to describe can be extended to include don't care cases, we
choose not to do so for reasons of simplicity. When faced with functions with a large
number of variables, we obviously would like to turn to the computer as a tool for
simplification. Unfortunately, the technique presented so far for Karnaugh maps involves
"eyeballing" the map to find the prime implicants. How can we express an equivalent
technique in such a way that it can be represented in the computer?  In short, what is the
essence of the technique?  This method is given the name "iterated consensus", and relies
on two principles: consensus and subsumption.

The iterated consensus technique takes as input any set of product terms representing the
function of interest. As output, it produces all of the prime implicants of the function. It is
up to further analysis to use those prime implicants in constructing the simplest
implementation.

The iterated consensus technique proceeds through a number of intervening states, where
each state is a set of product terms. Initially this set is whatever is given as input. Finally,
this set is the set of prime implicants. The consensus and subsumption principles are used
to repeatedly modify the set until no further modifications are possible.

subsumption rule:  If term U in the set is subsumed by a term V, then term U can be
dropped from the set.

In terms of the Karnaugh map, this is equivalent to dropping a contained sub-cube.

consensus rule:  If term U is a term not in the set, but which is the consensus of two
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other terms V and W in the set, then term U can be added to the set. (However, terms that
are subsumed by other terms in the set should not be added; they would just be removed
by the subsumption rule anyway.) The exact definition of “consensus” will be given
below; for now, we are discussing an informal example.

The consensus rule corresponds to introducing a new sub-cube on the map formed from
points already covered by other sub-cubes. To see this, let us look at a typical map
situation:

0 1 2

4 5 6

y

7
x

3

z

Clearly we can add the sub-cube 37 corresponding to the term yz. This term is the
consensus of terms x'z and xy corresponding to the sub-cubes already covered. (We know
that this sub-cube is not needed to cover the function, but the purpose of iterated
consensus is to find prime implicants, and yz is certainly one.)

What we are saying by adding the consensus term is that

x'z + xy = x'z + xy + yz

To express the consensus in general, we note that the new term yz is found by the
following considerations:  For some variable, in this case x, one term has the variable
complemented, the other uncomplemented. If we represent those terms as:

xF

and

x'G

then the consensus is just

FG

 (in this case F is y, G is z, and therefore FG is yz).

Definition of Consensus: If U and V are two product terms, then:

If there is a single variable, say x, which appears uncomplemented in U and
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complemented in V, then write U as xF and V as x'G (or the symmetric case, with U as
x'F and V as xG), where both F and G are free of x. The consensus of U and V is defined
to be FG. The operative identity in this case is:

xF + x'G = xF + x'G + FG

If the preceding case does not obtain, then the consensus is defined to be 0 (some authors
would say it is "does not exist").

In terms of the Karnaugh map, the condition for the consensus to be non-zero is that the
sub-cubes for F and G be "touching" on the map. The consensus term is the largest sub-
cube that can be combined from sub-cubes of F and G, as suggested below.

U

V

consensus 
of U with V

Figure 154: Showing consensus on a Karnaugh map

Figure 155: Showing consensus on a Venn diagram
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Exercises

A good example of functions with don't cares can be found in various display encoders.
For example, a seven-segment display consists of seven LEDs (light-emitting diodes),
numbered s0 through s6, which display the digits from 0 through 9 as shown:

s0

s1 s2

s3

s4 s5

s6

Figure 156: Display of 0 through 9 with a seven segment display

In the following, we assume that the digits are coded in BCD. This uses ten of sixteen
possible combinations of four bits. The remaining combinations are don't cares. The
seven segments correspond to seven switching functions.

1 • Give a Karnaugh map (with don't cares) for each of the switching functions.

2 •• Simplify each of the switching functions, using don't cares to advantage.

3 •• Construct gate realizations of the switching functions. Determine any possible
sharing of product-terms among multiple functions.

4 •••• Develop a program that will input a logical expression and output the set of prime
implicants for the corresponding function. Although different input formats are
possible, a suggested internal format is to use a sequence of the symbols 0, 1, and
x to represent a product term. For example, if we are dealing with a four-variable
function, say f(u, v, w, x), then 01x0 represents u'vx'. (The x in the sequence
represents that the absence of the corresponding letter, or equivalently, the union
of two sub-cubes that are alike except for the values of that variable.)  The reason
for this suggestion is that the consensus of two such sequences is easy to compute.
For example, the consensus of 01xx with 0x1x is 011x. This corresponds to u'v +
u' w = u'vw.
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9.6 Logic Modules

Although truth-tabular methods, maps, and the like are essential for understanding how
computer logic works, they are not necessarily the best tools for building large systems,
the problem being that the size of a truth table becomes overwhelming, even to a
computer, when there are many inputs. The reason, of course, is that there are 2N

different input combinations for N input lines, and this number becomes large very fast.
In order to handle this issue, designers structure systems using modules with understood
behavior. At some level, truth-tabular methods are probably used to design aspects of
these modules, but the modules themselves are understood using logic equations rather
than tables.

Adder Module

A typical module found in a computer adds numbers represented by binary numerals.
This module might be depicted as in the upper-left portion of the figure below. It could
be realized by expanding it into the simpler FA ("full adder") modules shown in the main
body of the figure. The term “full” is used for an adder module that adds three bits: two
addend bits and a carry-in bit, to produce two bits: a sum and a carry-out bit. It contrasts
with a “half adder”, which only adds two bits to produce a sum and carry-out. This type
of adder structure is called a "ripple-carry" adder because the carry bits "ripple" through
the FA gates. In the extreme case where all inputs, including the carry, are 1, the output
carry production is delayed because it is a function of all of those input bits.

adder

FA

FA

FA

FA

0

least-significant bit

carry out not used

carry in

ripple 
direction

Figure 157: Expansion of the adder using ripple-carry;
FA units are "full-adders"
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The next figure shows a possible expansion of the FA modules using simpler logic
functions. The M (majority) module has an output of 1 when 2 out of 3 inputs are 1.
Therefore, its equation is:

carry-out = M(a, b, c) = ab +ac + bc

The ⊕  module is a 3-input exclusive-OR, i.e.

sum-out = a ⊕  b ⊕  c

FA

carry out

mod 2 sum 
out

carry in

addend 
bits inM

Figure 158: Expansion of the FA using M (majority) and 3-input exclusive-OR

Exercises

1 • Earlier we introduced the idea of a multiplexer, a module that has three inputs:
two data inputs and an address input. The address input selects one or the other data input
and reflects whatever is on that input to the output. Give a truth-table for the multiplexor.
Although there are three input lines, we call this a "2-input" multiplexer, because
selection is between two input liens.

2 •• Show the structure of a 4-input multiplexer. This unit will have inputs a, b, c, d
and two address lines (assuming the address is encoded in binary). Such a device is
shown below. (Hint: Use three 2-input multiplexers.)
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M

address

a
b
c
d

Figure 159: A 4-input multiplexer

3 ••• Show how to construct a 2n-input multiplexer from n-input multiplexers, for
general n.

4 ••• Show how to construct recursively a 2
n
-input multiplexer using only multiplexers

with fewer inputs. If it is desired to build a multiplexer with 2
n
 inputs total, how many 2-

input multiplexers would be required?  (Construct a recurrence equation for the latter
number and solve it.)

5 •• For the preceding problem, assuming that a singe 2-input multiplexer delays the
input by 1 time unit, by how many units does your 2

n
-input multiplexer delay its input.

6 ••• Show how a 4-input multiplexer can be used to implement an arbitrary
combinational function of 2 logical variables. (Hint:  Use the address lines as inputs and
fix the a, b, c, d inputs.)

7 ••• Using the scheme of the previous problem, an 2
n
-input multiplexer can be used to

implement an arbitrary combinational function of how many logical variables?

8 ••• A demultiplexer (also called DMUX) reverses the function of a multiplexer, in
that it has one input and several outputs. Based on the value of the address lines, the input
is transmitted to the selected output line. The other output lines are held at 0. Show how
to implement a 2-output and 4-output demultiplexer using simple logic gates.

DM

address

a
b
c
d

input

outputs

Figure 160: A 4-output demultiplexer
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9 •• Show how to implement a 2
n
-output demultiplexer for any n. How many simple

gates are required in your construction?

10 •• A decoder is like a demultiplexer, except that the input is effectively held at a
constant 1. Thus its outputs are a function of the address bits only. The decoder can be
thought of as a converter from binary to a one-hot encoding. Suppose we have on hand an
N-input decoder. What is the simplest way to build up an N-input multiplexer from this?
What about building an N-output demultiplexer?

DEC
a
b
c
d

input

outputs

Figure 161: A 2-input, 4-output decoder,
arranged to show the similarity to a demultiplexer.

11 •• Show that the outputs of a 2
n
-output decoder are exactly the minterm functions on

the address line variables.

12 •• An encoder reverses the role of outputs and inputs in a decoder. In other words, it
converts a one-hot encoding to binary. Show how to build a 4-input encoder from simple
logic gates.

ENC
a
b
c
d

inputs

output

Figure 162: A 4-input, 2-output encoder.

13 ••• Show how to build a 3-input encoder from simple logic gates.
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14 ••• Show how to build a 2
n
-input encoder using a recursive construction.

15 •• Explore composing various combinations of encoder, decoder, multiplexer,
demultiplexer together. What overall functions result?

16 ••• An "N-bean counter" counts the number of 1's among N input lines, presenting the
output in binary. Design a logic circuit for a 3-bean counter (which will have 3 input and
2 output lines). Give a recursive construction for an N-bean counter, for arbitrary N.

9.7 Chapter Review

Define the following terms:

associative
binary code
binary-coded decimal
Boole/Shannon expansion
Cartesian encoding
combinational switching
commutative
conjunction
DeMorgan's laws
disjunction
don't-care condition
encoding
full adder
Gray code
half adder
hypercube
iff
implies
Karnaugh map
minterm expansion
one-hot code
parity
programmable logic array
proposition
subset code
substitution principle
tautology
universal set of switching functions
Venn diagram
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9.8 Further Reading

George Boole, An Investigation of the Laws of Thought, Walton, London, 1854 (reprinted
by Dover, New York, 1954). [Boole used 1 - t for the negation of t, working as if t were a
number. The Boole/Shannon Expansion is stated: "If t be any symbol which is retained in
the final result of the elimination of any other symbols from any system of equations, the
result of such elimination may be expressed in the form

Et + E' (1-t)= 0

in which E is formed by making in the proposed system t = 1, and eliminating the same
other symbols; and E' by making in the proposed system t = 0, and eliminating the same
other symbols. Moderate.]

Frank Brown, Boolean Reasoning, Kluwer Academic Publishers, Boston, 1990.
[Encyclopedic reference on Boolean algebra, with some applications to switching.
Moderate to difficult.]

Augustus De Morgan, On the Syllogism, Peter Heath, ed., Yale University Press, New
Haven, 1966. [DeMorgan's laws are stated: "(A, B ) and AB  have ab and (a, b) for
contraries."  Moderate.]

Martin Gardner, Logic Machines and Diagrams, University of Chicago Press, 1982.
[Surveys diagrammatic notations for logic. Easy to moderate.]

Maurice Karnaugh, The Map Method for Synthesis of Combinational Logic Circuits,
Transactions of the American Institute of Electrical Engineers, 72, 1, 593-599,
November, 1953. [Introduction of the Karnaugh map.]

C.E. Shannon, The synthesis of two-terminal switching circuits, Trans. of the American
Institute of Electrical Engineers, 28, 1, 59-98, 1949. [Gives a later version of the
Boole/Shannon expansion.]

John Venn, Symbolic Logic,  Chelsea, London, 1894. [Discourse on logic, introducing
Venn diagrams, etc. Moderate]

Alfred North Whitehead and Bertrand Russell, Principia Mathematica, Cambridge
University Press, London, 1910. [An original reference on logic. Moderate to difficult
(notation).]



10. Predicate Logic

10.1 Introduction

Predicate logic builds heavily upon the ideas of proposition logic to provide a more
powerful system for expression and reasoning. As we have already mentioned, a
predicate is just a function with a range of two values, say false and true. We already
use predicates routinely in programming, e.g. in conditional statements of the form

if( p(...args ...) )

Here we are using the two possibilities for the return value of p, (true or false). We
also use the propositional operators to combine predicates, such as in:

if( p(....) && ( !q(....) || r(....) ) )

Predicate logic deals with the combination of predicates using the propositional
operators we have already studied. It also adds one more interesting element, the
"quantifiers".

The meaning of predicate logic expressions is suggested by the following:

Expression + Interpretation + Assignment = Truth Value

Now we explain this equation.

An interpretation for a predicate logic expression consists of:

a domain for each variable in the expression

a predicate for each predicate symbol in the expression

a function for each function symbol in the expression

Note that the propositional operators are not counted as function symbols in the case of
predicate logic, even though they represent functions. The reason for this is that we do
not wish to subject them to interpretations other than the usual propositional
interpretation. Also, we have already said that predicates are a type of function. However,
we distinguish them in predicate logic so as to separate predicates, which have truth
values used by propositional operators, from functions that operate on arbitrary domains.
Furthermore, as with proposition logic, the stand-alone convention applies with
predicates:  We do not usually explicitly indicate == 1 when a predicate expression is
true; rather we just write the predicate along with its arguments, standing alone.



380 Predicate Logic

An assignment for a predicate logic expression consists of:

a value for each variable in the expression

Given an assignment, a truth value is obtained for the entire expression in the natural
way.

Example

Consider the expression:

x < y || ( y < z  && z < x)

  ^          ^         ^      predicate symbols

Here || and && are propositional operators and < is a predicate symbol (in infix notation).
An assignment is a particular predicate, say the less_than predicate on natural numbers,
and values for x, y, and z, say 3, 1, and 2. With respect to this assignment then, the value
is that of

3 < 1 || ( 1 < 2  && 2 < 3)

which is

false || ( true && true)

i.e.
true.

With respect to the same assignment for <, but 3, 2, 1 for x, y, z, the value would be that
of

3 < 2 || ( 2 < 1  && 1 < 3)

which would be false. As long as we have assigned meanings to all variables and
predicates in the expression, we can derive a false or true value. Now we give an
example where function symbols, as well as predicate symbols, are present.

( (u + v) < y ) || ( (y < (v + w)) && v < x)

     ^                       ^                 function symbols

would be an example of an expression with both function and predicate symbols. If we
assign + and < their usual meanings and u, v, w, x, y the values 1, 2, 3, 4, 5 respectively,
this would evaluate to the value of

( (1 + 2) < 4 ) || ( (4 < (2 + 3)) && 2 < 4 )

which is, of course, true.
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Validity

It is common to be concerned with a fixed interpretation (of domains, predicates, and
functions) and allow the assignment to vary over individuals in a domain. If a formula
evaluates to true for all assignments, it is called valid with respect to the interpretation.
If a formula is valid with respect to every interpretation, it is called valid. A special case
of validity is where sub-expressions are substituted for proposition symbols in a
tautology. These are also called tautologies. However, not every valid formula is a
tautology, as is easily seen when we introduce quantifiers later on.

10.2 A Database Application

An important use of predicate logic is found in computer databases and the more general
notion of "knowledge base", defined to be a database plus various computation rules. In
this application, it is common to use predicate expressions containing variables as above
as "queries". The predicates themselves represent the underlying stored data, computable
predicates, or combinations thereof. A query asks the system to find all individuals
corresponding to the variables in the expression such that the expression is satisfied
(evaluates to 1). Next we demonstrate the idea of querying a database using the Prolog
language as an example. Prolog is not the most widely-used database query language; a
language known as SQL (Structured Query Logic) probably has that distinction. But
Prolog is one of the more natural to use in that it is an integrated query language and
programming language.

Prolog Database Example

There are many ways to represent the predicates in a database, such as by structured files
representing tables, spreadsheet subsections, etc. In the language Prolog, one of the ways
to represent a predicate is just by enumerating all combinations of values for which the
predicate is true. Let us define the predicates mother and father in this fashion. These
predicates provide a way of modeling the family "tree" on the right.
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mother(alice, tom).
mother(alice, carol).
mother(carol, george).
mother(carol, heather).
mother(susan, hank).

father(john, tom).
father(john, carol).
father(fred, george).
father(fred, heather).
father(george, hank).

alice

caroltom

georgesusan

hank

john

fred

heather

Figure 163: A family "tree" modeled as two predicates, mother and father.

It is possible for a query to contain no variables, in which case we would expect an
answer of 1 or 0. For example,

mother(susan, hank) ⇒  true

mother(susan, tom) ⇒  false

More interestingly, when we put variables in the queries, we expect to get values for
those variables that satisfy the predicate:

mother(alice, X) ⇒  X = tom;  X = carol  (two alternatives for X)

father(tom, X) ⇒  false  (no such X exists)

mother(X, Y) ⇒  (several alternative combinations for X, Y)
X = alice, Y = tom;
X = alice, Y = carol;
X = carol, Y = george;
X = carol, Y = heather;
X = susan, Y = hank

Note that the X and Y values must be in correspondence. It would not do to simply
provide the set of X and the set of Y separately.
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Defining grandmother using Prolog

The Prolog language allows us to present queries and have them answered automatically
in a style similar to the above. Moreover, Prolog allows us to define new predicates using
logic rather than enumeration.

Such a predicate is defined by the following logical expression:

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

Here :- is read as "if" and the comma separating mother and parent is read as "and". This
says, in effect, "X is the grandmother of Y if X is the mother of (some) Z and Z is the
parent of Y". We have yet to define parent, but let's do this now:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

Here we have two separate logical assertions, one saying that "X is the parent of Y if X is
the mother of Y", and the other saying a similar thing for father. These assertions are not
contradictory, for the connective :- is "if", not "if and only if". However, the collection of
all assertions with a given predicate symbol on the lhs exhausts the possibilities for that
predicate. Thus, the two rules above together could be taken as equivalent to:

parent(X, Y) iff (mother(X, Y) or father(X, Y))

Given these definitions in addition to the database, we now have a "knowledge base"
since we have rules as well as enumerations. We can query the defined predicates in the
same way we queried the enumerated ones. For example:

grandmother(alice, Y) ⇒  Y = george; Y = heather

grandmother(X, Y) ⇒ X = alice, Y = george;
X = alice, Y = heather
X = carol, Y = hank

grandmother(susan, Y) ⇒ false

Quantifiers

Quantifiers are used in predicate logic to represent statements that range over sets or
"domains" of individuals. They can be thought of as providing a very concise notation for
what might otherwise be large conjunctive ( ∧ ) expressions and disjunctive ( ∨  )
expressions.
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Universal Quantifier ∀ ( "for all", "for every")
(∀ x) P(x) means for every x in the domain of discourse P(x) is true.

Existential Quantifier ∃  ("for some", "there exists")
(∃ x) P(x) means for some x in the domain of discourse P(x) is true.

If the domain can be enumerated {d0, d1, d2, ...} (and this isn't always possible) then the
following are suggestive

(∀ x) P(x) ≡ (P(d0) ∧  P(d1) ∧   P(d2) ∧ ...)

(∃ x) P(x)  ≡ (P(d0) ∨   P(d1)  ∨   P(d2)  ∨  ...)

This allows us to reason about formulas such as the of DeMorgan’s laws for
Quantifiers:

¬  (∀ x) P(x)  ≡  (∃ x) ¬ P(x)
¬  (∃ x) P(x)  ≡  (∀ x) ¬ P(x)

The definition of validity with respect to an interpretation, and thus general validity, is
easily extended to formulas with quantifiers. For example, in the natural number
interpretation, where the domain is {0, 1, 2, …} and > has its usual meaning, we have the
following:

Formula Meaning Validity
(∃ x) x > 0 There is an element larger than 0. valid
(∀ x) x > x Every element is larger than itself. invalid
(∀ x)(∃ y) x > y Every element is larger than some element. invalid
(∀ x)(∃ y) y > x Every element has a larger element. valid
(∃ x)(∀ y) (y != x) → x > y There is an element larger than every other. invalid

Exercises

With respect to the interpretation in which:
The domain is the natural numbers
== is equality
> is greater_than
- is proper subtraction

which of the following are valid:

1 •• x < y  →  (x - z) < (y - z)
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2 •• x < y  ∨  y < x

3 •• (x < y   ∨  x ==y ) ∧  (y < x ∨  x ==y) → ( x ==y )

Assuming that distinct are predicates such that distinct(X, Y) is true when the
arguments are different, express rules with respect to the preceding Prolog database that
define:

4 •• sibling(X, Y) means X and Y are siblings (different people having the same
parents)

5 •• cousin(X, Y) means that X and Y are children of siblings

6 ••• uncle(X, Y) means that X is the sibling of a Z such that Z is the parent of Y, or
that X is the spouse of such a Z.

7 ••• brother_in_law(X, Y) means that X is the brother of the spouse of Y, or that X is
the husband of a sibling of Y, or that X is the husband of a sibling of the spouse of Y.

Which of the following are valid for the natural numbers interpretation?

8 • (∃ x) (x != x)

9 • (∀ y)(∃ x) (x != y)

10 • (∀ y)(∃ x) (x = y)

11 •• (∀ y)(∀ x) (x = y) ∨ (x > y) ∨  (x < y)

12 •• (∀ y) [ (y = 0) ∨  (∃ x) (x < y)]

13 •• (∀ y) [ (y = 0) ∨  (∃ x) (x > y)]

Bounded Quantifiers

Two variants on quantifiers are often used because they conform to conversational usage.
It is common to find statements such as

"For every x such that ...., P(x)."

For example,

"For every even x > 2, not_prime(x)."
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Here the .... represents a condition on x. The added condition is an example of a
"bounded quantifier", for it restricts the x values being considered to those for which ....
is true. However, we can put .... into the form of a predicate and reduce the bounded
quantifier case to an ordinary quantifier. Let Q(x) be the condition "packaged" as a
predicate. Then

"For every x such that Q(x), P(x)."

is equivalent to

(∀ x) [Q(x) → P(x)]

Similarly, existential quantifiers can also be bounded.

"For some x such that Q(x), P(x)."

is equivalent to

(∃ x) [Q(x) ∧ P(x)]

Note that the bounded existential quantifier translates to an "and", whereas the bounded
universal quantifier translates to an "implies".

Quantifiers and Prolog

Prolog does not allow us to deal with quantifiers in a fully general way, and quantifiers
are never explicit in prolog. Variables that appear on the lefthand side of a Prolog rule
(i.e. to the left of :- ) are implicitly quantified with ∀ . Variables that appear only on the
righthand side of a rule are quantified as around the righthand side itself. For example,
above we gave the definition of grandmother:

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

With explicit quantification, this would appear as:

(∀ x)(∀ y) [grandmother(X, Y) if (∃ Z) mother(X, Z) and parent(Z, Y)]

The reason that this interpretation is used is that it is fairly natural to conceptualize and
that it corresponds to the procedural interpretation of Prolog rules.

Logic vs. Procedures   

Although Prolog mimics a subset of predicate logic, the real semantics of Prolog have a
procedural basis. That is, it is possible to interpret the logical assertions in Prolog as if
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they were a kind of generalized procedure call. This duality means that Prolog can be
used as both a procedural language (based on actions) and as a declarative language
(based on declarations or assertions). Here we briefly state how this works, and in the
process will introduce an important notion, that of backtracking.

To a first approximation, a Prolog rule is like an ordinary procedure:  The lefthand side is
like the header of a procedure and the righthand side like the body. Consider, then, the
rule

grandmother(X, Y) :- mother(X, Z), parent(Z, Y).

Suppose we make the "call" (query)

grandmother(alice, Y)

Satisfying this predicate becomes the initial "goal". In this case, the call matches the lhs
of the rule. The body is detached and becomes

mother(alice, Z), parent(Z, Y)

This goal is read:  "Find a Z such that mother(alice, Z). If successful, using that value
of Z, find a Y such that parent(Z, Y). If that is successful, Y is the result of the original
query."

We can indeed find a Z  such that mother(alice, Z). The first possibility in the
definition of mother is that Z = tom. So our new goal becomes parent(tom, Y). We
then aim to solve this goal. There are two rules making up the "procedure" for parent:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

Each rule is tried in turn. The first rule gives a body of mother(tom, Y). This goal will
fail, since mother is an enumerated predicate and there is no Y of this form. The second
rule gives a body of father(tom, Y). This goal also fails for the same reason. There
being no other rules for parent, the goal parent(tom, Y) fails, and that causes the body

mother(alice, Z), parent(Z, Y)

to fail for the case Z = tom. Fortunately there are other possibilities for Z. The next rule
for mother indicates that Z = carol also satisfies mother(alice, Z). So then we set off
to solve

parent(carol, Y).

Again, there are two rules for parent. The first rule gives us a new goal of

mother(carol, Y)
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This time, however, there is a Y that works, namely Y = george. Now the original goal
has been solved and the solution Y = george is returned.

10.3 Backtracking Principle

The trying of alternative rules when one rule fails is called backtracking. Backtracking
also works to find multiple solutions if we desire. We need only pretend that the solution
previously found was not a solution and backtracking will pick up where it left off in the
search process. Had we continued in this way, Y = heather would also have produced as a
solution. The arrows below suggest the path of backtracking in the procedural
interpretation of Prolog. One can note that the backtracking paradigm is strongly related
to recursive descent and depth-first search, which we will have further occasion to
discuss.

alice

caroltom

georgesusan

hank

john

f red

heather

Figure 164: Backtracking in Prolog procedures

Recursive Logic

We close this section by illustrating a further powerful aspect of Prolog: rules can be
recursive. This means that we can combine the notion of backtracking with recursion to
achieve a resulting language that is strictly more expressive than a recursive functional
language. At the same time, recursive rules retain a natural reading in the same way that
recursive functions do.

Earlier we gave a rule for grandmother. Suppose we want to give a rule for ancestor,
where we agree to count a parent as an ancestor. A primitive attempt of what we want to
accomplish is illustrated by the following set of clauses:
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ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z1), parent(Z1, Y).
ancestor(X, Y) :- parent(X, Z1), parent(Z1, Z2), parent(Z2, Y).

...

The only problem is that this set of rules is infinite. If we are going to make a program,
we had better stick to a finite set. This can be accomplished if we can use ancestor
recursively:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This pair of rules provides two ways for X to be an ancestor of Y. But since one of them is
recursive, an arbitrary chain of parents can be represented. In the preceding knowledge,
all of the following are true:

parent(alice, carol), parent(carol, george), parent(george, hank)

It follows logically that

ancestor(george, hank)
ancestor(carol, hank)
ancestor(alice, hank)

so that a query of the form ancestor(alice, Y) would have Y = hank as one of its
answers.

Using Backtracking to Solve Problems

In chapter Compute by the Rules, we gave an example of a program that "solved" a
puzzle, the Towers of Hanoi. Actually, it might be more correct to say that the
programmer solved the puzzle, since the program was totally deterministic, simply
playing out a pre-planned solution strategy. We can use backtracking for problems that
are not so simple to solve, and relieve the programmer of some of the solution effort.
Although it is perhaps still correct to say that the programmer is providing a strategy, it is
not as clear that the strategy will work, or how many steps will be required.

Consider the water jugs puzzle presented earlier. Let us use Prolog to give some logical
rules for the legal moves in the puzzle, then embed those rules into a solution mechanism
that relies on backtracking. For simplicity, we will adhere to the version of the puzzle
with jug capacities 8, 5, and 3 liters. The eight liter jug begins full, the others empty. The
objective is to end up with one of the jugs containing 4 liters.

When we pour from one jug to another, accuracy is ensured only if we pour all of the
liquid in one jug into the other that will fit. This means that there two limitations on the
amount of liquid transferred:
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(a) The amount of liquid in the source jug

(b) The amount of space in the destination jug

Thus the amount of liquid transferred is the minimum of those two quantities.

Let us use terms of the form

jugs(N8, N5, N3)

to represent the state of the system, with Ni liters of liquid in the jug with capacity i. We
will define a predicate => representing the possible state transitions. The first rule relates
to pouring from the 8 liter jug to the 5 liter jug. The rule can be stated thus:

jugs(N8, N5, N3) => jugs(M8, M5, N3) :-
    N8 > 0,
    S5 is 5 - N5,
    min(N8, S5, T),
    T > 0,
    M8 is N8 - T,
    M5 is N5 + T.

The conjunct  N8 > 0 says that the rule only applies if something is in the 8 liter jug. S5
is computed as the space available in the 5 liter jug. Then T is computed as the amount to
be transferred. However, T > 0 prevents the transfer of nothing from being considered a
move. Finally, M8 is the new amount in the 8 liter jug and M5 is the new amount in the 5
liter jug. The 3 liter jug is unchanged, so N3 is used in both the "before" and "after"
states. The predicate min yields as the third argument the minimum of the first two
arguments. Its definition could be written:

min(A, B, Min) :-
    A =< B,
    Min is A.
min(A, B, Min) :-
    A > B,
    Min is B.

In a similar fashion, we could go on to define rules for the other possible moves. We will
give one more, for pouring from the 3 liter to the 5 liter jug, then leave the remaining four
to the reader.

jugs(N8, N5, N3) => jugs(N8, M5, M3) :-
    N3 > 0,
    S5 is 5 - N5,
    min(N3, S5, T),
    T > 0,
    M3 is N3 - T,
    M5 is N5 + T.
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The rules we have stated are simply the constraints on pouring. They do not solve any
problem. In order to do this, we need to express the following recursive rule:

A solution from a final state consists of the empty sequence of moves.

A solution from a non-final state consists of a move from the state to another
state, and a solution from that state.

In order to avoid re-trying the same state more than once, we need a way to keep track of
the fact that we have tried a state before. We will take a short-cut here and use Prolog's
device of dynamically asserting new logical facts. In effect, we are building the definition
of a predicate on the fly. Facts of the form marked(State) will indicate that State has
already been tried. The conjunct \+marked(State1) says that we have not tried the state
before. So as soon as we determine that we have not tried a state, we indicate that we are
now trying it. Then we use predicate move as constructed above, to tell us the new state
and recursively call solve on it. If successful, we form the list of moves by combining the
move used in this rule with the list of subsequent moves.

solve(State1, []) :-
    final(State1). % final state reached, success

solve(State1, Moves) :-
    \+marked(State1), % continue if state not tried
    assert(marked(State1)), % mark state as tried
    (State1 => State2), % use transition relation
    solve(State2, More), % recurse
    Moves = [move(State1, State2) | More]. % record sequence

The following rules tell what states are considered final and initial:

initial(jugs(8, 0, 0)).

final(jugs(4, _N5, _N3)).

final(jugs(_N8, 4, _N3)).

When we call, in Prolog, the goal

    initial(State),
    solve(State, Moves).

two distinct move sequences are revealed, one shorter than the other, as shown be the
following solution tree.
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Figure 165: A tree of solutions for a water jug puzzle

We'll discuss further aspects of solving problems in this way in the chapter Computing
with Graphs. Earlier, we stated the recursion manifesto, which suggests using recursion
to minimize work in solving problems. The actual problem solving code in this example,
exclusive of the rules for defining legal transitions, is quite minimal. This is due both to
recursion and backtracking. So the Prolog programmers' manifesto takes things a step
further:

Let recursion and backtracking do the work for you.

Prolog programmers' manifesto

Backtracking in "Ordinary" Languages

This is somewhat of a digression from logic, but what if we don't have Prolog available to
implement backtracking?  We can still program backtracking, but it will require some
"engineering" of appropriate control. The basic feature provided by backtracking is to be
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able to try alternatives and if we reach failure, have the alternatives available so that we
may try others. This can be accomplished with just recursion and an extra data structure
that keeps  track of the remaining untried alternatives in some form. In many cases, we
don't have to keep a list of the alternatives explicitly; if the alternatives are sufficiently
well-structured, it may suffice to be able to generate the next alternative from the current
one.

A case in point is the classical N-queens problem. The problem is to place N queens on
an N-by-N chessboard so that no two queens attack one another. Here two queens attack
each other if they are in the same row, same column, or on a common diagonal. Below
we show a solution for N = 8, which was the output from the program we are about to
present.

Q
Q

Q
Q

Q
Q

Q
Q

Figure 166: A solution to the 8-queens problem

To solve this problem using backtracking, we take the following approach: Clearly the
queens must all be in different rows. We call these the "first" queen, "second" queen, etc.
according to the row dominated by that queen. So it suffices to identify the columns for
the queens in each row. Thus we can proceed as follows:

Place the first queen in the first unoccupied row.
Place the second queen in the next unoccupied row so that it doesn't attack the first

queen.
Place the third queen in the next unoccupied row so that it doesn't attack the first two

queens.
                  ....

Continuing in this way, one of two things will eventually happen:  We will reach a
solution, or we will be unable to place a queen according to the non-attacking constraint.
In the latter case, we backup to the most recent discretionary placement and try the next
alternative column, and proceed forward from there. The current problem is well
structured: the next alternative column is just the current alternative + 1. So we can
accomplish pretty much all we need by the mechanism of recursion.
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Here is the program:

import java.io.*;
import Poly.Tokenizer;

/* N Queens puzzle solver: The program accepts an integer N and produces a
 *  solution to the N Queens problem for that N.
 */

class Queens
  {
  int N;                // number of rows and columns

  int board[];          // board[i] == j means row i has a queen on column j

  static int EMPTY = -1;        // value used to indicate an empty row

  Queens(int N)                         // construct puzzle
    {
    this.N = N;
    board = new int[N];                 // create board
    for( int i = 0; i < N; i++ )
      board[i] = EMPTY;                 // initialize board
    }

  public static void main(String arg[]) // test program
    {
    Poly.Tokenizer in = new Poly.Tokenizer(System.in);
    int token_type;
    while( prompt() && (token_type = in.nextToken()) != Poly.Tokenizer.TT_EOF )
      {
      if( token_type != Poly.Tokenizer.TT_LONG || in.lval <= 0 )
        {
        System.out.println("Input must be a positive integer");
        continue;
        }

      Queens Puzzle = new Queens((int)in.lval);

      if( Puzzle.Solve() )      // solve the puzzle
        {
        Puzzle.Show();
        }
      else
        {
        System.out.println("No solutions for this size problem");
        }
      }
    System.out.println();
    }

  static boolean prompt()               // prompt for input
    {
    System.out.print("Enter number of queens: ");
    System.out.flush();
    return true;
    }

 boolean Solve()                       // try to solve the puzzle
    {
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    return Solve(0);
    }

  //
  // Solve(row) tries to solve by placing a queen in row, given
  // successful placement in rows < row. If successful placement is not
  // possible, return false.
  //

  boolean Solve(int row)
    {
    if( row >= N )
      return true;                      // queens placed in all rows, success
    for( int col = 0; col < N; col++ )  // Try each column in turn
      {
      if( !Attack(row, col) )           // Can we place in row, col?
        {
        board[row] = col;               // Place queen in row, col.
        if( Solve(row+1) )              // See if this works for following rows
          return true;                  // success
        else
          board[row] = EMPTY;           // undo placement, didn't work
        }
      }
    return false;                       // no solution found for any column
    }

  // see if placing in row, col results in an attack given the board so far.

  boolean Attack(int row, int col)
    {
    for( int j = 0; j < row; j++ )
      {
      if( board[j] == col || Math.abs(board[j]-col) == Math.abs(j-row) )
        return true;
      }
    return false;
    }

  // show the board

  void Show()
    {
    int col;

    for( col = 0; col < N; col++ )
      System.out.print(" _");
    System.out.println();

    for( int row = 0; row < N; row++ )
      {
      for( col = 0; col < board[row]; col++ )
        System.out.print("|_");
      System.out.print("|Q");
      for( col++; col < N; col++ )
        System.out.print("|_");
      System.out.println("|");
      }
    System.out.println();
    }
  }  // Queens
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Functional Programming is a form of Logic Programming

Prolog includes other features beyond what we present here. For example, there are
predicates for evaluating arithmetic expressions and predicates for forming and
decomposing lists. The syntax used for lists in rex is that used in Prolog. We have said
before that functions are special cases of predicates. However, functional programming
does not use functions the way Prolog uses predicates; most functional languages cannot
"invert" (solve for) the arguments to a function given the result. In another sense, and this
might sound contradictory, functions are a special case of predicates: An n-ary function,
of the form Dn → R, can be viewed as an (n+1)-ary predicate. If f is the name of the
function and p is the name of the corresponding predicate, then

f(x1, x2, ...., xn) == y  iff  p(x1, x2, ...., xn, y)

In this sense, we can represent many functions as Prolog predicates. This is the technique
we use for transforming rex rules into Prolog rules. A rex rule:

f(x1, x2, ...., xn) => rhs.

effectively becomes a Prolog rule:

p(x1, x2, ...., xn, y) :-
... expression determining y from rhs and x1, x2, ...., xn, !.

The ! is a special symbol in Prolog known as "cut". Its purpose is to prevent
backtracking. Recall that in rex, once we commit to a rule, subsequent rules are not tried.
This is the function of cut.

Append in Prolog

In rex, the append function on lists was expressed as:

append([ ], Y) => Y;
append([A | X], Y) => [A | append(X, Y)];

In Prolog, the counterpart would be an append predicate:

append([ ], Y, Y) :- !.

append([A | X], Y, [A | Z]) :- append(X, Y, Z).

In Prolog, we would usually not include the cut (!), i.e. we would allow backtracking.
This permits append to solve for the lists being appended for a given result list. For
example, if we gave Prolog the goal append(X, Y, [1, 2, 3]), backtracking would produce
four solutions for X, Y:
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X = [ ], Y = [1, 2, 3];
X = [1], Y = [2, 3];
X = [1, 2], Y = [3];
X = [1, 2, 3], Y = [ ]

10.4 Using Logic to Specify and Reason about Program Properties

One of the important uses of predicate logic in computer science is specifying what
programs are supposed to do, and convincing oneself and others that they do it. These
problems can be approached with varying levels of formality. Even if one never intends
to use logic to prove a program, the techniques can be useful in thinking and reasoning
about programs. A second important reason for understanding the principles involved is
that easy-to-prove programs are usually also easy to understand and "maintain"† .
Thinking, during program construction, about what one has to do to prove that a program
meets its specification can help guide the structuring of a program.

Program Specification by Predicates

A standard means of specifying properties of a program is to provide two predicates over
variables that represent input and output of the program:

Input Predicate: States what is assumed to be true at the start of the program.

Output Predicate: States what is desired to be true when the program terminates.

For completeness, we might also add a third predicate:

Exceptions Predicate: State what happens if the input predicate is not satisfied
by the actual input.

For now, we will set aside exceptions and focus on input/output. Let us agree to name the
predicates In and Out.

Factorial Specification Example

int n, f; (This declares the types the variables used below.)

                                                  
† The word "maintenance" is used in a funny way when applied to programs. Since programs are not

mechanical objects with frictional parts, etc., they do not break or wear out on their own accord.
However, they are sometimes unknowingly released with bugs in them and those bugs are hopefully
fixed retroactively. Also, programs tend not to be used as is for all time, but rather evolve into better or
more comprehensive programs. These ideas: debugging and evolution, are lumped into what is loosely
called program "maintenance".
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In(n):  n >= 0 (States that n >= 0 is assumed to be true at start.)

Out(n, f):  f == n! (States that f == n! is desired at end.)

Programs purportedly satisfying the above specification:

/* Program 1: bottom-up factorial*/

f = 1;
k = 1;
while( k <= n )
  {
  f = f * k;
  k = k + 1;
  }

The program itself is almost independent of the specification, except for the variables
common to both. If we had encapsulated the program as a function, we could avoid even
this relationship.

/* Program 2: top-down factorial*/

f = 1;
k = n;
while( k > 1 )
  {
  f = f * k;
  k = k - 1;
  }

/* Program 3: recursive factorial*/

f = fac(n);

where

long fac(long n)
{
if( n > 1 )
  return n*fac(n-1);
else
  return 1;
}

Each of the above programs computes factorial in a slightly different way. While the
second and third are superficially similar, notice that the third is not tail recursive. Its
multiplications occur in a different order than in the second, so that in some ways it is
closer to the first program.
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Proving Programs by Structural Induction

"Structural induction" is induction along the lines of an inductive data definition. It is
attractive for functional programs. Considering program 3 above, for example, a
structural induction proof would go as follows:

Basis:  Prove that fac is correct for n == 1 and n == 0.

Induction:  Assuming that fac is correct for argument value n-1, show that it is
correct for argument value n.

For program 3, this seems like belaboring the obvious:  Obviously fac gives the right
answer (1) for arguments 0 and 1. It was designed that way. Also, if it works for n-1, then
it works for n, because the value for n is just n times the value for n-1.

The fact that functional programs essentially are definitions is one of their most attractive
aspects. Many structural induction proofs degenerate to observations.

In order to prove programs 1 and 2 by structural induction, it is perhaps easiest to recast
them to recursive programs using McCarthy's transformation. Let's do this for Program 2:

fac(n) = fac(n, 1);

fac(k, f) => k > 1 ? fac(k-1, f*k) : f;

Again, for n == 0 or n == 1, the answer is 1 by direct evaluation.

Now we apply structural induction to the 2-argument function. We have to be a little
more careful in structuring our claim this time. It is that:

(∀ f) fac(k, f) ⇒  f * k!.

We arrived at this claim by repeated substitution from the rule for fac:

fac(k, f) ⇒
fac(k-1, f*k) ⇒
fac(k-2, f*k*(k-1)) ⇒
fac(k-3, f*k*(k-1)*(k-2)) ⇒ ...

Why we need the quantification of for all values of f is explained below. When called
with k == 0 or k == 1 initially, the result f is given immediately. But k! == 1 in this
case, so f == f*k!.

Now suppose that k > 1, we have the inductive hypothesis

(∀ f) fac(k-1, f) ⇒  f * (k-1)!.
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and we want to show

(∀ f) fac(k, f) ⇒  f * k!.

For any value of f, the program returns the result of calling fac(k-1, f*k). By the
inductive hypothesis, the result of this call is (f * k) *(k-1)!. But this is equal to f *
(k * (k-1)!), which is equal to f * k!, what we wanted to show.

The quantification (∀ f) was necessary so that we could substitute f*k for f  in the
induction hypothesis. The proof would not be valid for a fixed f because the necessary
value of f is different in the inductive conclusion.

Now let’s look at an example not so closely related to traditional mathematical induction.
Suppose we have the function definition in rex:

shunt([ ], M) => M;

shunt([A | L], M) => shunt(L, [A | M]);

This definition is a 2-argument auxiliary for the reverse function:

reverse(L) = shunt(L, []);

We wish to show that shunt as intended, namely:

The result of shunt(L, M) is that of appending M to the reverse of L.

In symbols:

(∀ L) (∀ M) shunt(L, M) ⇒  reverse(L) ^ M

where ⇒  means evaluates to and  ^ means append.

To show this, we structurally induct on one of the two arguments. The choice of which
argument is usually pretty important; with the wrong choice the proof simply might not
work. Often, the correct choice is the one in which the list dichotomy is used in the
definition of the function, in this case the first argument L. So, proceeding with structural
induction, we have

Basis L == [ ]: (∀ M) shunt([ ], M) ⇒  reverse([ ]) ^ M )

The basis follows immediately from the first rule of the function definition;
shunt([ ], M) will immediately rewrite to M. and M == reverse([ ]) ^ M.

Induction step L == [A | N]: The inductive hypothesis is:

 (∀ M) shunt(N, M) ⇒  reverse(N) ^ M
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and what is to be shown is:

(∀ M) shunt([A | N], M) ⇒  reverse([A | N]) ^ M

From the second definition rule, we see that the shunt([A | N], M) rewrites to

shunt(N, [A | M])

From our inductive hypothesis, we have

shunt(N, [A | M]) ⇒  reverse(N) ^ [A | M]

because of quantification over the argument M. Now make use of an equality

reverse(N) ^ [A | M] == reverse([A | N]) ^ M

which gives us what is to be shown

To be thorough, the equality used would itself need to be established. This can be done
by appealing to our inductive hypothesis: Notice that the rhs of the equality is equivalent
to shunt([A | N], [ ]) ^ M, by the equation that defines reverse. According to the
second definition rule, this rewrites to shunt(N, [A]) ^ M. But by our inductive
hypothesis, this evaluates to (reverse(N) ^ [A]) ^ M, which is equivalent to lhs of the
equality using associativity of ^ and the equality [A] ^ M == [A | M]. If desired, both
of these properties of ^ could be established by secondary structural induction arguments
on the definition of ^.

Proving Programs by Transition Induction

Transition induction takes a somewhat different approach from structural induction.
Instead of an inductive argument on the data of a functional program, the induction
proceeds along the lines of how many transitions have been undertaken from the start of
the program to the end, and in fact, to points intermediate as well.

A common variation on the transition induction theme is the method of "loop invariants".
A loop invariant is a logical assertion about the state of the program at a key point in the
loop, which is supposed to be true whenever we get to that point. For a while loop or a
for loop, this point is just before the test, i.e. where the comment is in the following
program:

initialization

while( /* invariant */  test )

body
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For example, in factorial program 2 repeated below with the invariant introduced in the
comment, the loop invariant can be shown to be

k > 0 && f == n! / k!

/* Program 2: top-down factorial*/

f = 1;
k = n;
while( /* assert:  k > 0 && f == n! / k! */ k > 1 )
  {
  f = f * k;
  k = k - 1;
  }

There are two main issues here:

1. Why the loop invariant is actually invariant.

2. Why the loop invariant's truth implies that the program gives the correct
answer.

Let us deal with the second issue first, since it is the main reason loop invariants are of
interest. The loop will terminate only when the test condition, k > 1 in this case, is false.
But since k is assumed to have an integer value and we have the assertion k > 0, this
means that k == 1 when the loop terminates. But we also have the assertion
f == n! / k!. Substituting k == 1 into this, we have f == n!, exactly what we want to
be true at termination.

Now the first issue. Assume for the moment that n > 0 when the program is started. (If
n == 0, then the loop terminates immediately with the correct answer.)  Essentially we
are doing induction on the number of times the assertion point is reached. Consider the
first time as a basis:  At this time we know f ==1 and k == n. But n > 0, so the k > 0
part of the assertion holds. Moreover, n! / k! == 1, and f == 1 because we initialized it
that way. So f == n! / k! and the full assertion holds the first time.

Inductively, suppose the assertion holds now and we want to show that it holds the next
time we get to the key point, assuming there will be a next time. For there to be a next
time, k > 1, since this is the loop condition. Let f' be the value of f and k' be the value
of k the next time. We see that f' == f*k and k' == k-1. Thus k' > 0 since k > 1.
Moreover, f' == f*k == (n! / k!)*k == n! / (k-1)! == n! / k'!, so the second
part of the invariant holds.

This completes the proof of program 2 by transition induction. Note one distinction,
however. Whereas structural induction proved the program terminated and gave the
correct answer, transition induction did not prove that the program terminated. It only
proved that if the program terminates, the answer will be correct. We have to go back and
give a second proof of the termination of program 2, using guess what?  Essentially
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structural induction!  However, the proof is easier this time: it only needs to show
termination, rather than some more involved logical assertion. We essentially show:

The loop terminates for k <= 1. This is obvious.

If the loop terminates for k-1, it terminates for k. This is true because k is
replaced by k-1 in the loop body.

Further Reflection on Program Specification

Note that the input specification for factorial above is n >= 0. Although we could run the
programs with values of n not satisfying this condition, no claims are made about what
they will do. A given program could, for example, do any of the following in case n < 0:

a) Give a "neutral" value, such as 1, which is the value of f(0) as well.

b) Give a "garbage" value, something that is based on the computation that takes
place, but is relatively useless.

c) Fail to terminate.

The problem with actually specifying what happens in these non-standard cases is that it
commits the programmer to satisfying elements of a specification that are possibly
arbitrary.  It may well be preferable to "filter" these cases from consideration by an
appropriate input specification, which is what we have done.

Another point of concern is that the output specification f == n! alludes to there being
some definition of n!. For example, we could give a definition by a set of rex rules. But if
we can give the rex rules, we might not need this program, since rex rules are executable.
This concern can be answered in two ways:  (i) Having more than one specification of the
solution to a problem such that the solutions check with each other increases our
confidence in the solutions. (ii)  In some cases, the output specification will not specify
the result in a functional way but instead will only specify properties of the result that
could be satisfied by a number of different functions. Put another way, we are sometimes
interested in a program that is just consistent with or satisfies an input-output relation,
rather than computing a specific function.

Finally, note that specifying the factorial program in the above fashion is a sound idea
only if we can be assured that n is a read-only variable, i.e. the program cannot change
it. Were this not the case, then it would be easy for the program to satisfy the
specification without really computing factorial. Specifically, the program could instead
just consist of:

n = 1;
f = 1;
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Certainly f = n! would then be satisfied at end, but this defeats our intention for this
program. If we declared in our specification

read_only: n

then the above program would not be legitimate, since it sets n to a value.

Another way to provide a constraining specification by introducing an anchor variable
that does not appear in the program. Such variables are read-only by definition, so we
might declare them that way. For factorial, the specification would become, where n

0
 is

the initial value of n and does not occur in the program proper:

int n, n
0
, f;

read_only: n
0

In(n0):  n == n
0
  ∧  n

0
 >= 0

Out(n0, f):  f = n
0
!

This doesn't look all that much different from the original specification, but now the
"short-circuit" program

n = 1;
f = 1;

does not satisfy the specification generally. It only does so in the special case where
n

0
 == 0 or n

0
 == 1, since only then is n

0
! == 1. We can remind ourselves that anchor

variables are read-only

Array Summation Specification Example

A specification for a program summing the elements of an array a, from a[0] through
a[n-1].

float a[];
float max;
int n;

read_only: a, n

In(n, a): n >= 0

Out(n, a, max): max == sum(i = 0 to n-1, a[i])

Here we have introduced a notation sum to indicate the result of summing an array. As
with some of the other examples, this specification would probably be enough to serve as
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a second solution to the problem if sum were a valid programming construct. An example
of a program purporting to satisfy the specification is:

s = 0;
k = 0;
while( k < n )
  {
  s = s + a[k];
  k++;
  }

Were it not for the read_only specification, we could satisfy the output predicate by
merely setting n to 0 or by setting all elements of a to 0, and setting s to 0.

Using Quantifiers over Array Indices

An array is typically an arbitrarily-large collection of data values. As such, we cannot
refer to each value by name in a specification; we must resort to quantifiers to talk about
all of the elements of an array.

Array Maximum Example

As an example, consider the specification of a program for computing the maximum of
an array in a variable max. Here two things are important for max:

The value of max should be >= each array element.

The value of max should be == some array element.

So the output assertions will be:

(∀ i) max >= a[i]

(∃ i) max == a[i]

where the array bounds are understood, or to make the bounds explicit:

(∀ i) (i >= 0 && i < n) →  max >= a[i]

(∃ i) (i >= 0 && i < n) && max == a[i]

The complete specification would then be:

float a[];
float s;
int n;

read_only: a, n

In(n, a): n >= 0
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Out(n, a, s): ( (∀ i) (i >= 0 && i < n) →  max >= a[i] )
              && ( (∃  i) (i >= 0 && i < n) && max == a[i] )

Array Sorting Example

The following is an example wherein the specification would not readily translate into a
solution of the problem (e.g. using rex). Also, since we intend to rearrange the values of
an array in place, we cannot use the read_only annotation for the array itself. We must
instead introduce a new read-only variable that represents the original array contents. We
will use equal(a, b, n) to designate that a and b have the same values, element-by-
element, from 0 through n.

Array Sorting specification:

float a[], a
0
[];

int n;

read_only a
0
;

In(n, a, a
0
): n >= 0 && equal(a, a

0
, n)

Out(n, a
0
, a):  permutation(a, a

0
, n) && sorted(a, n)

For the sorting specification, we used two auxiliary predicates to express Out. By
permutation(a, a

0
, n) we mean that the elements of a are the same as those of a

0
,

except possibly in a different order (their contents are the same when they are viewed as
"bags"). By sorted(a, n) we mean that the elements of a are in non-decreasing order.
We can express sorted in a logical notation as:

  sorted(a, n) is (∀ i) ( ( 0 <= i  ∧  i < n-1 ) → ( a[i] <= a[i+1] ) )

Expressing permutation is messier, due to the need to handle possibly duplicated
elements. If we introduce a notation for counting the number of a given element, say
#(e, a, n) meaning the number of occurrences of e in a, we could define:

permutation(a, a
0
, n) is

(∀ i) (∀ e)

     ( 0 <= i  ∧  i < n) → ( e == a[i] → #(e, a, n) == #(e, a0, n) )

We could give an appropriate rex-like rules for #(e, a, n):

#(e, a, -1) => 0;

#(e, a, i) => ( e == a[i] )? 1 + #(e, a, i-1);
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#(e, a, i) => #(e, a, i-1);

The above rules would read:  The number of times e occurs in a[0]....a[n-1] is 0. For
i>= 0, the number of times e occurs in a[0]....a[i] is 1 more than the number of
times it occurs in a[0]....a[n-1] if e == a[i]. Otherwise it is the same as the number
of times it occurs in a[0]....a[n-1].

The fact that we need such recursive expressions, which are effectively programs
themselves in an appropriate language, dampens our hope that specifications and
programs can be totally distinct domains of endeavor. Indeed, writing a specification has
much in common with writing a program. In the former, however, we hope for greater
succinctness through the use of an appropriate specification language, such as the
predicate calculus.

Correctness Defined

Given an input/output specification and a program intended to satisfy that specification,
we now focus on what it means to satisfy a specification. Some terminology is helpful.

Partial Correctness:  A program P is said to be partially correct with respect to a
specification (a pair of predicates In, Out) in case that:

If the program is started with variables satisfying In (and ip (instruction
pointer) at the initial position), then when and if the program terminates,
the variables will satisfy Out.

Notice the "when and if" disclaimer. Nothing is being claimed for cases where the
program does not terminate,

Termination:  A program P is said to terminate with respect to a specification if

If the program is started with variables satisfying In (and ip at the initial
position), then the program will terminate (i.e. will reach a state where its
ip is at the final position).

(Termination does not use the Out part of the specification.)

Total Correctness:  A program P is totally correct with respect to a specification
if

The program is both partially correct and terminates with respect to that
specification.

There are reasons why we separate partial correctness and termination in this way:
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(i) Some programs cannot be guaranteed to terminate, so are partially correct at
best.

(ii) Sometimes it is easier to prove partial correctness and termination
separately.

Partial Correctness

The Floyd Assertion Principle   

This principle is perhaps the easiest-to-understand way to prove partial correctness. (A
special case of this method is the "loop invariant" idea introduced earlier.)  We
demonstrate it using the flowchart model for programs. Each of the nodes in the program
flowchart is annotated with an assertion. The intent of the assertion is to represent
information about the state of the program at that particular node, when and if the ip
reaches that node.

Partial correctness is established by proving a set of verification conditions (VCs)
associated with the invariants, the enabling conditions on the arcs, and the assignments
on the arcs.

The beauty of this method is that, if the assertions are valid, the VCs can be proved
individually in isolation without referring back to the original program. Here is how a VC
relates to an arc in a program: Suppose that the following is a piece of the flowchart,
where Ai and Aj are assertions, E is an enabling condition, and F represents the
assignment being done.

j

{E } F

i A i

jA

Figure 167: Flowchart fragment where nodes i and j have been annotated with
assertions. E represents the enabling condition that must be satisfied for the ip
(instruction pointer) to move from i to j, while F represents the change of state

variables that will occur when the ip moves from i to j.

Specifically, express F as an equation between primed and unprimed versions of the
program variables, representing the values before and after the statement is executed,
respectively. Let A'j be assertion Aj with all variables primed. Then the prototype
verification condition for this arc is:

(Ai  ∧  E  ∧  F) →  A'j
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which is interpreted as follows:  If the program's ip is at i with variables satisfying
assertion Ai and the enabling condition E is satisfied, and if F represents the relation
between variables before and after assignment, then A'j holds for the new values. The
names given to Ai  and  A'j are pre-condition and post-condition, respectively.

Floyd Assertion Example   

Consider the following fragment of a flowchart, which has been annotated with assertions
at places i and j.

j

i f == (k-1)! and k <= (n+1)

f == (k-1)! and k <= (n+1)

{ k <= n } (f, k) = (f * k, k + 1)

Figure 168: Fragment of a flowchart program, showing enabling condition,
action, and possible assertions at nodes i and j

The verification condition (Ai  ∧  E  ∧  F) →  A'j in this case has the following parts:

Ai: f == (k-1)! and k <= (n+1)
E: k <= n
F:  (f', k') == (f * k, k + 1)
A'j:  f' == (k'-1)! and k' <= (n+1)

Notes:
F represents a parallel assignment to f and k. The primed values indicate the
values after the assignment, while the unprimed ones indicate the values before.

n is a read-only variable, so no primed value is shown for it.

Ai and A'j are the same assertion, except that A'j has its k and f variables primed,
to denote their values after the assignment rather than before.

Spelled out more fully, if ξ represents the vector of all program variables, then the
general enabling condition and assignment will take the form

{ E(ξ) } ξ = F(ξ)

while the verification condition for the arc is:
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(Ai(ξ) ∧  E(ξ) ∧  ξ' == F(ξ) ) →  Aj(ξ')

In summary, in the verification condition, we use an equality between primed variables
and a function of unprimed variables to represent the effect of an assignment to one and
the same set of program variables. The reason for choosing this approach is that we don't
have any other way of relating assignment to a statement in predicate logic.

We continue the example by providing the verification conditions for all of the arcs of the
compact factorial program, repeated here for convenience. The VC that was indicated
above will be recognized as that for the arc going from node 1 to node 1.

0

2

{ k > n }

(f, k) = (1, 1)

{ k <= n } (f, k) = (f * k, k + 1)

1

Figure 169: Compact flowchart for the factorial program

Using A0, A1, A2 to represent the assertions at each node, the verification conditions,
one per arc are:

arc 0 →  1:  (A0 ∧ true ∧ (f', k') == (1, 1) ) →  A'1

arc 1 →  1:  (A1 ∧ k <= n ∧ (f', k') == (f*k, k+1) ) →  A'1

arc 1 →  2:  (A1 ∧ k > n ∧ (f', k') == (f, k) ) →  A'2

To complete the proof, we also need to insure that:

In →  A0 and  Aexit →  Out

where Aexit  is the assertion at the exit point. In this and most cases, this is implied by
just equating A0 to In and Aexit to Out.

Before we can actually conduct the proof, we must choose the remaining assertions Ai.
The guidelines for doing this are as follows:

Ai should be always true for the program state whenever the instruction pointer
points to i (i.e. each Ai should be "invariant").
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Let us try to choose appropriate assertions for the factorial example. If we equate  A0 to
In  and A2 to Out, i.e.

A0:  n >= 0

A2:  f = n!

we only have to determine an appropriate A1. Let us try as the value of A1  the assertion

f == (k-1)! ∧  k <= (n+1)
By looking at the state-transition diagram, we can get support for the idea that this
condition is invariant. The VCs can now be filled in:

VC01 arc 0 → 1:    (A0 ∧ true ∧ (f', k') == (1, 1) ) →  A'1
                   |    |         |             |
                   |    |         |             assertion at place 1 (primed variables)
                   |    |         arc assignment
                   |    arc enabling condition
                                       assertion at place 0

i.e. (n >= 0 ∧ true ∧ (f', k') == (1, 1) )
 → (f' == (k'-1)! ∧  k' <= (n+1))

[n does not get primed, as it is a read_only variable.]

[VC11 was discussed earlier.]

VC11 arc 1 → 1:   (A1 ∧ k <= n ∧ (f', k') == (f*k, k+1) ) →  A'1
                  |       |          |                |
                  |       |          |                assertion at place 1
                  |       |          arc assignment                (primed variables)
                  |       arc enabling condition
                  assertion at place 1

i.e.  (f == (k-1)! ∧  k <= (n+1) ∧ k <= n ∧ (f', k') == (f*k, k+1) )
                   assertion at place 1

 →  (f' == (k'-1)! ∧  k' <= (n+1))
                               assertion at place 1 (primed variables)

VC12 arc 1 →  2: (A1 ∧ k > n ∧ (f', k') == (f, k) ) →  A'2

i.e.  (f == (k-1)! ∧  k <= (n+1) ∧ k > n ∧ (f', k') == (f, k) )
                    assertion at place 1

 →  f' = n!
                              assertion at place 2 (primed variables)
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Example Proofs of Verification Conditions

We have now translated the partial correctness of the program into three logical
statements, the VCs. The proof of the three VCs is straightforward and we can take them
in any order. Since each is of the form H → C (hypothesis implies conclusion), we shall
assume the hypothesis and show the conclusion.

VC01 assume: (n >= 0 ∧ true ∧ (f', k') == (1, 1) )
show: (f' == (k'-1)! ∧  k' <= (n+1))

By the rightmost equation in the assumption (f' == 1, k' == 1), what we are to show
follows from a simpler equivalent:

1 == (1 - 1)! ∧  1 <= (n + 1)
The left conjunct simplifies to 1 == 0! and is true since 0! == 1 by definition of factorial.
The right conjunct 1 <= (n + 1) follows from n >= 0.

VC11 assume: (f == (k-1)! ∧  k <= (n+1) ∧ k <= n ∧ (f', k') == (f*k, k+1) )
show: (f' == (k'-1)! ∧  k' <= (n+1))

By the rightmost  equation in the assumption, what we are to show follows from a
simpler equivalent:

f*k == ((k+1)-1)!  ∧  (k+1) <= (n+1)
i.e.

f*k == k! ∧  (k+1) <= (n+1)

The left conjunct follows from the assumption that f == (k-1)! and the definition of
factorial. The right conjunct follows from the assumption k <= n. [Note that the
assumption k <= (n+1) was subsumed by k <= n in this VC, and therefore was not of any
particular use.]

VC12 assume: (f == (k-1)! ∧  k <= (n+1) ∧ k > n ∧ (f', k') == (f, k) )
show:  f' = n!

What we are to show is equivalent, using the equation f' == f, to f = n!. This will follow
from the assumption that f == (k-1)! if we could establish that k = n+1. But we have k <=
(n+1) and k > n in our assumption. Since we are working in the domain of integers, this
implies k = n+1.

Having proved these VCs, we have established the partial correctness of our factorial
program.
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A Note on Choice of Assertions

Although Ai does not have to completely characterize the state whenever the instruction
pointer points to i, it must characterize it sufficiently well that all of the VCs can be
proved. The possible pitfalls are:

If Ai is chosen to be too weak (i.e. too near to universally true), then some
successor post-condition might not be provable.

If Ai is chosen to be too strong (i.e. too near to false), then it might not be
possible to prove it from some predecessor pre-condition.

Termination

Termination proofs proceed by an additional sort of reasoning from partial correctness
proofs. One method, which we call the energy function method involves constructing an
expression E in terms of the program variables that:

E never has a value less than 0

On each iteration of any loop, E decreases.

For the second factorial program,

f = 1;
k = n;
while( k > 1 )
  {
  f = f * k;
  k = k - 1;
  }

it is very clear that the expression k-1 by itself decreases on each iteration and that 0 is its
minimum, since any attempt to make k-1 less than 0 (i.e. k less than 1) will cause the
loop to terminate.

For the first factorial program,

f = 1;
k = 1;
while( k <= n )
  {
  f = f * k;
  k = k + 1;
  }



414 Predicate Logic

the energy function we want is n - k + 1. The value of this expression decreases on
each iteration, since k increase. Moreover, if n - k is small enough, the condition k <= n,
which is the same as n - k + 1 > 0, is no longer true, so the loop will terminate.

Perspective

For most individuals, the real value of understanding the principles of program
correctness is not mostly for proving programs. More importantly, constructing a
program as if correctness had to be proved will give us better-structured
programs. Poorly structured programs are not only hard to prove; they are hard to
understand and hard to build upon.

10.5 Use of Assertions as a Programming Device

Some languages provide for the inclusion of assertions in the program text. The idea is
that the program asserts a certain predicate should be true at the point where the assertion
is placed. At execution time, if the assertion is found to be false, the program terminates
with an error message. This can be useful for debugging. Various C and C++ libraries
include assert.h, which provides such an assertion facility. The idea is that

assert( expression );

is an executable statement. The expression is evaluated. If it is not true (non-zero), then
the program exits, displaying the line number containing the assert statement. This is a
useful facility for debugging, but it is limited by the fact that the assertion must be
expressed in the programming language. The kinds of assertions needed to make this
generally useful require substantial functions that mimic predicate logic with quantifiers.
The only way to achieve these is to write code for them, which sometimes amounts to
solving part of the problem a second time.

10.6 Program Proving vs. Program Testing

There is no question that programs must be thoroughly tested before during development.
However, it is well worth keeping mind a famous statement by E.W. Dijkstra:

Testing can demonstrate the presence of bugs, but it can never prove
their absence.

The only situation in which this is not true is when a program can be exhaustively tested,
for every possible input. But even for inputs restricted to a finite set, the number of
possibilities is impractically large. Consider the number of combinations for a 32-bit
multiplier, for example.
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10.7 Using Assertional Techniques for Reasoning

Understanding the basis for assertion-based verification can help with reasoning about
programs. The form of reasoning we have in mind includes

"if an assertion is known to be true at one place in the program, what can we say
is true at some other place?"

"if an assertion must be true at one place in the program, what must be true at
some other place in order to insure that the first assertion is true?"

Although we will use textual programs to illustrate the principles, it might be helpful to
think in terms of the corresponding graph model.

Conditional statements

if( P )
  statement-1

Assuming that P as a procedure call has no side-effects, we know that P as an
assertion is true before statement-1. More generally, if assertion A is also true
before the if statement (and P has no side-effects), we know that A ∧  P is true
before statement-1.

if( P )
  statement-1
else
  statement-0

Under the same assumptions, we know that A ∧  ¬ P before statement-0.

While Statements

while( P )
  statement-1

Assuming that P has no side-effects, P will be true before each execution of
statement-1. Also, ¬ P will be true after the overall while statement. (Even if A is
true before the while statement, we cannot be sure that A is true before
statement–1 the next time around, unless P implies A.)

In general, if B is true before the while statement, and statement-1 reestablishes B,
then B will also be true on exit.
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We can summarize this reasoning as follows:

If we can prove a  verification condition

(B ∧ P ∧ statement-1)  →  B

then we can infer the verification condition

B ∧ (while P statement-1)  →  (B  ∧ ¬ P)

Here again, B is called a "loop invariant".

Example – While statement

A typical pattern occurs in the factorial program. The loop condition is k <= n.
The invariant B includes, k+1 <= n. On exit, we have the negation of the loop
condition, thus k > n. Together (B  ∧ ¬ P) give k == n+1.

Reasoning by Working Backward

A somewhat systematic way to derive assertions internal to a program is to work
backward from the exit assertion. In general, suppose we know that A is a post-
condition that we want to be true after traversing an arc. We can derive a
corresponding pre-condition that gives the minimal information that must be true
in order for A to be true. This pre-condition will depend on the enabling predicate
E and the assignment F for the corresponding arc, as well as on A. Since it
depends on these three things, and entails the vector of program variables ξ, it is
noted as wlp(A, E, F)(ξ), where wlp stands for "weakest liberal  precondition".
A little thought will show that  wlp(A, E, F)(ξ) can be derived as:

wlp(A, E, F)(ξ)   ≡   ( E(ξ)  →  A(F(ξ)) )

In other words, wlp(A, E, F)(ξ)  is true just in case that whenever the enabling
condition E(ξ) is satisfied, we must have A satisfied for the resulting state after
assignment.

Notice that in relation to A, wlp(A, E, F) will always satisfy the verification
condition for the corresponding arc, that is, we can substitute A for Aj and
wlp(A, E, F) for Ai in the prototypical verification condition:

(Ai  ∧  E  ∧  F) →  A'j

and end up with a true logical statement. Let's try it. Substituting the formula
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claimed for wlp in place of A, we have:

( ( E(ξ)  →  A(F(ξ)) ) ∧  E(ξ) ∧  ξ' = F(ξ) ) →  A(ξ')

Suppose the overall hypothesis is true. Then from E(ξ)  →  A(F(ξ)) and  E(ξ), we get
A(F(ξ)). But from the equation ξ' = F(ξ), we then have A(ξ').

Weakest Liberal Precondition Examples   

(given) statement (given) post-condition wlp
x = y + 5; x > 0 true → y + 5 > 0,

i.e. y > -5
x = x + 5; x == 0 true  → x + 5 = 0

i.e. x == -5
x = x + y; x == 0 true  → x + y = 0

i.e. x + y = 0
[x > y] x++; x > 0 x > y  → (x + 1) > 0
[x > y] x = x - y; x > 0 x > y  → (x -y) > 0

i.e. true
[x > y] x++; y > x x > y  → y > (x + 1)

 i.e. false
[ x > y] y++; x > y x > y  → x > (y + 1)

i.e. x > (y + 1)

A wlp of false says that the given post-condition cannot be achieved for that particular
statement. A wlp of true says that the given post-condition can always be achieved,
independent of the variable state before the statement.

Exercises

1 •• Consider the following program that computes the square of a number without
using multiplication. Devise a specification and show that the program meets the
specification by deriving an appropriate loop invariant.

static long square(long N)
{
long i, sum1, sum2;
sum1 = 0;
sum2 = 1;

for( i = 0; i < N; i++ )
  {
  sum1 += sum2;
  sum2 += 2;
  }
return sum1;
}
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The technique shown in this and the next problem, generalizes to computing any
polynomial using only addition. This is called "finite differences" and is the basis
of Babbage's difference engine, an early computer design. It works based on the
observation that an integer squared is always the sum of a contiguous sequence of
odd numbers. For example,

25 == 1 + 3 + 5 + 7 + 9 (sum of the first 5 odd numbers)

This fact can be discovered by looking at the "first differences" of the sequence of
squares: they are successive odd numbers. Furthermore, the first differences of
those numbers (the "second differences" of the squares") are uniformly 2's. For
any n-th degree polynomial, if we compute the n-th differences, we will get a
constant. By initializing the "counter" variables differently, we can compute the
value of the polynomial for an arbitrary argument by initializing these constants
appropriately.

2 •• Consider the following program, which computes the cube of a number without
using multiplication. Devise a specification and show that the program meets the
specification by deriving an appropriate loop invariant.

static long cube(long N)
{
long i, sum1, sum2, sum3;
sum1 = 0;
sum2 = 1;
sum3 = 6;

for( i = 0; i < N; i++ )
  {
  sum1 = sum1 + sum2;
  sum2 = sum2 + sum3;
  sum3 = sum3 + 6;
  }
return sum1;
}

3 ••• Consider the following Java code:

// assert X == X0

polylist L = X;
polylist R = NIL;
while( /* */ !null(L) )
  {
  R = cons(first(L), R);
  L = rest(L);
  }

// assert R == reverse(X0)
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Here reverse denotes the usual list reversal function. Note that we can apply
reverse to both sides of the equality in the final assertion to get
R == reverse(X0), since for any list R , reverse(reverse(R)) == R. In other
words, we are asserting that this code reverses the original list. What loop
invariant would you assert at /* */ in order to establish that the final assertion
follows from the initial assertion?  (You may make use of the functions such as
reverse and append in your loop invariant, as well as "obvious" identities for
these functions.)  Give an argument that shows that the final assertion follows
from the loop invariant, and that the proposed invariant really is invariant.

4 ••• For  any properties of functions such as reverse and append  you used in the
preceding problem, prove those properties by structural induction on appropriate
functional programs for those functions. An example of such a property is:

(∀ X) reverse(reverse(X)) == X

where it is assumed that the domain of X is that of lists.

5 ••• Devise a square-root finding program based on the squaring program above.
Provide a specification and show the correctness of the program.

6 •• Show that the array summation program is totally correct with respect to its
specification.

7 ••• Show that the array maximum program is totally correct with respect to its
specification.

8 •••• Show that the sorting program is totally correct with respect to its specification.

10.8 Chapter Review

Define the following terms:

assert library
assignment
backtracking
DeMorgan's laws for quantifiers
energy function
existential quantifier
Floyd assertion principle
interpretation
N-queens problem
partial correctness
post-condition
pre-condition
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predicate
quantifier
structural induction
termination
total correctness
transition induction
universal quantifier
valid
verification condition
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11. Complexity

11.1 Introduction

This chapter focuses on issues of program running time, including how to measure and
analyze programs for their running time, as well as provide examples of techniques for
improving program performance. Examples are taken from the areas of sorting and
searching.

The pragmatic aspects of computing require one to be cognizant of the resource-usage
aspects of a program. While such concerns should be secondary to those of the
correctness of the program, they are nonetheless concerns that, like correctness, can make
the difference between success and failure in computer problem solving. The general
term used by computer scientists to refer to resource usage is "complexity". This term
refers not to how complex the program is, i.e. how difficult it is to understand, but rather
how much resources are consumed when the program is executed. Indeed, the least
difficult to understand program might be fairly profligate in its use of resources.

The process of making a program more "efficient" unfortunately often has the effect of
making it harder to understand. To develop a program to a first approximation, the
following axiom might be applied.

Get it right first, then make it faster.

In particular, this axiom should be applied when considering small incremental
improvements in code, which can shave off some fraction of execution time, but which
make the program obscure and more difficult to debug.

The greater thrust of this chapter, however, is algorithmic improvements, that is make a
program faster by choice or development of a better algorithm. Coding a new algorithm
can be like starting afresh with respect to "getting it right" however. For this reason, it is
best to have designed the overall program as a set of modules, with "plug replaceability"
between a simple but slower module and a faster one.

11.2 Resources

By "resource", we typically are concerned with one or more of the following:

Execution time: This is the time it takes a program to process a given input. Time
is considered a resource for at least two reasons:
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The time spent waiting for a solution (by a human, or by some other facet
of automation) is time that could be put to other productive uses. In this
sense, time is not the actual resource, but is instead reflective of resources
that might go unused while waiting.

Thinking of the computer as providing a service, there is a limitation on
the amount of service that can be provided in a given time interval. Thus
programs that execute longer use up more of this service.

Memory space: This is the space used by a program to process a given input.
Memory space used translates into cost of computation in the sense that memory
costs money and the ability to use a certain amount of memory directly depends
on the memory available.

Memory space could be further sub-divided along the lines of a memory
hierarchy, some form of which is found in most computer systems:

Main memory: Semiconductor memory in which most of the program and
data are stored when the program is running.

Cache memory: Very high-speed semiconductor memory that "caches"
frequently-used program and data from main memory.

Paging memory: Slower memory, usually disk, which in simplistic terms
serves as kind of "overflow" or "swapping" area for the main memory.

File memory: Disk or tape memory for file objects used by a program .

In these notes, our primary focus will be on execution time as the resource Some
consideration will be given to memory requirements as well. As we shall see, it is often
possible to "trade off" time resources for memory resources and vice-versa.

11.3 The Step-Counting Principle

Most often we will be interested in relative execution-time comparisons between two or
more algorithms for solving a given problem. Rather than dealing with the actual times a
computer would spend on an algorithm, we try to use a measure that is relatively
insensitive to the particular computer being used. While the speeds of various primitive
operations, such as addition, branching (change of control from one point in the program
to another), etc. may vary widely, we make the assumption that for purposes of
comparing algorithms on a given computer, we can just count the number of each kind
of operation during execution, rather than be concerned with the actual times of those
operations. This is not to say that every occurrence of a given kind of operation takes the
same time; there will be a general dependency on the values of the arguments as well.
However, for purposes of getting started, we make the assumption that the count is an
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adequate measure. We could then get an overall time estimate by multiplying the counts
of various operations by the time taken by those operations and summing over all n
different kinds of operations:

Execution time = ∑
 i = 1

n
 count(Operation i)*time(Operation i) 

Straight-line Programs

Straight-line programs are programs with no branching: every operation in the program is
executed. Thus the execution time is the same regardless of data. For example, consider
the straight-line program:

a = b*c + d;
c = d/e + f;
f = a*c;

Here there are two multiply operations, one divide, and two additions. Thus the total time
would be computed as

execution time =

   2*time(multiply)
+ 1*time(divide)
+ 2*time(add)
+ 3*time(assign)

where time(assign) refers to the time to assign a value to a variable explicitly.

Loop Programs

Very few programs of substance will be straight-line. Typically we have loops, the
execution of which will depend on the data itself. In this case, the total time depends on
the data. Consider

sum = 0;
for( i = 0; i < N; i++ )
  sum = sum +  i*i;

Here the number of times the loop body is executed will be N. Therefore, there will be N
multiply operations. There will also be N additions in the loop body, as well as N
additions of the form i++, and N comparisons i < N. We have as total execution time:

execution time =
2*time(assign) +
N*[time(multiply) + time(add) + time(compare) + time(increment) + time(assign)]
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Recursive Programs

As we know, loop programs can be represented as recursive programs. However,
recursive programs also have the possibility of "non-linear" recursion, making them
sometimes more of a challenge to analyze. Consider the computation of the rex program
sum(1, N) where N >= 0.

sum(M, N) => M >= N ? M;
sum(M, N) => K = (M+N)/2, sum(M, K) + sum(K+1, N);

sum(M, N) computes the sum of integers M through N by dividing the range into two, until
the range is empty. The value of sum is obtained by summing the results of recursive
calls to the function.

The following tree shows how the recursion decomposes for sum(1, 6):

sum(1, 6)

sum(1, 3) sum(4, 6)

sum(1, 2) sum(3, 3) sum(4, 5) sum(6, 6)

sum(1, 1) sum(2, 2) sum(4, 4) sum(5, 5)

Figure 170: Tree of a recursive decomposition

The tree representation for the program's execution of sum(1, N) will have N leaves and
therefore N-1 interior nodes, i.e. 2*N-1 nodes altogether. For each node there will be a
comparison to determine which rule to use, for a total of 2*N-1 comparisons. For each
interior node, there will be 3 additions, and one division by 2. So overall we have

execution time =
   (N-1)*[3*time(add) + time(divide)]
+ (2*N-1)*time(compare)

Here we are ignoring any overhead required to do function calls, and are assuming that
the times to do the basic operations are constant, i.e. independent of the argument sizes.
This is only an approximation to reality, especially if we have to deal with arbitrarily-
large arguments. If time(add) = time(divide) = time(compare) = 1, then the total time is

4*(N - 1) + 2*N - 1

= 6*N - 5
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The analysis above assumes that we already understand the algorithm well enough to see
that a tree is involved, and that we know how to analyze a tree. An alternative approach
that doesn't make such assumptions is to derive a recurrence formula for time patterned
after the rules, but with the data size as an argument. In this case, the "size" is the range
of numbers to be summed. For the basis case, there is only a comparison, so we have:

T(1) => time(compare);

For the induction rule, we make the simplifying assumption that the range is of even
length, so we can divide it in half:

T(2*N) =>
time(compare) + 3*(time add) + 1*time(divide) + 2*T(N);

Again assuming that all operations take the same time, we get

T(1) => 1;

T(2*N) => 5 + 2*T(N);

For example, to sum 8 numbers,

T(8) ==> 5 + 2*T(4)
==> 5 + 2*(5 + 2*T(2))
==> 5 + 2*(5 + 2*(5 +2*T(1)))
==> 5 + 2*(5 + 2*(5 +2*1))
==> 43

which agrees with our earlier calculation of 6*N-5 when N = 8. We can also see that
there is agreement for general N that is repeatedly divisible by 2. Such a number must be
a power of 2, N = 2k. Let S(k) = T(2k). Then we have the equivalent recurrence

S(0) ==> 1;

S(k+1) ==> 5 + 2*S(k);

We can "solve" this recurrence by successive substitutions:

S(k) ==> 5 + 2*S(k-1)
==> 5 + 2*(5 + 2*S(k-2))
==> 5 + 2*(5 + 2*(5 + 2*S(k-3)))
==> ...

until the argument to S is reduced to 0. This will obviously occur after k substitutions, so
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S(k) = 5 + 2*S(k-1)
= 5 + 2*(5 + 2*S(k-2))
= 5 + 2*5 + 22*S(k-2)
= 5 + 2*5 + 22*5 + 23*S(k-3)
= 5 + 2*5 + 22*5 + 23*5 + 24*S(k-4)

....
= 5*(1 + 2 + 22 + 23 + .... + 2k-1 ) + 2k * S(0)
= 5*(2k - 1) + 2k

= 6*2k - 5

11.4 Profiling

Many systems provide a software tool known as a "profiler". Such a tool counts
executions of procedures and the places from which they are called. Using it, one can get
an idea of how much time overall is being spent in various procedures, and thus
possibilities for where to devote attention in improving run time.

A specific example, using the Java interpreter with -prof option will put profile results
from the run in a file java.prof.

Let's suppose that we have the following break down of the time devoted to various
pieces of code A, B, C:

A B C

Figure 171: Execution time profile

The suggestion is that A takes about 50% of the time, B 30%, and C 20%. The question is
where to concentrate code improvements to reduce the execution time? Intuitively we
should concentrate on A, because there we stand to achieve the biggest reduction. But
how much improvement can we get from A alone? In the very best case, we could
eliminate A altogether. This would result in a 50% reduction in execution time. On the
other hand, if we eliminated C altogether, we would still have 80% of the time we did
before, or only a 20% reduction.

Such considerations are quantified in a rule known as Amdahl’s law. In general, if chunk
A takes fraction f of the overall time, then the speedup achieved by reducing A to 0 is at
most 1/(1-f). So, execution of A would have to occupy about 90% of the execution to
enable a 10-fold reduction in execution time if A were eliminated completely. Amdahl's
law was originally derived for application to parallel computing and we'll see more about
it in the chapter Limitations of Computing.
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11.5 Suppressing Multiplicative Constants

Quite often we make the further simplifying assumption that the operation times are the
same for all operations. While this may seem like a drastic oversimplification, it is useful
for comparative purposes. If every operation requires a constant time, then each time can
be expressed as some factor times one of the operations. Thus, in assuming all operations
have the same time, the resulting time estimate will be off by a factor that is at most the
maximum of these factors. For reasons to be explained, it is defensible to make the
assumption that all times are the same, so long as it is clear that this assumption is being
made. With this assumption, we would have the following for the above examples:

straight-line example: execution time = 8 steps

loop example: execution time = 5*N + 2 steps

recursive example:  execution time = 6*N - 5 steps

11.6 Counting Dominant Operations

In many cases, we can get an idea of the execution time by simply focusing on the
number of dominant operations. For example, in the loop program, we could focus on the
number of multiplies or the number of times the loop body is executed. In both cases, we
would end up with an execution time of N steps. In the recursive program, we could
count the number of times the recursive rule is used, which would give us N-1 steps.

11.7 Growth-Rate

Although we may, on occasion, engage in estimating time for a specific input to a
program, in general we will be interested in a much broader measure to give an idea of
the quality of the program or its algorithm. Such a measure is found in the form of
growth-rate comparisons, as we now discuss.

Most programs are designed to work with not just a single input, but rather with a wide,
and usually infinite, set of input possibilities. We often can associate a measure of the
input, usually in the form of a parameter that implies the size of the input. Some examples
are:

Program application Possible measure(s) of input
word processing number of characters in the document, or

number of editing commands
solving linear equations number of equations, and/or

number of unknowns
sorting an array number of elements in the array
displaying a scene graphically number of polygons in the scene
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With each type of program, we try to focus on one key measure in which to express the
program's performance. We try to express the programs resource usage, e.g. execution
time, as a function of this measure. For example, in the loop program above, we could
use the value N as the measure. We derived that

execution time = 5*N + 2 steps

With slight modification, we can convert that program into one that sums the squares of
an array of N elements:

sum = 0;
for( i = 0; i < N; i++ )

sum = sum + a[i]*a[i];

Now the input measure is equated to the size of the array.

Now consider sorting an array, using the following minimum-selection sort algorithm
expressed in Java. (Here calling the constructor on an array of doubles sorts the array in
place; the object created can then be discarded).

class minsort
{
private double array[];       // The array being sorted
int N;                        // The length of the prefix to be sorted

  //  Calling minsort constructor on array of doubles sorts the array.
  //  Parameter N is the number of elements to be sorted (which might
  //  be fewer than are in the array itself).

  minsort(double array[], int N)
    {
    this.array = array;
    this.N = N;

    for( int i = 0; i < N; i++ )
      {
      swap(i, findMin(i));
      }
    }

   //  findMin(M) finds the index of the minimum among
   //  array[M], array[M+1], ...., array[N-1].

  int findMin(int sortFrom)
    {
    // by default, the element at minSoFar is the minimum
    int minSoFar = sortFrom;

    for( int j = sortFrom+1; j < N; j++ )
      {
      if( array[j] < array[minSoFar] )
        {
        minSoFar = j;   // a smaller value is found
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        }
      }
    return minSoFar;
    }

   //  swap(i, j) interchanges the values in array[i] and array[j]

  void swap(int i, int j)
    {
    double temp = array[i];
    array[i] = array[j];
    array[j] = temp;
    }

If we count comparisons, as in array[j] < array[minSoFar], as the dominant
operation, then we could derive

execution time = n*(n-1)/2 steps

To see this, let us extract the loop structure essence of the program:

for( i = 0; i < n; i++ )
  {
  for( j = i + 1; j < n ; j++ )
    *** one step ***
  }

Here one step represents the comparison operation that we are counting. Now examine
the number of times the inner loop body executes as a function of the outer loop index:

i = 0 j = 1, 2, ...., n - 1 n - 1 steps
i = 1 j = 2, 3, ...., n - 1 n - 2 steps
...
i = n-1 j = n, ...., n  - 1 0 steps

In total, we have 0 + 1 + 2 + .... + (n-1) steps, which sums to n*(n-1)/2. This summation
can be shown by induction. This is a special case of the sum of an arithmetic series.

In terms of the topic of this section, we would say that the sorting program's growth-rate
is represented by the function

n → n*(n –1)/2

that is, the function that, with argument n, yields the value of n*(n –1)/2. It is important
to keep in mind that the growth rate is a function, even though it is often written just as an
expression

 n*( n –1)/2
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with the argument n being implicit for simplicity.

Not all programs run the same amount of time for a given input measure. For those that
do not, it is common to use the maximum over all inputs having a given value of the
measure as the growth rate function. For example, suppose we had a program that inputs
strings of 0's and 1's, with the following observed execution times:

Input Time
λ 0
0 1
1 1
00 1
01 4
10 4
11 2
000 1
001 9
010 9
011 9
100 8
101 6
110 4
111 9
...

If we use the length of the input as the measure, then a growth-rate of n → n2 is

suggested, even though not all inputs of length n require n2 time. Thus, we are often
content with focusing on the worst-case among inputs of a given value of the input
measure, rather than considering all inputs, in order to get an idea of the complexity.
Another way of looking at it is that the derived function forms an envelope around the
actual executions times, or is an upper bound on the execution time of the algorithm.
The figure below demonstrates this for the example at hand.
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Figure 172: Execution times for a string-processing program, plotted vs. input
string length. The quadratic curve is an upper-bound on the times.

11.8 Upper Bounds

In general, a function can be an upper bound on execution time without having all of its
points correspond to actual execution times. For example, if the above hypothetical
algorithm used at most 12 steps to process any input of length 4, then the upper bound of

n → n2 would still be consistent. Likewise, the function n → n3 would also be an upper
bound, although qualitatively a poorer one with respect to the given data.

Informally, when an upper bound fits the data points closely, we say it is a tight upper
bound. Obviously, the tighter an upper bound is, the more information is conveyed by the

statement that it is an upper bound. That is, saying that n → n2 is an upper bound

conveys more information than saying that n → n3 is.

For convenience, it is common to omit the argument part of functional expressions when

talking about growth rates. Thus n3 would actually stand for the function n → n3. We
will be taking this approach from here on in the discussion, except at points where it is
useful to make it clear that we are talking about a function rather than just an expression.

11.9 Asymptotic Growth-Rate

A coarse, but useful, measure for comparing algorithms is based on asymptotic growth-
rate. This measure has the benefit of being relatively easy to derive, since it is impervious
to the making of many approximations in the derivation process. Asymptotic growth rate
is a measure of goodness of the time taken by an algorithm as the value of the input
measure n grows without bound. In computing asymptotic growth rate, we often ignore
multiplicative constants in the complexity function and focus on the "rate" itself. Thus,
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while an execution time measure of n2 (i.e. the function n → n2) is obviously better than

one of n3, the asymptotic comparison would also rank 1000n2 (i.e. the function
n → 1000n2) as being better than n3, even though the latter is better (i.e. lower) for

values of n < 1000, called the crossover point. The reason to prefer 1000n2 is that n3 is
only better than it for a finite number of values of n (assuming the input measure is an

integer). For the remaining infinite number of inputs, 1000n2 is better. Of course, this
sort of reasoning is most meaningful when the crossover point is within the range of
values of n to which the algorithm is actually going to be applied.

We can simplify the task of asymptotic comparisons by observing that, in a function the
value of which is a sum of terms, the sum is often asymptotically dominated by one of
those terms. Consider for example, the function

n → 1000n2 + n3

For large n, the second term dominates, in the sense that the first term becomes relatively
insignificant the larger n becomes. Thus, for purposes of comparing this function to

another, we can simply neglect the term 1000n2 in the limit. The first function, now
approximated by

n → n3

is clearly seen to grow faster than the second function.

11.10 The "O" Notation

For purposes of comparing asymptotic growth rates, the "O" (for "order") notation has
been invented†. In considering a function such as

n → 1000n2 + n3

it is natural to indicate that the growth rate of that function is "on the order of" the
growth-rate of the function n → n3, or for short, the function is "order of" n3. A simple
way of accomplishing this is to define a set of functions, the growth rate of each of which
is no more than a certain metric times an arbitrary constant. For example,

O(n3)

means the set of functions growing no faster than does the function n → cn3, where c is
an arbitrary constant.

                                                  
† The "O" notation is due to P.G.H. Bachmann, Zahlentheorie, vol. 2: Die analytische Zahlentheorie,

B.G. Teubner, Leipzig, 1894.
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If f and g are two functions,
f ∈  O(g)

means that f is bounded from above by g times a constant.

It is also common to see in the literature
f = O(g)

which is a slight abuse of notation, but one having the same meaning as f ∈  O(g). It is
also common to use expressions in place of functions. Thus, one often sees something
like

n2 ∈  O( n3 )

when what is really meant is the following relationship:

(n → n2) ∈  O( n → n3 )

Examples

We have already seen that n2 ∈  O( n3 ). We also mentioned that 1000n2 ∈  O( n3 ). As

will be seen, cnr ∈  O( ns ) whenever r < s, for any constant c. The rationale for all of
these can be seen by looking at the slopes of the curves as n increases without limit. Even

if c is very large, cnr will eventually be overtaken by ns for large enough n if r < s. The
following diagram show the case where f ∈  O( g ) even though for low values of n, f's
value is a significant multiple of g's value.

n

f

g

Figure 173: f ∈  O( g ), assuming the indicated trends in f and g continue

We can use g's algorithm for small values of n and f's algorithm for large values to get the
best of both worlds. We would choose between the two algorithms depending on whether
n < n0 where n0 is the breakpoint, and the resulting execution time would then appear as
in the following diagram.
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Figure 174: Combining two algorithms to get a superior execution time function

Simplified Definition of "O"

We give a definition for the special case of functions with natural number arguments,
which allows most resource measures to be modeled, due to the fact that we almost
always base the measure on the size of some input facet and the size is in integral units.
Later (in the exercises) we give the more general definition, and indicate that the two
definitions are consistent on the domain of natural numbers.

Let f: N → R and g : N → R be two functions with domain being the
natural numbers and range being the positive real numbers. Then

f ∈  O(g )

[typically read "f is oh of g" or "f is big-oh of g"]

means

(∃ c)(∀ n)  f(n) < cg(n)

This says: "there exists a constant c such that for all n, f(n) is less than or
equal to c times g(n).

For the case of R as a domain, we would need to use a more complex definition for f
 ∈  O(g ):
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(∃ c)(∃ n0)(∀ n > n0 )  f(n) < cg(n)

For the case of N as a domain, the two definitions are equivalent.

If we are given f and g, then in order to show that f ∈  O(g), we need only to exhibit an
appropriate c. We show this in the following examples.

Examples

n2 ∈  O( n3 ) Take c = 1. Obviously (∀ n) n2 < 1n3.

1000n2 ∈  O( n3 ) Take c = 1000. Obviously (∀ n) 1000n2 < 1000n3.

n2 + 106n ∈  O( n2 ) Take c =2*106. We have

(∀ n) n2  + 106n  <  106n2+ 106n

<  106n2+ 106n2 = 2*106n2

since (∀ n) n < n2.

11.11 O Notation Rules

Fortunately, it is not necessary to return to first principles for every comparison of two
functions. We can establish some rules that help us reason about relationships between
asymptotic growth rates:

Transitivity Rule

If f ∈  O(g) and g ∈  O(h), then f ∈  O(h).

Proof: Suppose that f ∈  O(g) and g ∈  O(h). Then by definition, we know that for some
constants c and d:

(∀ n)  f(n) < cg(n)
and

(∀ n)  g(n) < dh(n)

i.e. the existence of c and d is guaranteed by our supposition and the definition of O. We
must then show

(∃ e)(∀ n)  f(n) < eh(n)
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We can do this by exhibiting a constant e that makes this statement true. It appears that
choosing e to be the product of c and d will do the job: We need to show that, for
arbitrary n,

f(n) < cdh(n)

But we already have

f(n) < cg(n)

and
g(n) < dh(n)

Putting these two inequalities together gives exactly what we need.

Sum Rule

If f ∈  O(h ) and g ∈  O(k ), then f+g ∈  O(max(h, k)).

Here we use f + g as an abbreviation for the function n → f(n) + g(n) and max(h, k) as an
abbreviation for the function n → max(h(n), k(n)).

Proof: For convenience, define m to be the function n → max(h(n), k(n)). That is, for all
n, m(n) = max(h(n), k(n)). Assume that f ∈  O(h ) and g  ∈  O(k), to show that
(n → f(n) + g(n)) ∈  O(m). Let c and d be constants such that

(∀ n)  f(n) < ch(n)
and

(∀ n)  g(n) < dk(n)

Then we have

(∀ n)  f(n) + g(n) < max(ch(n), dk(n))

Thus

(∀ n)  f(n) + g(n) < max(c, d) m(n)

Therefore we have found a constant, namely max(c, d), which establishes what we want
to show.

The sum rule is frequently applied in program analysis. If a program consists of two parts
in sequence, P; Q, with the complexity of each in terms of the input measure being
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represented by functions f and g, respectively, and h and k are known upper bounds on f
and g, then the function n → max(h(n), k(n)) is an upper bound on the overall program
complexity. Put another way, the complexity of the combination P; Q is dominated by the
part with the greater complexity. Quite often, the same part dominates for all values of
the input measure.

Polynomial Rule

By applying the sum rule inductively, we can get the following:

Let f(n) be any polynomial in n, with k being the highest exponent.

Then f ∈  O(nk).

Caution: We need to be aware that polynomials have a fixed number of terms, i.e. the set
of terms cannot be a function of n, as in the following:

Example of a Fallacious Argument: n3 ∈  O(n2 )

Bogus Proof: n3  = n2+ n2+....+n2 where the sum is taken over n terms. By the

polynomial rule, since the highest exponent is 2, we have n3 ∈  O(n2 ).

Constant Absorption Rule

It is never necessary to write f(n) ∈  O(dg(n)) where d is a constant. It is always
considered preferable to write this as f(n) ∈  O(g(n)). The argument here is that the
constant d can be "absorbed into" the constant that exists by definition of f(n) ∈  O(g(n)).

Proof: Assume that f(n) ∈  O(dg(n)) where d is a constant, to show f(n) ∈  O(g(n)). By
supposition, there is a c such that

(∀ n)  f(n) < cdg(n)

But letting e = cd, e is also a constant, so

(∃ e)(∀ n)  f(n) < eg(n)

Therefore f(n) ∈  O(g(n)).
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Meaning of O(1)

When we say that f ∈  O(1), we mean that f is O of the function n → 1, i.e. the constant
function 1. By the constant absorption rule, any function bounded above by a constant is
O(1). So saying f ∈  O(1) is just another way of saying that f is bounded by a
constant. To say that f ∈  O(c) where c is some other constant is the same as saying
f ∈  (1), so we always write the latter.

For example, the linear addressing principle says that any element within an array can
be accessed, given its index, in time O(1). This is an important advantage of arrays over
linked lists, for which the access can only be bounded by O(n) where n is the number of
elements in the list.

Multiplication Rule

The proper form of argument when the number of terms is a function of n is given by the
following:

If f ∈  O(g), then m(n)*f(n) ∈   O(m(n)*g(n)).

In terms of programs, if g provides an upper bound on the execution of the body of a
loop, where n is the value of the input measure, and the loop executes m(n) times, then
the function n → m(n)*g(n) provides an upper bound for the overall program.

Example – The following program has O(ng(n)) as an upper bound, assuming that the
loop body does not change i.

for( i = 0; i < n; i++)

.... some O(g(n)) computation ....

Here m(n) = n.

11.12 Analyzing Growth of Exotic Functions

The rules above give us ability to analyze some basic functions, but it does not help us
handle cases that will be encountered frequently, such as ones involving log n [all logs
will be assumed base 2 unless otherwise noted. However, since logs of different bases
differ by constant factors, it would not be worthwhile differentiating them in the O
notation anyway, due to the constant absorption rule.]

As an overview, it is worth establishing a framework of a few functions in a "hierarchy"
of functions that often come up in algorithms:

1 < log n < .... < n1/4 < n1/3 < n1/2 < n < n log n < n2 < n3 < n4 < .... < 2n <  n !
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Each "function" in this chain is O of the next function, but not conversely. We will
establish some of these relations in this section. First we show a few comparative plots to
remind ourselves of how some of these functions behave.

n*n

n log(n)

n

Figure 175: n2 vs. n log n  vs. n

2n

2n

Figure 176: 2n  vs. n2
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A convenient way to approach analysis of some functions is through the derivative.
Suppose we are trying to establish f ∈  O(g). Even though we are working with functions
on a natural number domain, suppose that each function has an analytic counterpart F and
G on the real domain. If G maintains a greater derivative than F for sufficiently large n,
then at some point the slope of the curve for F will stay less than the slope of the curve
for G. By extrapolating from this point, we can see that G will ultimately overtake F.
This is illustrated in the following diagram.

n

F

G

n
0

Figure 177: Showing that f ∈  O(g) through knowledge of the derivatives

of corresponding analytic functions. At point n0 the
derivative of G becomes greater than that of F.

11.13 Derivative Rule

A sufficient condition for f ∈  O(g), where f and g are restrictions of analytic functions F
and G to the natural number domain, is that

(∃ n0)(∀ n > n0)  F'(n)  < G'(n)

where F' and G' denote the first derivatives of F and G respectively.

Caution: The condition above is only sufficient for f ∈  O(g). It is not necessary. For
example, one can easily construct examples using functions where each function is O of
the other, yet there are no corresponding analytic functions.

Example: log n ∈  O(n)

Here we are comparing two functions: log, and the identity function n → n. Let us call
the analytic counterparts F and G. Then from calculus the derivatives have the property
that



Complexity 441

F'(n) = c / n where c is an appropriate constant†

G'(n) = 1

Thus if we choose n
0
 to be the next integer above c, we have the conditions set forth in

the derivative rule: (∀ n > n
0
)  c / n  < 1.

Example: log n ∈  O(n1/2)

n1/2 is, of course, another way of writing the square root of n. From calculus, the

derivative of this function is 1/(2n1/2). This derivative will overtake the derivative of log
n, which is c / n. Equality occurs at the point where

 c / n  =  1/(2n1/2)

i.e. n = ceiling(4c2).

11.14 Order-of-Magnitude Comparisons

Below is a table of some common functions and their approximate values as n ranges
over 6 orders of magnitude.

log n 3.3219 6.6438 9.9658 13.287 16.609 19.931
log2n 10.361 44.140 99.317 176.54 275.85 397.24
sqrt n 3.162 10 31.622 100 316.22 1000
n 10 100 1000 10000 100000 1000000
n log n 33.219 664.38 9965.8 132877 1.66*106 1.99*107

n1.5 31.6 103 31.6*104 106 31.6*107 109

n2 100 104 106 108 1010 1012

n3 1000 106 109 1012 1015 1018

2n 1024 1030 10301 103010 1030103 10301030

n! 3 628 800 9.3*10157 102567 1035659 10456573 105565710

Values of various functions vs. values of argument n.

Such tables can give hints to the growth rate of functions, although are by no means to be
considered a proof. For such things we should rely on analytic methods. In any case, such
tables are instructive. For example, the table above shows that we can run a problem with

a factor of 106 larger in its input measure using an O(log n) algorithm in only 20 times

                                                  
† Recall that for any two bases, a and b, logbx = logba  logax.
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longer to execute. For an O(n log n) algorithm, we would require only 20*106 times

longer, as compared to 1012 times longer for an O(n2) algorithm, a factor of 5*104.

An "inverted" version of the table can be used determine the relative sizes of problem that
can be run in a fixed time using algorithms of various orders.

Time Multiple 10 100 1000 10000 100000 1000000
log n 1024 1030 10300 103000 1030000 1030000

log2n 8 1024 3*109 1.2*1030 1.5*1095 1.1*10301

sqrt n 100 104 106 108 1010 1012

n 10 102 103 104 105 106

n log n 4.5 22 140 1000 7.7*103 6.2*104

n1.5 4 21 100 210 2100 10000
n2 3 10 32 100 320 1000
n3 2 4 10 21 46 100
2n 3 6 9 13 16 19
n! 3 4 6 7 8 9

Increase in size of problem that can be run based on increase in allowed
time, assuming algorithm runs problem size 1 in time 1.

This table tells us, for example, that if we have 1000 times more time, if our algorithm is
O(n!) we can only run a problem 6 times as large. On the other hand, if we have an
n log n algorithm, we could run a problem 140 times as large in the same time.

11.15 Doubling Comparisons

Perhaps a handier way to remember how various functions grow is to consider what
happens if we double the input size. If the function is O(n), then doubling the input size
will at most double the execution time. If the function is log(n), then doubling the input
size will only add a constant to the execution time, and so on. We can summarize these
sorts of observations in the following table, where k is a constant.

Complexity Doubling the input causes execution time to
O(1) stay the same

O(log n) increase by an additive constant

O(n1/2) increase by a factor of sqrt(2)

O(n) double
O(n log n) double, plus increase by a constant factor times n

O(n2) increase by a factor of 4

O(nk) increase by a factor of 2k

O(kn) square
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This table can be used to help intuition in algorithm design. For example, if the algorithm
is observed to double in time plus add a constant factor times the input, then we can infer
that the algorithm is O(n log n). An example of this kind of behavior is quicksort, under
ideal circumstances.

11.16 Estimating Complexity Empirically

Given access to the code of a program, the complexity can often be determined by
analysis. However, it may be desirable to check our analysis empirically, or we might
wish to estimate the complexity of a program the code of which we do not have. A way
to proceed experimentally is to run the program on inputs of a variety of values of the
input measure and record the time in each case. This will give us a set of size-time pairs
(Si, Ti). A good choice would be to have input sizes differ by successive powers of two.
Of course we do not know that our chosen inputs achieve the maximum time among
inputs of that size; we are just assuming that all will be about the same, an assumption
that is not always valid. If this assumption is in question, we can run the program with
multiple inputs of each size.

The size-time pairs derived above constitute an approximation to the time complexity
function T of the program. Now we form a hypothesis that T is O(f) for some function f.
For example, if we were analyzing a sorting program, we might hypothesize that T is

O(n2). If our hypothesis is correct, then there must be a constant c such that

(for all S) T(S) < cf(S).

We can compute the ratios T(S)/f(S). If there is a noticeable upper bound on this ratio,
then that would make a possible value of c. If the ratios seem to hover around c,
especially as S gets larger, then there is a good chance that our hypothesis is correct. On
the other hand, if the ratios tend to decrease with S, our hypothesis is probably correct,
but it might have been too conservative. That is, there might be a tighter bound, such as n
log n in the case of the sorting program. The third possibility is that there is no bound
evident. In this case, our hypothesis is probably incorrect and we should try again with a
new hypothesis of a faster growth rate.

Empirical Comparison of Sorting Procedures

The various sorts described were tested on our local computer with varying sizes of
arrays, doubling the sizes from 16 through 4096. The algorithms themselves will be
described in a later section. As we timed each run, we also computed the time divided by

n, n2, and n log n, in an effort to ascertain the asymptotic performance and compare it to
our analytic results. The results are shown below. The reader should examine each table
and conclude:
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(a) which bound best describes the performance of that particular algorithm

(b) an appropriate multiplicative constant for each bound

(c) an estimate of the time each algorithm would take for one million elements

The reader should also try to get a sense of how a good asymptotic bound does not
necessarily indicate the best algorithm for small data sizes.

minsort
elements   time (sec)   time/n       time/(n*n)   time/(n*log n)
      16   0.00085938   0.00005371   0.00000336   0.00001937
      32   0.00304688   0.00009521   0.00000298   0.00002747
      64   0.01109375   0.00017334   0.00000271   0.00004168
     128   0.03687500   0.00028809   0.00000225   0.00005937
     256   0.14187500   0.00055420   0.00000216   0.00009994
     512   0.56750000   0.00110840   0.00000216   0.00017768
    1024   2.24750000   0.00219482   0.00000214   0.00031665
    2048   8.98000000   0.00438477   0.00000214   0.00057508
    4096  35.89000000   0.00876221   0.00000214   0.00105343

insertSort
elements   time (sec)   time/n       time/(n*n)   time/(n*log n)
      16   0.00058594   0.00003662   0.00000229   0.00001321
      32   0.00210938   0.00006592   0.00000206   0.00001902
      64   0.00781250   0.00012207   0.00000191   0.00002935
     128   0.03000000   0.00023437   0.00000183   0.00004830
     256   0.11875000   0.00046387   0.00000181   0.00008365
     512   0.47125000   0.00092041   0.00000180   0.00014754
    1024   1.88000000   0.00183594   0.00000179   0.00026487
    2048   7.50500000   0.00366455   0.00000179   0.00048062
    4096  34.86000000   0.00851074   0.00000208   0.00102320

quicksort
elements   time (sec)   time/n       time/(n*n)   time/(n*log n)
      16   0.00082031   0.00005127   0.00000320   0.00001849
      32   0.00171875   0.00005371   0.00000168   0.00001550
      64   0.00328125   0.00005127   0.00000080   0.00001233
     128   0.00906250   0.00007080   0.00000055   0.00001459
     256   0.01625000   0.00006348   0.00000025   0.00001145
     512   0.03500000   0.00006836   0.00000013   0.00001096
    1024   0.07500000   0.00007324   0.00000007   0.00001057
    2048   0.17000000   0.00008301   0.00000004   0.00001089
    4096   0.35000000   0.00008545   0.00000002   0.00001027
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heapsort
elements   time (sec)   time/n       time/(n*n)   time/(n*log n)
      16   0.00144531   0.00009033   0.00000565   0.00003258
      32   0.00242187   0.00007568   0.00000237   0.00002184
      64   0.00640625   0.00010010   0.00000156   0.00002407
     128   0.01218750   0.00009521   0.00000074   0.00001962
     256   0.02875000   0.00011230   0.00000044   0.00002025
     512   0.06375000   0.00012451   0.00000024   0.00001996
    1024   0.14250000   0.00013916   0.00000014   0.00002008
    2048   0.31000000   0.00015137   0.00000007   0.00001985
    4096   0.68000000   0.00016602   0.00000004   0.00001996

radixSort
elements   time (sec)   time/n       time/(n*n)   time/(n*log n)
      16   0.00335937   0.00020996   0.00001312   0.00007573
      32   0.00546875   0.00017090   0.00000534   0.00004931
      64   0.01093750   0.00017090   0.00000267   0.00004109
     128   0.02187500   0.00017090   0.00000134   0.00003522
     256   0.04312500   0.00016846   0.00000066   0.00003038
     512   0.08500000   0.00016602   0.00000032   0.00002661
    1024   0.18000000   0.00017578   0.00000017   0.00002536
    2048   0.35000000   0.00017090   0.00000008   0.00002241
    4096   0.69000000   0.00016846   0.00000004   0.00002025

Use of Limits

Sometimes a quick way to check whether f ∈  O(g), g ∈  O(f), etc. is to look at the limit of
f(n)/g(n) as n increases without bound. If this limit exists (i.e. is finite), then f ∈  O(g).
This follows from the definition of "limit":

lim h(n) = c
n → ∞

means that

(∀ ε > 0)(∃ n0)  (∀ n > n0)  | h(n) - c | < ε

If this limit exists, where the h(n) of interest is f(n)/g(n), then

(∀ n > n0) | f(n)/g(n) - c | < ε

Thus (since functions of interest to us are positive)

(∀ n > n0) f(n) < (c + ε)g(n)

By letting d be the maximum of the values of f(n) for n < n0, we get

(∀ n) f(n) < max(d, (c + ε))g(n)
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By choosing the constant in the definition of O to be max(d, (c + ε)), we have shown

Limit Rule

If a finite limit c of the ratio of f(n)/g(n) exists

lim f(n)/g(n) = c
n → ∞

then f ∈  O(g).

L’Hopital's Rule

Sometimes the limit may exist but is not easy to derive. This happens when the ratio
f(n)/g(n) cannot be simplified in an obvious way. An example is log(n) / sqrt(n). Both the
numerator and denominator go to ∞ as n increases. In such cases, the notion of derivative
can again be used:

lim f(n)/g(n) =  lim f'(n)/g'(n)
n → ∞        n → ∞

where f' and g' denote the first derivatives of f and g, provided that

lim f(n) =  lim g(n) = ∞
n → ∞         n → ∞

We can continue applying this rule iteratively until a reducible form is obtained, since

lim f'(n)/g'(n) =  lim f''(n)/g''(n)
n → ∞         n → ∞

Additional Complexity Notation

Here is some additional notation that is used in the literature (see the references by Knuth
and by Brassard).

f ∈  Ω(g) is used to designate that g  ∈  O(f). That is, g is a lower bound on f,
within the confines of some multiplicative constant.

f ∈  Θ(g) is used to abbreviate that f ∈  O(g) and g ∈  O(f), i.e. the two functions
have the same growth-rate.

f ∈  ο(g)  [f is "little-oh" of g] means that f ∈  O(g) and that the limit of f(n)/g(n) is
0. In other words, f(n) becomes insignificant compared to g(n) as n gets large.
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In particular, use of Θ notation indicates that the given bound is tight.

Exercises

1 •• Show that for any positive constant ε, log n ∈  O(nε).

2 •• Show that ∑
 i = 1

n
 i2    ∈  O(n3)

3 ••• Derive a closed form expression for ∑
 i = 1

n
 i2  . Prove that your expression is correct

by induction. (Hint: From the preceding problem, it might be reasonable to try a
3rd order polynomial. If there is such a polynomial, you could solve for its
coefficients by constructing 4 equations with the coefficients as unknowns.)

4 ••• Show that for any fixed k, and any c > 1, nk ∈  O(cn).

5 •• Which of the following are true, and why?  2
n
 ∈  O(2

n+1
). 2

 n+1
 ∈  O(2

 n
).

6 • Suppose that a and b are positive integers with a < b. Which of the following are

true, and why?  na ∈  O(nb). nb ∈  O(na).

7 •• Suppose that a and b are positive constants with 1 < a < b. Which of the following

are true, and why?  an ∈  O(bn). bn ∈  O(an).

8 •••• Suppose that f and g are functions such that f(n) ∈  O(g(n)). Let c be a positive
constant. Is it necessarily true that f(cn) ∈  O(g(n))?  Justify your answer.

9 ••• Let b be a positive integer. Show that

( 1 + b + b2 + b3 + … + bn ) ∈  Ο(bn).

 [Hint:  There is a closed form for the left-hand side: It is the sum of a geometric
series.]

10 •• Show that for any positive integer k, (log n)k ∈  O(n).

11 •• Prove the multiplication rule:  If f ∈  O(g), then n → n*f(n) ∈  O(n → n*g(n)).
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12 ••• As mentioned earlier, our definition of f ∈  O(g) applies to the restricted case that
the domains are natural numbers. For the more general case of real domains, the
definition needs to be modified. In fact, the standard definition of f ∈  O(g) is

(∃ c)(∃ n0)(∀ n > n0)  f(n) < cg(n)

That is, there exist constants c and n0 such that for all n beyond n0, f(n) < cg(n).
Show that on the domain of natural numbers, this definition is equivalent to the
definition given in these notes. [Hint:  For a given n0, the set of natural numbers
less than n0 is finite. Thus one can use the maximum of the values of f(n) over
this set in the construction of the constant c.]

13 •••• Using the general definition in the previous exercise, re-prove each of the rules for
O that have been derived in the notes.

14 ••• For each of the following program outlines, provide the best "O" upper bound on
the time complexity growth rate as a function of parameter N, where P(); is some
constant-time computation. In all cases i and j are declared as int. Unless
otherwise stated, assume single arithmetic operations are O(1).

a. for( i = N; i > 0; i-- )
P();

b. for( i = N; i > 0; i-- )
for(j = 0; j < i; j++ )

P();

c. for( i = N; i > 0; i-- )
for( j = i; j < i+1000000; j++ )

P();

d. for( i = N; i > 0; i-- )
for( j = i; j > 1; j = j/2 )

P();

e. for( i = N; i > 0; i = i/2 )
for( j = i; j > 1; j = j/2 )

P();

f. for( i = N; i > 0; i /= 2 )
  for( j = i; j > 0; j-- )

P();

g. int i, j;
for( j = N; j > 0; j-- )
  for( i = j; i > 0; i /= 2 )

P();

h. double F = 1;
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for( i = N; i > 0; i-- )
F *= N;

15 ••• Rank the following functions in such a way that f precedes g in the ranking
whenever f(n) ∈  O(g(n)). Show your rationale.

a(n) = n1.5

b(n) = n * log n

c(n) = n/ log n + n3

d(n) = (log n)2  + log(log n)

e(n) = n + 109

f(n) = n!

g(n) = 2n

11.17 Case Studies Using Sorting

As already mentioned, the problem of arranging the elements of a sequence into
increasing order is called sorting. Because the problem is easy to understand and there is
a large number of methods, sorting provides a good set of examples for analyzing
complexity. Earlier we saw that sorting by repeatedly selecting the minimum element

from an array gives an upper bound of O(n2) for an n-element array. Here we look at
other methods for sorting with hopes that good algorithm design can improve this bound.

This is important when n gets large. For a sequence of size 106, if the complexity of

sorting were n2 microseconds, it would take 106 seconds to sort the sequence, i.e. it
would take over 11.5 days. If we had a supercomputer that ran 100 times this fast, then
the time still might be prohibitive, over 2.7 hours. If we were able to improve the
algorithm to n log n microseconds, then a sequence of the same size would take less than
12 milliseconds, or less than .12 milliseconds on the supercomputer.

Although they may be expressed using numbers as data elements, a typical sorting
application actually sorts structs, data objects consisting of several components or fields.
Typically only one or two fields comprise the values upon which records are compared.
The aggregate of these fields is called the key of the record. For example, records
representing people might have a combination of last name and first name as the key. If
the keys consist only of integers in a relatively small range, the best algorithm is apt to be
quite different than in a case where the key is a chemical formula of arbitrary size.
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Bucket Sort

For sorting elements chosen from a small range of integers, a bucket sort is a good
choice. Suppose the range is 0 to N-1 where N is fixed. Then we can sort by constructing
an array of N items into which the data are placed. The elements of this array are thought
of as buckets. The general principle here is called distribution sorting, since we
distribute the items into buckets. If the data items are just numbers, then since all
numbers are alike, the buckets can just be counters of the number of times each number
occurs. If the data items are general records, then the buckets would need to be containers
for a sufficient number of records. A linked list of records would be a good candidate
implementation.

The advantage of bucket sort is that it runs in O(n) time, because we need only make one
pass through the input data to put all of the data in buckets, then a pass over the buckets
to create the sorted data. This analysis assumes that most buckets are non-empty. If there
is a much larger number of buckets than records and many of the buckets are empty, then
the time to scan the buckets could dominate. Our O(n) figure assumes that almost all
buckets have something in them.

Radix Sort

Radix sort is a variant of bucket sorting which uses fewer buckets by exploiting radix
representations of the integer keys. The reason that the number of buckets is of concern is
that if there are many more buckets than items to be sorted, and many buckets end up
empty, handling the number of buckets could dominate the sorting time.

If the range of numbers is very large, we can conduct the distribution sort recursively, by
dividing up the range into sub-ranges, performing an initial distribution, then sorting
within the buckets. A variation on this idea is to use the radix principle. It is applicable
when the values are represented as integer numerals in some base (radix). We sort on
each digit of the numerals, starting with the least-significant. If the radix is b, then there
are b buckets. We repeat this process, progressing toward the most-significant digit. After
each distribution, we regroup the items anew, taking care to preserve their order from the
previous distribution. After the last regrouping, the items are sorted.

The radix sorting principle was used on automatic punch-card sorters, and can also be
used in hand punch-card sorting. The following illustrates how a home-made indexing
system amenable to radix sorting can be constructed using cards. Obtain a deck of cards.
Estimate n, the maximum range of values to be used in sorting. Punch log n holes along a
specific edge of each of the cards, as suggested by the following diagram. For a card
numbered m, cut a channel from the hole to the edge of the card for each hole
corresponding to a 1 bit in the binary representation of m.



Complexity 451

Figure 178: The card for number 0 in the indexing system

Figure 179: The card for number 5 in the indexing system

To sort the cards, insert a spindle into the holes representing the lowest-order bit. Lift the
spindle, separating the cards without channels at that bit to those with channels. Restack
the cards with the non-channel cards in front. Repeat this process on the next significant
bit, and so on, up to the most significant bit. At the conclusion, the cards will be sorted.

Figure 180: Using a spindle to select the cards having their fifth bit 0,

a step in the radix sorting process

The following Java code simulates the sorting process outlined above.

class radixSort
{
/**
  *  Calling radixSort constructor on array of floats sorts the array.
  *  Parameter N is the number of elements to be sorted.
  */

// radixSort works using binary representation of numbers being sorted.
// radixSort first sorts on the least-significant bit, then the next least,
// and so on until there are no more bits which have 1 as a value.
// On each pass, it counts the number of words with a 0 in the current
// bit position. It then copies the elements from the array into a
// buffer so that all words with a 0 precede all with a one. It then
// copies the buffer back to the array for the next pass.
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radixSort(int array[], int N)
  {
  int buffer[] = new int[N];    // place to put result of one pass

  boolean done = false;         // indicates whether sorting completed

  for( int shiftAmount = 0; !done; shiftAmount++ )
    {
    // one pass consists of the following:

    int count = 0;              // count of number of 0 bits

    done = true;

    // first phase: determine number of words with 0 bit

    for( int i = 0; i < N; i++ )
      {
      int shifted = (array[i] >> shiftAmount);  // move bit to low-order

      if( shifted > 0 )                         // is anything left?
        done = false;

      if( shifted % 2 == 0 )
        count++;                                // count this 0
      }

    if( done )
      break;

    // second phase: redistribute words with 0 vs. 1

    int lower = 0, upper = count;       // positions for redistribution

    for( int i = 0; i < N; i++ )
      {
      int shifted = (array[i] >> shiftAmount);

      if( shifted % 2 == 0 )
        {
        buffer[lower++] = array[i];
        }
      else
        {
        buffer[upper++] = array[i];
        }
      }

    for( int i = 0; i < N; i++ )
      {
      array[i] = buffer[i];
      }
    }
  }

The time to sort a set of numerals using radix sort is proportional to the number of
numerals times the number of digits in the longest numeral. If the latter number is
bounded by a constant K, then n numerals can be sorted in time proportional to Kn, i.e.
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O(n) time. Again, this sort works only in the case that data can be represented as
numerals in some radix.

We now turn to sorting methods that work on general keys, using only the assumption
that two keys can be compared, but nothing further. A number of obvious sorting

algorithms repeat the bound of O(n2) given by minsort discussed earlier. These include:

Simple insertion sort:

Repeat the following process: Begin with a prefix of the array containing just one
element as a sorted array. From the remaining elements, choose the next one and find its
position in the sorted array. Insert the element by moving the higher elements upward
one. The algorithm is expressed in Java is shown below. As before, calling the
constructor is what causes the array to be sorted, in place.

class insertSort
  {
  private double array[];     // The array being sorted
  int N;                      // The length of the prefix to be sorted

  // Calling insertSort constructor on array of doubles sorts it.
  // Parameter N is the number of elements to be sorted (which might
  // be fewer than are in the array itself).

  insertSort(double array[], int N)
    {
    this.array = array;
    this.N = N;

    for( int i = 1; i < N; i++ )
      {
      insert(i, findPosition(i));
      }
    }

   //  insert(i, j) inserts array[i] into an array at position j,
   //  shifting to the right the elements
   //  array[j+1], array[j+2], ...., array[i-1]

  void insert(int i, int j)
    {
    double hold = array[i];
    for( int k = i; k > j; k-- )
      {
      array[k] = array[k-1];
      }
    array[j] = hold;
    }

   //  findPosition(i) finds the position at which to insert array[i]
   //  in array[0] .... array[i-1]
   //
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  int findPosition(int i)
    {
    double item = array[i];
    for( int k = i-1; k >= 0; k-- )
      {
      if( array[k] <= item )
        return k+1;
      }
    return 0;
    }
 }

That the above insertion sort is O(n2) can be seen by analyzing the programs using step

counting. Intuitively, minsort and insertion sorts get their O(n2) linear nature of their
attack on the problem: we have an outer loop that runs n steps, and the cost of that loop

ranges from 1 to n. If we are to break through O(n2) to a lower upper bound, we must
find an approach that is not so linear. Here is where the following principle suggests
itself:

Divide-and-Conquer Principle: Try to break the problem
in half, rather than paring off one element at a time.

Perhaps the most obvious divide-and-conquer sorting algorithm is Quicksort. At least, it
is obvious that the approach is correct. Quicksort is easiest to state recursively:

Quicksort: Sorting by Divide-and-Conquer

Basis: If the sequence consists of at most 1 element, it is sorted.

Recursion:
Break a sequence of more than 1 element into two, as follows:

Chose an element from the sequence as a pivot value. All elements
less than the pivot value are selected as subsequence L and all
elements greater than or equal the pivot value are selected as
subsequence R.

Sort the subsequences L and R (recursively). Then form the sequence
consisting of L (sorted) followed by the pivot, followed by R (sorted).

In Java this could be expressed as follows:

class quicksort
  {
  float a[];

   // Calling quicksort constructor on array of floats sorts the array.
   // Parameter N is the number of elements to be sorted.
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  quicksort(float array[], int N)
    {
    a = array;
    divideAndConquer(0, N-1);
    }

  // sort the segment of the array between low and high

  void divideAndConquer(int low, int high)
    {
    if( low >= high )
      return;                           // basis case, <= 1 element

    float pivot = a[(low + high)/2];    // select pivot

    // shift elements <= pivot to bottom
    // shift elements >= pivot to top

    int i = low-1;
    int j = high+1;

    for( ; ; )
      {                             // find two elements to exchange
      do { i++; } while( a[i] < pivot );  // slide i up
      do { j--; } while( a[j] > pivot );  // slide j down

      if( i >= j ) break;           // break if sliders meet or cross

      swap(i, j);                   // swap elements and continue
      }

    divideAndConquer(low, i-1);     // sort lower half
    divideAndConquer(j+1, high);    // sort upper half
    }

   // swap(i, j) interchanges the values in a[i] and a[j]

  void swap(int i, int j)
    {
    float temp = a[i];
    a[i] = a[j];
    a[j] = temp;
    }

Under ideal circumstances, the dividing phase of quicksort will split the elements into
two equal-length subsequences. In this case, there will be log n levels of recursive calls to
quicksort. At each level, O(n) steps must be done to split the array. So the running time is
on the order of n log n. Unfortunately this is only in ideal circumstances, although by a
probabilistic argument that we do not present, it also represents an average case
performance under reasonable assumptions. The worst case performance however causes

the array to split very unevenly, resulting in a worst case of O(n2), which is the worst
case for the other sorting algorithms presented. In a worst-case sense, we have made no
progress.
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Heapsort: Using a Tree to Sort

Now that we have a hint from Quicksort that O(n log n) might be achievable in the best
case, we seek an algorithm that has this performance. Whenever we are trying to make
improvements over algorithms that deal with linear sequences, the following approach is
worth trying:

Tree Structuring Principle:

Rather than dealing with the sequence linearly, try to
employ a tree structure to cut sequence traversal needs
from n to log n.

How about doing insertions within a tree rather than in a linear array, as is done by the
simple insertion sort? If there are n elements and we can do each insertion in O(log n)
time, we might be able to achieve our goal. Of course there are details to be worked out
concerning how we can do the insertions so as to maintain the balance of the tree.

A linear array, as used in select_min sort and simple insertion sort, maintains the items
sorted thus far in a strict order. By relaxing this condition, we can keep the information
"partially ordered" and gain a faster insertion. The original sort of this nature, as
presented by Williams, 1964, was called heapsort, reflecting a "heap" structure, a
particular type of tree structure.

Note: The heap in this section should not be confused with the heap used for general
storage of dynamic data structures.

The Heap Invariant

An example of a heap is shown below. A heap has the following defining property (or
invariant)

The children of any node cannot be greater than the
node itself.

heap invariant

This means that there is a tendency for increasing values as we move toward the root. As
a corollary, we see that the progeny of a node cannot be greater than the node itself, and
further the root must be the greatest element in the tree.
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32

27 19

18 1526 1

12 7 16 4 13

Figure 181: A heap

The following diagram shows the standard implementation of a heap using an array. The
array is viewed as being indexed starting at 1. A node can have 0, 1, or 2 children. The
children of a node with index p have indices 2*p and 2*p+1.

1

2 3

4 5 6 7

8 9 10 11 12

Figure 182: A heap mapped onto the locations of an array.

The numbers show indices of locations, not data values.

The reasoning for choosing 1-origin indexing is just so the relationship between parent
and child indices is simple arithmetically. If we use 0-origin instead, it becomes slightly
more complicated.

We can get a rough idea of how sorting is done using a heap by first explaining another
structure that can be implemented as a heap: a priority queue. This term was introduced
earlier. Recall that in a priority queue discipline, the largest item is always the next to be
removed. Evidently, the largest item in a heap is always the root, so it is easy enough to
locate. However, in removing the root, we must fill the vacancy thus left in such a way
that the result is still a heap. Our goal will be to show that the heap can be formed in time
O(n log n) and reformed, after removing an element, in time O(log n). Given this, the
following code indicates how a heap can be used to achieve an O(n log n) sorting
algorithm.

.... create an empty heap ....
for( i = 0; i < n; i++ )

.... add a[i] to the heap ....

for( i = n-1; i >= 0; i-- )
.... remove a[i] from the heap ....
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The heapsort algorithm also uses a space-saving trick: using the vacated locations in the
heap for storage of the final sorted array. This means that no additional memory space is
needed.

Deleting the Maximum from a Heap

The ability to find the maximum quickly within a heap is based on the "partial ordering"
of the node values. To preserve this property, it is not enough to simply remove the root.

When removing the max from a heap, we must adjust the
tree immediately afterward so that the max so that the heap
invariant once again holds.

preservation of the heap invariant

Below we show our original heap example after removing the max. Obviously there is a
"hole" at the root that needs to be filled. Also obviously, the value that must fill this hole
is 27, since it is the maximum of the remaining nodes.

27 19

18 1526 1

12 7 16 4 13

Figure 183: Original heap example after removing the maximum,

but before restoring the heap invariant

However, if we move 27 to the root, that leaves another hole, etc. Continuing this
process, we would eventually have a hole in the top row. This situation is undesirable, for
it means that the heap can no longer be represented as a contiguous array.

27

19

18 15

26

1

12 7

16

4 13

Figure 184: Undesirable situation: after filling the hole at the root with the
maximum, and continuing this process down the tree, we have left a hole at the

bottom level. This heap can no longer be represented as a contiguous array.
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In order to avoid this situation, we shall have to plan in advance to preserve the
contiguity of the heap. We can do this by removing that last item in the heap, i.e. the one
that appears in the lower right node of the tree, 13 in this case. So we temporarily make
an orphan out of 13, to find a new home somewhere in the array.

We fill the hole at the root with this former leaf value (13), then adjust the array by
"bubbling up" that value. In this case, bubbling up means to repeatedly adjust a
combination of three nodes so that the maximum is the parent, as shown in the following
sequence.

27 19

18 1526 1

12 7 16 4

13

27 is the maximum of {13, 27, 19} 
and will "bubble up"

27

19

18 1526 1

12 7 16 4

13
26 is the maximum of {13, 18, 26} 
and will "bubble up"

27

19

18 15

26

1

12 7 16 4

13

13 continues its 
descent as others 
bubble up
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27

19

18 15

26

1

12 7

16

4

13

13 reaches its final resting 
place

Figure 185: Restoring the heap invariant

At this point, the heap invariant is restored and the corresponding heap is again
contiguous. The algorithm for delete_max then is a mechanization of this process. We
notice that the algorithm for deleting max runs in O(log n), since all accesses to nodes are
made along a single path from root to some leaf. We only look at nodes directly on that
path and single nodes to one side or the other.

Initial Creation of a Heap

A heap can be created by starting with an empty heap and repeatedly adding new
elements. As with removal, we must show how to maintain the heap invariant when
inserting, as well as making sure that insertions are also O(log n).

Let us work with the heap above as an example, and suppose that the value 25 is to be
added. As before, to maintain contiguity as a heap, we will need to put into play the node
shown vacant below. We use a technique similar, but not identical, to the one used for
removing the maximum: We put the new element 25 into the vacancy, then let nodes
above it change places until an appropriate level is reached. This is simpler than deleting
the maximum, because it only involves a 2-way comparison, rather than a 3-way one.

27

19

18 15

26

1

12 7

16

413 25
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27

19

18

15

26

1

12 7

16

413

25

27

1918

15

26

1

12 7

16

413

25

Figure 186: Bubbling up in the initial creation of a heap

At this point, the proper position for the new element has been found, so bubbling stops,
leaving us with a new heap. Again we notice that the heap modification is accomplished
in O(log n), since only nodes on the path from the created vacancy to the root are
examined.

The following code shows the combination of these ideas in the heapsort procedure,
which sorts an array in place:

class heapsort
  {
  private float array[];        // The array being sorted

  // Calling heapsort constructor on array of floats sorts the array.
  // Parameter N is the number of elements to be sorted.

  heapsort(float array[], int N)
    {
    this.array = array;
    int Last = N-1;

    // A heap is a tree in which each node is smaller than either of its
    // children (and thus than any of its descendants). All sub-trees
    // of a heap are also heaps. In this program, a heap is stored as
    // an array, with the root at element 0. In general, if a node is
    // at element I, its children are at elements 2*I+1 and 2*I+2.
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    // phase 1: form heap
    // Construct heap bottom-up, starting with small trees just above
    // leaves and coalescing into larger trees near the root.

    for( int Top = Last/2; Top >= 0; Top-- )
      {
      adjust(Top, Last);
      }

    // phase 2: use heap to sort
    // Move top element (largest) out of heap, swapping with last
    // element and changing the heap boundary, until only one element
    // remains.

    while( Last > 0 )
      {
      swap(0, Last);
      adjust(0, --Last);
      }
    }

  //  adjust(Top, Last) adjusts the tree between Top and Last

  void adjust(int Top, int Last)
    {
    float TopVal = array[Top];                  // Set aside top of heap
    int Parent, Child;

    for( Parent = Top; ; Parent = Child )       // Iterate down tree
      {
      Child = 2*Parent+1;                       // Child is left child

      if( Child > Last )
        break;                                  // No left child exists

      if( Child+1 <= Last                       // Right child exists
           && array[Child] < array[Child+1] )   // and is larger
        Child++;                                // Child is larger child

      if( TopVal >= array[Child] )
        break;                                  // Location for TopVal

      array[Parent] = array[Child];             // Move larger child up
      }

    array[Parent] = TopVal;                     // Install TopVal
    }

   // swap(i, j) interchanges the values in array[i] and array[j]

  void swap(int i, int j)
    {
    float temp = array[i];
    array[i] = array[j];
    array[j] = temp;
    }
  }
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Merge Sort

One natural method of sorting is to sort by repeated merging. A set of rules for this form
of sort was given in the chapter Low-Level Functional Programming. Our analysis of
merge_sort as given in that chapter follows:

a. The time to merge a pair of lists to get an N element list is O(N) since each
recursive call "retires" an element to the result list and each element of the result
gets retired only once.

b. Thus, the time to merge_pairs on a list of lists, the summed total length of which
is N, is O(N), since from a. the time to merge a single pair is proportional to the
number of elements in the result.

c. The time to use repeat on a list of N 1-element lists is the number of times repeat
is called recursively times O(N), from b.

d. The number of times repeat is called is O(log N), since each call sees a list that is
about half as long as the previous call.

e. The time to merge_sort an N element list is O(N) + time to repeat an N element
list, since mapping an N element list is O(N). From c and d, the time to repeat is
O(N log N).

Therefore the overall time to merge_sort an N element list is O(N log N).

11.18 Complexity of Set Operations and Mappings

A recurring theme in computer problem solving is the need to deal with various kinds of
sets and mappings. Frequently we have need for sets of integers, strings, and more
complex data types, as well as mappings from a wide variety of types to integers, etc.
Thus it is worthwhile using these as one of the foci in our discussion of complexity. A
wide variety of different representations for these abstractions is available and they differ
in the types of data they handle, the complexity, space requirements, and coding
difficulty. It is helpful to taxonomize the methods based on these points.

Thinking of a set as a class, the following operations are typical:

find Find out whether a member is in the set. If so, return a locator for
it. A locator is a kind of reference to the member. It is used in
deleting the member or changing it.

add Add a new member to the set (assuming it is not present already)

delete Given a locator for a member, remove the member from the set.
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new Create a new set.

Set Implementation Using an Unordered Array

Perhaps the simplest way to represent a set is as an array, the elements of which are in no
particular order. The implementation is similar to that for a stack using an array, with an
index indicating the last element in the set. Adding to the set (assuming there is space
available) is trivial, essentially the same as a push onto the stack. Finding a member
requires a search through the array up until the point the element is found or the end is
reached. In the worst case, all elements in the array are examined. Delete, given a locator,
is simple: since order is not important, we can fill the hole left by deletion by putting the
last element in its place (unless, of course, we wish to maintain the order of insertion, but
once order becomes important, we no longer have a set).

Letting N represent the current set size, we can see from the above discussion that the
following upper bounds hold on the set operations:

find O(N)
add O(1)
delete O(N)
new O(1)

Here we assume that the delete accounts only for the time to do the deletion, not to find
the element being deleted as well. A similar discussion and set of bounds holds for using
a linked-list to represent a set.

Binary Search Principle

Some improvement can be obtained, at the expense of slightly greater coding complexity,
by keeping the members of the set in order. This requires that an order be available for
the domain of the set, which is not always the case. The ordering assumption is not at
odds with the definition of a set being unordered, since its use is for internal purposes.

By keeping the set elements in order, the technique of binary search becomes available
for the find operation. Here is how binary search works for find: Using index
computation to find the index of the mid-point of the array, we take a "stab" at that point
and compare it with the element to be found. If we have equality, we return the index as
the locator. If the element to be found is less than the mid-point, then we search in the
half-array below the mid-point; if it is greater, we search in the half-array above. This
process is repeated until the element is either found, or we are left with an empty array to
search.
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Each step of the binary search procedure reduces the number of elements still under
consideration by half. Therefore, the number of steps is proportional to the number of
halvings it takes to reduce the original number of elements, N, to less than 1. This number
of steps is, of course, log N.

The superiority of binary search for find in an ordered array is tempered somewhat by the
costs of addition and deletion. In order to maintain the ordering, we have to shift
elements one way or the other when we insert or delete. In the worst case, we might have
to shift all of the elements. The complexity for the ordered array case would thus appear
as follows:

find O(log N)
add O(N)
delete O(N)
new O(1)

If most of the activity involving the set is of the find type, with few additions or deletions,
then binary search on an ordered set is preferred over using an unordered set.

Binary Search Trees

Does using an ordered linked-list help in a similar way? If we have a linked structure,
additions and deletions usually become less complex. Unfortunately a linked-list doesn't
provide a good way to do the index computation required for binary search. That is, we'd
like to have a way to find the mid-point of a list similar to what was used for an array.
But without adding additional structure, there is no such way. The desire to have
something approaching a linked structure on which binary search can be done has
motivated the use of various tree structures, the most obvious of which is the binary
search tree.

A binary search tree enables binary searching on a linked structure by approximating
access to successive mid-points, similar to the way that binary search was described. To
do this, each node in the structure has two links, one to the elements below the current
one and one to the elements above. The figure shows a binary search tree that holds the
set {1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}

8

4 12

1

62 10

11

14

13 15

Figure 187: A binary search tree
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The defining property of a binary search tree is that all elements in the left sub-tree of a
node are less than the node itself, while all elements in the right sub-tree are greater than
or equal to the node. If the binary search tree is balanced, meaning that for a tree with N
nodes, the length of the longest path is at most 1 + log N, then the search can be done in
time O(log N). We can also insert and delete in time O(log N). However, it is not obvious
that we can insert and delete in this amount of time and still maintain the balance needed
for O(log N) search. In fact, several extensions of binary search trees have been
developed that maintain the balance. These include AVL-trees, 2-3 trees, 2-3-4 trees, red-
black trees, and B-trees. The reader might explore these interesting possibilities in future
courses.

Bit Vectors

If the domain of a set's elements consists of integers, or can be easily mapped into
integers (for example, character strings can be considered as large-radix numerals and are
thus identifiable as integers), then a very fast method of set representation is available. A
bit vector is an array with one array element per domain element. The value of an
element is either 1, indicating that the corresponding domain element is a member of the
set being represented, or 0 indicating that it is not. For example, if the domain is
{0, ...., 15}, then a bit vector representation of the set {1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}
is

0 15
1 1 1 1 1 1 1 1 1 1 1

Figure 188: A bit vector representation of the set

{1, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15}
with empty entries representing 0

The advantage of a bit vector is that find is extremely fast. We simply index the position
corresponding to the element we are trying to find. If the value is 1, the element is in the
set, otherwise it is not. By the linear addressing principle, find is O(1) time. Similarly,
add and delete are also O(1) time. In a bit vector, the actual elements are not stored, so
the representation can be compact in terms of space. However this compactness only
occurs if the elements in the set are relatively dense in the range of possible elements.
The amount of space required by a bit vector is O(M) where M is the domain size. If the
set is sparse and M is large, much space will be wasted. Also, it requires time
proportional to M to initialize a bit vector, compared to time proportional to the size of
the set for the other representations studied so far. To summarize, for a bit vector:

find O(1)
add O(1)
delete O(1)
new O(M)
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Analysis of Hashing

Hashing was introduced in the chapter Implementing Information Structures. Under
nominal conditions, the time for find using hashing is best regarded as O(1). This
assumes that

• the elements of the set are distributed relatively evenly into buckets,

• the size of any one bucket is bounded by a constant, and

• the time to compute the hashing function is bounded by a constant

Any of these assumptions can be violated, but there are ways to remedy any tendency to
violate them. For example, the first assumption can be satisfied by devising an
appropriate hashing function, such as hash_pdg presented earlier. The size of buckets are
bounded, assuming the first assumption holds, by making the table large enough. If the
number of elements in the set is not known in advance, there are ways to extend the table
size dynamically. This is not a trivial problem, but it is a solvable one, using techniques
such as "extendible hashing" (see Fagin, et al. 1979). The third assumption is true if there
is a bounded number of digits in the representation of each element. Obviously this
would not be true if we used arbitrarily-long strings, but it is approximately true for many
common cases. Since we have to look at every character of the string to be matched
anyway, and the time to compute a typical hashing function is bounded by a constant
times the length of the string, this time can be considered to be part of the cost of looking
at the elements to be found.

The Trie Principle

Trie representation is a form of tree demonstrated in Information Structures. Unlike
binary search trees, but similar to radix sorting, tries can exploit situations where the data
can be represented as numerals. Since the linear addressing principle applies at each level
of a trie, the access time to any element of a trie is O(1) if the number of levels is
bounded, or O(L) where L is the number of levels, in general.

Sets vs. Bags and Mappings

So far we have emphasized structures for storing sets. However, most of these structures
can also be adapted to implement bags and mappings as well. Usually it is a matter of
storing additional information with the element inside the representation. For example,
with bags we store a number indicating the multiplicity of the element in the bag; the
absence of an element implies multiplicity 0. With mappings, the elements stored in the
set are the domain values, and with each element in the domain we store the
corresponding range value.
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Exercises

1 ••• Rewrite the radix-sort procedure using a queue abstract data type. In particular,
store the initial data on one queue and dequeue each item, placing it in one of two
other queues depending on the least significant bit. Repeat this process for bits of
successively-increasing significance. (Note: You do not have to implement the
queue data type; that was discussed in Computing Objectively.) Hopefully your
algorithm is easier to understand now that more abstraction has been employed.

2 ••• Try to devise an O(n) sort for numbers of fixed precision using a trie.

3 ••• Design a data abstraction for "bignums", integers of arbitrary precision, using
internal arrays of fixed-precision items (such as short int). Implement the
operations of addition, subtraction, and multiplication at a minimum. Give O
bounds on the complexity of your operations as a function of argument size.

4 ••• Using your implementation in the previous problem, code the Russian peasants'
method of raising a bignum to a power. Analyze the complexity of raising a fixed
constant to a power. See how well your analysis agrees with empirical
observation.

5 •••• Explore the possibility of speeding up bignum multiplication using the divide-
and-conquer strategy.

6 ••• Empirically compare the performance of a spell checker using hashing against
ones using (a) binary search, and (b) a trie. Assume that you do not count the time
taken to create the ordered array or the trie.

7 ••• Conduct a literature search on methods for keeping binary search trees in balance,
so as to ensure an O(log n) search time.

8 •• Write a program that will do a fast spelling check by using a dictionary stored as a
hash table. Populate the table from a dictionary files, such as /usr/dict/words
available in most UNIX  systems. Compare the speed of your program to one
that searches the dictionary sequentially.

9 ••• Suppose you wish to treat arbitrary Polys as keys. Develop a hash function for
this application. Use recursion and avoid converting the Poly into text first.

10 ••• Implement merge sort. Use linked lists. Verify empirically the n log n upper bound
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11.19 Chapter Review

Define the following terms:

Amdahl's law
asymptotically dominated
binary search
binary search tree
bit vector
bucket sort
complexity
distribution sorting
divide and conquer
growth-rate
hashing
heapsort
insertion sort
L'Hopital's rule
merge sort
"O" notation
profiling
quicksort
radix sort
tight
trie
upper bound

Describe how you would estimate the complexity of a program empirically.

Describe the role of limits of sequences in interpreting complexity bounds.
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12. Finite-State Machines

12.1 Introduction

This chapter introduces finite-state machines, a primitive, but useful computational model
for both hardware and certain types of software. We also discuss regular expressions, the
correspondence between non-deterministic and deterministic machines, and more on
grammars. Finally, we describe typical hardware components that are essentially physical
realizations of finite-state machines.

Finite-state machines provide a simple computational model with many applications.
Recall the definition of a Turing machine: a finite-state controller with a movable
read/write head on an unbounded storage tape. If we restrict the head to move in only one
direction, we have the general case of a finite-state machine. The sequence of symbols
being read can be thought to constitute the input, while the sequence of symbols being
written could be thought to constitute the output. We can also derive output by looking at
the internal state of the controller after the input has been read.

Finite-state machines, also called finite-state automata  (singular: automaton) or just
finite automata are much more restrictive in their capabilities than Turing machines. For
example, we can show that it is not possible for a finite-state machine to determine
whether the input consists of a prime number of symbols. Much simpler languages, such
as the sequences of well-balanced parenthesis strings, also cannot be recognized by
finite-state machines. Still there are the following applications:

• Simple forms of pattern matching (precisely the patterns definable by
"regular expressions”, as we shall see).

• Models for sequential logic circuits, of the kind on which every
present-day computer and many device controllers is based.

• An intimate relationship with directed graphs having arcs labeled with
symbols from the input alphabet.

Even though each of these models can be depicted in a different setting, they have a
common mathematical basis. The following diagram shows the context of finite-state
machines among other models we have studied or will study.
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Finite-State Machines,
Finite-State Automata

Turing Machines

Finite-State Grammars

Context-Free Grammars

Regular Expressions,
Regular Languages

Finite Directed 
Labelled Graphs

Combinational 
Logic Switching 
Circuits

Sequential
Logic Switching 
Circuits

Figure 189: The interrelationship of various models
with respect to computational or representational power.

The arrows move in the direction of restricting power.
The bi-directional arrows show equivalences.

Finite-State Machines as Restricted Turing Machines

One way to view the finite-state machine model as a more restrictive Turing machine is
to separate the input and output halves of the tapes, as shown below. However,
mathematically we don't need to rely on the tape metaphor; just viewing the input and
output as sequences of events occurring in time would be adequate.

q

Input to be readOutput written so far

Direction of head motion

Figure 190: Finite-state machine as a one-way moving Turing machine

q

Input to be read

Output written so far

Direction of head motion

Figure 191: Finite-state machine as viewed with separate input and output
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q

Direction of tape motion

Direction of tape motion

reading

writing

Figure 192: Finite-state machine viewed as a stationary-head, moving-tape, device

Since the motion of the head over the tape is strictly one-way, we can abstract away the
idea of a tape and just refer to the input sequence read and the output sequence produced,
as suggested in the next diagram. A machine of this form is called a transducer, since it
maps input sequences to output sequences. The term Mealy machine, after George H.
Mealy (1965), is also often used for transducer.

Input sequenceOutput sequence

Finite set of 
internal states

x   x   x   x  ...
1   2   3   4  

y   y   y    y  ...
1   2   3   4  

Figure 193: A transducer finite-state machine viewed as a tapeless "black box"
processing an input sequence to produce an output sequence

On the other hand, occasionally we are not interested in the sequence of outputs
produced, but just an output associated with the current state of the machine. This simpler
model is called a classifier, or Moore machine, after E.F. Moore (1965).

Input sequence

Finite set of 
internal states

x   x   x   x  ...
1   2   3   4  

Output 
associated 
with current 
state

z

Figure 194: Classifier finite-state machine.
Output is a function of current state, rather than being a sequence
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Modeling the Behavior of Finite-State Machines   

Concentrating initially on transducers, there are several different notations we can use to
capture the behavior of finite-state machines:

• As a functional program mapping one list into another.

• As a restricted imperative program, reading input a single character at a time
and producing output a single character at a time.

• As a feedback system.
• Representation of functions as a table
• Representation of functions by a directed labeled graph

For concreteness, we shall use the sequence-to-sequence model of the machine, although
the other models can be represented similarly. Let us give an example that we can use to
show the different notations:

Example: An Edge-Detector

The function of an edge detector is to detect transitions between two symbols in the input
sequence, say 0 and 1. It does this by outputting 0 as long as the most recent input symbol
is the same as the previous one. However, when the most recent one differs from the
previous one, it outputs a 1. By convention, the edge detector always outputs 0 after
reading the very first symbol. Thus we have the following input output sequence pairs for
the edge-detector, among an infinite number of possible pairs:

input                           output
0 0
00 00
01 01
011 010
0111 0100
01110 01001

1 0
10 01
101 011
1010 0111
10100 01110
etc.



Finite-State Machines 475

Functional Program View of Finite-State Machines

In this view, the behavior of a machine is as a function from lists to lists.

Each state of the machine is identified with such a function.

The initial state is identified with the overall function of the machine.

The functions are interrelated by mutual recursion: when a function processes an input
symbol, it calls another function to process the remaining input.

Each function:

looks at its input by one application of first,

produces an output by one application of cons, the first argument of which is
determined purely by the input obtained from first, and

calls another function (or itself) on rest of the input.

We make the assumptions that:

The result of cons, in particular the first argument, becomes partially available even
before its second argument is computed.

Each function will return NIL if the input list is NIL, and we do not show this
explicitly.

Functional code example for the edge-detector:

We will use three functions, f, g, and h. The function f is the overall representation of the
edge detector.

f([0 | Rest]) => [0 | g(Rest)];
f([1 | Rest]) => [0 | h(Rest)];
f([]) => [];

g([0 | Rest]) => [0 | g(Rest)];
g([1 | Rest]) => [1 | h(Rest)];
g([]) => [];

h([0 | Rest]) => [1 | g(Rest)];
h([1 | Rest]) => [0 | h(Rest)];
h([]) => [];

Notice that f is never called after its initial use. Its only purpose is to provide the proper
output (namely 0) for the first symbol in the input.
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Example of f applied to a specific input:

f([0, 1, 1, 1, 0]) ==> [0, 1, 0, 0, 1]

An alternative representation is to use a single function, say k, with an extra argument,
treated as just a symbol. This argument represents the name of the function that would
have been called in the original representation. The top-level call to k will give the initial
state as this argument:

k("f", [0 | Rest]) => [0 | k("g", Rest)];
k("f", [1 | Rest]) => [0 | k("h", Rest)];
k("f", []) => [];

k("g", [0 | Rest]) => [0 | k("g", Rest)];
k("g", [1 | Rest]) => [1 | k("h", Rest)];
k("g", []) => [];

k("h", [0 | Rest]) => [1 | k("g", Rest)];
k("h", [1 | Rest]) => [0 | k("h", Rest)];
k("h", []) => [];

The top level call with input sequence x  is k("f", x) since "f" is the initial state.

Imperative Program View of Finite-State Machines

In this view, the input and output are viewed as streams of characters. The program
repeats the processing cycle:

read character,
select next state,
write character,
go to next state

ad infinitum. The states can be represented as separate "functions", as in the functional
view, or just as the value of one or more variables. However the allowable values must be
restricted to a finite set. No stacks or other extendible structures can be used, and any
arithmetic must be restricted to a finite range.

The following is a transliteration of the previous program to this view. The program is
started by calling f(). Here we assume that read() is a method that returns the next
character in the input stream and write(c) writes character c to the output stream.

void f() // initial function
{
switch( read() )
{
case '0': write('0'); g(); break;
case '1': write('0'); h(); break;
}
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}

void g() // previous input was 0
{
switch( read() )
{
case '0': write('0'); g(); break;
case '1': write('1'); h(); break; // 0 -> 1 transition
}

}

void h() // previous input was 1
{
switch( read() )
{
case '0': write('1'); g(); break; // 1 -> 0 transition
case '1': write('0'); h(); break;
}

}

[Note that this is a case where all calls can be "tail recursive", i.e. could be implemented
as gotos by a smart compiler.]

The same task could be accomplished by eliminating the functions and using a single
variable to record the current state, as shown in the following program. As before, we
assume read() returns the next character in the input stream and write(c) writes
character c to the output stream.

static final char f = 'f'; // set of states
static final char g = 'g';
static final char h = 'h';

static final char initial_state = f;

main()
{
char current_state, next_state;
char c;

current_state = initial_state;
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while( (c = read()) != EOF )
  {
  switch( current_state )
    {
    case f:                    // initial state
      switch( c )
      {
      case '0': write('0'); next_state = g; break;
      case '1': write('0'); next_state = h; break;
      }
      break;

    case g:                    // last input was 0
      switch( c )
      {
      case '0': write('0'); next_state = g; break;
      case '1': write('1'); next_state = h; break; // 0 -> 1
      }
      break;

    case h:                    // last input was 1
      switch( c )
      {
      case '0': write('1'); next_state = g; break; // 1 -> 0
      case '1': write('0'); next_state = h; break;
      }
      break;
    }
  current_state = next_state;
  }
}

Feedback System View of Finite-State Machines

The feedback system view abstracts the functionality of a machine into two functions, the
next-state or state-transition function F, and the output function G.

F: States x Symbols → States state-transition function

G: States x Symbols → Symbols output function

The meaning of these functions is as follows:

F(q, σ) is the state to which the machine goes when currently in state q and σ is read

G(q, σ) is the output produced when the machine is currently in state q and σ is read

The relationship of these functions is expressible by the following diagram.
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G

F

∆

output function

next-state function

delay or memory

output

input

The current 
state

Figure 195: Feedback diagram of finite-state machine structure

From F and G, we can form two useful functions

F*: States x Symbols* → States extended state-transition function

G*: States x Symbols* → Symbols extended output function

where Symbols* denotes the set of all sequences of symbols. This is done by induction:

F*(q, λ) = q

F*(q, xσ) = F(F*(q, x), σ )

G*(q, λ) = λ

G*(q, xσ) = G*(q, x) G(F*(q, x), σ )

In the last equation, juxtaposition is like cons’ing on the right. In other words, F*(q, x) is
the state of the machine after all symbols in the sequence x have been processed, whereas
G*(q, x) is the sequence of outputs produced along the way. In essence, G* can be
regarded as the function computed by a transducer. These definitions could be transcribed
into rex rules by representing the sequence xσ as a list [σ | x] with λ corresponding to [ ].

Tabular Description of Finite-State Machines

This description is similar to the one used for Turing machines, except that the motion is
left unspecified, since it is implicitly one direction. In lieu of the two functions F and G, a
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finite-state machine could be specified by a single function combining F and G of the
form:

States x Symbols → States  x Symbols

analogous to the case of a Turing machine, where we included the motion:

States x Symbols → Symbols x Motions x States

These functions can also be represented succinctly by a table of 4-tuples, similar to what
we used for a Turing machine, and again called a state transition table:

State1, Symbol1, State2, Symbol2

Such a 4-tuple means the following:

If the machine's control is in State1 and reads Symbol1, then machine will
write Symbol2 and the next state of the controller will be State2.

The state-transition table for the edge-detector machine is:

current state input symbol next state output symbol
start state f 0 g 0

f 1 h 0

g 0 g 0
g 1 h 1

h 0 g 1
h 1 h 0

Unlike the case of Turing machines, there is no particular halting convention. Instead,
the machine is always read to proceed from whatever current state it is in. This does not
stop us from assigning our own particular meaning of a symbol to designate, for example,
end-of-input.

Classifiers, Acceptors, Transducers, and Sequencers

In some problems we don't care about generating an entire sequence of output symbols as
do the transducers discussed previously. Instead, we are only interested in categorizing
each input sequence into one of a finite set of possibilities. Often these possibilities can
be made to derive from the current state. So we attach the result of the computation to the
state, rather than generate a sequence. In this model, we have an output function

c: Q → C
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which gives a category or class for each state. We call this type of machine a classifier or
controller. We will study the conrtoller aspect further in the next chapter. For now, we
focus on the classification aspect. In the simplest non-trivial case of classifier, there are
two categories. The states are divided up into the "accepting" states (class 1, say) and the
"rejecting" states (class 0). The machine in this case is called an acceptor or recognizer.
The sequences it accepts are those given by

c(F*(q0, x)) = 1

that is, the sequences x such that, when started in state q0, after reading x, the machine is
in a state q such that c(q) = 1. The set of all such x, since it is a set of strings, is a
language in the sense already discussed. If A designates a finite-state acceptor, then

L(A) = { x in Σ* |  c(F*(q0, x)) = 1}

is the language accepted by A.

The structure of a classifier is simpler than that of a transducer, since the output is only a
function of the state and not of both the state and input. The structure is shown as
follows:

G

F

∆

output function

next-state function

delay or memory

output

input

The current 
state

Figure 196: Feedback diagram of classifier finite-state machine structure

A final class of machine, called a sequencer or generator, is a special case of a
transducer or classifier that has a single-letter input alphabet. Since the input symbols are
unchanging, this machine generates a fixed sequence, interpreted as either the output
sequence of a transducer or the sequence of classifier outputs. An example of a sequencer
is a MIDI (Musical Instrument Digital Interface) sequencer, used to drive electronic
musical instruments. The output alphabet of a MIDI sequencer is a set of 16-bit words,
each having a special interpretation as pitch, note start and stop, amplitude, etc. Although
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most MIDI sequencers are programmable, the program typically is of the nature of an
initial setup rather than a sequential input.

Description of Finite-State Machines using Graphs

Any finite-state machine can be shown as a graph with a finite set of nodes. The nodes
correspond to the states. There is no other memory implied other than the state shown.
The start state is designated with an arrow directed into the corresponding node, but
otherwise unconnected.

Figure 197: An unconnected in-going arc indicates that the node is the start state

The arcs and nodes are labeled differently, depending on whether we are representing a
transducer, a classifier, or an acceptor. In the case of a transducer, the arcs are labeled
σ/δ as shown below, where σ is the input symbol and δ is the output symbol. The state-
transition is designated by virtue of the arrow going from one node to another.

σ/δ
1

q
2

q

Figure 198: Transducer transition from q
1
 to q

2
, based on input σ, giving output δ

In the case of a classifier, the arrow is labeled only with the input symbol. The categories
are attached to the names of the states after /.

q  / c
1     1

q  / c2     2
σ

Figure 199: Classifier transition from q1 to q2, based on input σ

In the case of a acceptor, instead of labeling the states with categories 0 and 1, we
sometimes use a double-lined node for an accepting state and a single-lined node for a
rejecting state.
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a
q

Figure 200: Acceptor, an accepting state

Transducer Example

The edge detector is an example of a transducer. Here is its graph:

 

f g

h

0/0

1/0
0/1

1/1

0/0

1/0

Figure 201: Directed labeled graph for the edge detector

Let us also give examples of classifiers and acceptors, building on this example.

Classifier Example

Suppose we wish to categorize the input as to whether the input so far contains 0, 1, or
more than 1 "edges" (transitions from 0 to 1, or 1 to 0). The appropriate machine type is
classifier, with the outputs being in the set {0, 1, more}. The name "more" is chosen
arbitrarily. We can sketch how this classifier works with the aid of a graph.

The construction begins with the start state. We don't know how many states there will be
initially. Let us use a, b, c, ... as the names of the states, with a as the start state. Each
state is labeled with the corresponding class as we go. The idea is to achieve a finite
closure after some number of states have been added. The result is shown below:
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b/0

0

1

c/0

d/1

0

a/0

1

1

e/1
0

f / more

1

0
1

0 0, 1

Figure 202: Classifier for counting 0, 1, or more than 1 edges

Acceptor Example

Let us give an acceptor that accepts those strings with exactly one edge. We can use the
state transitions from the previous classifier. We need only designate those states that
categorize there being one edge as accepting states and the others as rejecting states.

b

0

1

c

d

0

a

1

1

e
0

f

1

0
1

0 0, 1

Figure 203: Acceptor for strings with exactly one edge. Accepting states are d and e.
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Sequencer Example

The following sequencer, where the sequence is that of the outputs associated with each
state, is that for a naive traffic light:

q0 / 
green

q1 / 
yellow

q2 / 
red

Figure 204: A traffic light sequencer

Exercises

1 •• Consider a program that scans an input sequence of characters to determine
whether the sequence as scanned so far represents either an integer numeral, a
floating-point numeral, unknown, or neither. As it scans each character, it outputs
the corresponding assessment of the input. For example,

Input Scanned Assessment
1 integer
+ unknown
+1 integer
+1. floating-point
1.5 floating-point
1e unknown
1e-1 floating-point
1e. neither

Describe the scanner as a finite-state transducer using the various methods
presented in the text.

2 •• Some organizations have automated their telephone system so that messages can
be sent via pushing the buttons on the telephone. The buttons are labeled with
both numerals and letters as shown:
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1 2
a b c

3
d e f

4
g h i

5
j k l

6
m n o

7
p r s

8
t u v

9
w x y

* 0 #

Notice that certain letters are omitted, presumably for historical reasons.
However, it is common to use * to represent letter q and # to represent letter z.
Common schemes do not use a one-to-one encoding of each letter. However, if
we wanted such an encoding, one method would be to use two digits for each
letter:

The first digit is the key containing the letter.

The second digit is the index, 1, 2, or 3, of the letter on the key. For
example, to send the word "cat", we'd punch:

2 3   2 1   8 1
 c     a     t

An exception would be made for 'q' and 'z', as the only letters on the keys
'*' and '#' respectively.

Give the state-transition table for communicating a series of any of the twenty-six
letters, where the input alphabet is the set of digits {1, ...., 9, *, #} and the output
alphabet is the set of available letters. Note that outputs occur only every other
input. So we need a convention for what output will be shown in the transducer in
case there is no output. Use λ for this output.

3 •• The device sketched below is capable of partially sensing the direction
(clockwise,  counterclockwise, or stopped) of a rotating disk, having sectors
painted alternating gray and white. The two sensors, which are spaced so as to fit
well within a single sector, regularly transmit one of four input possibilities: wg
(white-gray), ww (white-white), gw (gray-white), and gg (gray-gray). The
sampling rate must be fast enough, compared with the speed of the disk, that
artifact readings do not take place. In other words, there must be at least one
sample taken every time the disk moves from one of the four input combinations
to another. From the transmitted input values, the device produces the directional
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information. For example, if the sensors received wg (as shown), then ww for
awhile, then gw, it would be inferred that the disk is rotating clockwise. On the
other hand, if it sensed gw more than once in a row, it would conclude that the
disk has stopped. If it can make no other definitive inference, the device will
indicate its previous assessment. Describe the device as a finite-state transducer,
using the various methods presented in the text.

sensors
output

Figure 205: A rotational direction detector

4 •• Decide whether the wrist-watch described below is best represented as a classifier
or a transducer, then present a state-transition diagram for it. The watch has a
chronograph feature and is controlled by three buttons, A, B, and C. It has three
display modes: the time of day, the chronograph time, and "split" time, a saved
version of the chronograph time. Assume that in the initial state, the watch
displays time of day. If button C is pressed, it displays chronograph time. If C is
pressed again, it returns to displaying time of day. When the watch is displaying
chronograph time or split time, pressing A starts or stops the chronograph.
Pressing B when the chronograph is running causes the chronograph time to be
recorded as the split time and displayed. Pressing B again switches to displaying
the chronograph. Pressing B when the chronograph is stopped resets the
chronograph time to 0.

5 ••• A certain vending machine vends soft drinks that cost $0.40. The machine accepts
coins in denominations of $0.05, $0.10, and $0.25. When sufficient coins have
been deposited, the machine enables a drink to be selected and returns the
appropriate change. Considering each coin deposit and the depression of the drink
button to be inputs, construct a state-transition diagram for the machine. The
outputs will be signals to vend a drink and return coins in selected denominations.
Assume that once the machine has received enough coins to vend a drink, but the
vend button has still not been depressed, that any additional coins will just be
returned in kind. How will your machine handle cases such as the sequence of
coins 10, 10, 10, 5, 25?
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6 ••• Consider the problem of controlling traffic at an intersection such as shown
below.

Legend

Traffic flow direction

Presence sensor

Traffic light
Through traffic

Cross traffic

Figure 206: A traffic intersection

Time is divided into equal-length intervals, with sensors sampling the presence of
traffic just before the end of an interval. The following priority rules apply:

1. If no traffic is present, through-traffic has the right-of-way.

2. If through-traffic is still present at the end of the first interval during
which through-traffic has had the right-of-way, through-traffic is given the
right-of-way one additional interval.

3. If cross-traffic is present at the end of the second consecutive interval
during which through-traffic has had the right-of-way, then cross-traffic is
given the right-of-way for one interval.

4. If cross-traffic is present but through-traffic is absent, cross-traffic
maintains the right-of-way until an interval in which through-traffic
appears, then through-traffic is given the right-of-way.

Describe the traffic controller as a classifier that indicates which traffic has the
right-of-way.

7 ••• A bar code represents bits as alternating light and dark bands. The light bands are
of uniform width, while the dark bands have width either equal to, or double, the
width of the light bands. Below is an example of a code-word using the bar code.
The tick marks on top show the single widths.
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Figure 207: A bar code scheme

Assume that a bar-code reader translates the bands into symbols, L for light, D for
dark, one symbol per single width. Thus the symbol sequence for the code-word
above would be

L D L D D L D D L D L D D L D L

A bar pattern represents a binary sequence as follows:  a 0 is encoded as LD,
while a 1 is encoded as LDD. A finite-state transducer M can translate such a
code into binary. The output alphabet for the transducer is {0, 1, _, end}. When
started in its initial state, the transducer will "idle" as long as it receives only L's.
When it receives its first D, it knows that the code has started. The transducer will
give output 0 or 1 as soon it has determined the next bit from the bar pattern. If
the bit is not known yet, it will give output _. Thus for the input sequence above,
M will produce

_ _ 0 _ 1 _ _ 1 _ _ 0 _ 1 _ _ 0
L D L D D L D D L D L D D L D L

where we have repeated the input below the output for convenience. The
transducer will output the symbol end when it subsequently encounters two L's in
a row, at which point it will return to its initial state.

a. Give the state diagram for transducer M, assuming that only sequences of the
indicated form can occur as input.

b. Certain input sequences should not occur, e.g. L D D D. Give a state-transition
diagram for an acceptor A that accepts only the sequences corresponding to a
valid bar code.

8 •• A gasoline pump dispenses gas based on credit card and other input from the
customer. The general sequence of events, for a single customer is:

Customer swipes credit card through the slot.

Customer enters PIN (personal identification number) on keypad, with
appropriate provisions for canceling if an error is made.

Customer selects grade of gasoline.
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Customer removes nozzle.

Customer lifts pump lever.

Customer squeezes or releases lever on nozzle any number of times.

Customer depresses pump lever and replaces nozzle.

Customer indicates whether or not a receipt is wanted.

Sketch a state diagram for modeling such as system as a finite-state machine.

Inter-convertibility of Transducers and Classifiers (Advanced)

We can describe a mathematical relationship between classifiers and transducers, so that
most of the theory developed for one will be applicable to the other. One possible
connection is, given an input sequence x, record the outputs corresponding to the states
through which a classifier goes in processing x. Those outputs could be the outputs of an
appropriately-defined transducer. However, classifiers are a little more general in this
sense, since they give output even for the empty sequence λ , whereas the output for a
transducer with input  λ is always just λ . Let us work in terms of the following
equivalence:

A transducer T started in state q0 is equivalent to a classifier C started in state q0
if, for any non-empty sequence x, the sequence of outputs emitted by T is the
same as the sequence of outputs of the states through which C passes.

With this definition in mind, the following would be a classifier equivalent to the edge-
detector transducer presented earlier.

0
g0/0f/arb

0

0

0

0

1

1

1
1

g1/1h0/0

h1/1

1

Figure 208: A classifier formally equivalent to the edge-detector transducer
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To see how we constructed this classifier, observe that the output emitted by a transducer
in going from a state q to a state q', given an input symbol σ, should be the same as the
output attached to state q' in the classifier. However, we can't be sure that all transitions
into a state q' of a transducer produce the same output. For example,  there are two
transitions to state g in the edge-detector that produce 0 and one that produces 1, and
similarly for state h. This makes it impossible to attach a fixed input to either g or h.
Therefore we need to "split" the states g and h into two, a version with 0 output and a
version with 1 output. Call these resulting states g0, g1, h0, h1. Now we can construct an
output-consistent classifier from the transducer. We don't need to split f, since it has a
very transient character. Its output can be assigned arbitrarily without spoiling the
equivalence of the two machines.

The procedure for converting a classifier to a transducer is simpler. When the classifier
goes from state q to q', we assign to the output transition the state output value c(q'). The
following diagram shows a transducer equivalent to the classifier that reports 0, 1, or
more edges.

a

b d

0/0

0/0

1/1

1/1

0/more
0,1/more

f

1/0 1/0

c
0/1

0/1

e
1/more

Figure 209: A transducer formally equivalent to the edge-counting classifier

Exercises

1 •• Whichever model, transducer or classifier, you chose for the wrist-watch problem
in the previous exercises, do a formal conversion to the other model.

Give a state-transition graph or other equivalent representation for the following
machines.

2 •• MB2 (multipy-by-two)  This machine is a transducer with binary inputs and
outputs, both least-significant bit first, producing a numeral that is twice the
input. That is, if the input is ...x2x1x0 where x0 is input first, then the output will
be ... x2x1x00 where 0 is output first, then x0, etc. For example:
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       input           output        input decimal      output decimal
0 0 0 0

01 10 1 2
011 110 3 6

01011 10110 11 22
101011 010110 43 incomplete

0101011 1010110 43 86
first bit input ^

Notice that the full output does not occur until a step later than the input. Thus we
need to input a 0 if we wish to see the full product. All this machine does is to
reproduce the input delayed one step, after invariably producing a 0 on the first
step. Thus this machine could also be called a unit delay machine.

Answer: Since this machine "buffers" one bit at all times, we can anticipate that
two states are sufficient: r0 "remembers" that the last input was 0 and r1
remembers that the last input was 1. The output always reflects the state before
the transition, i.e. outputs on arcs from r0 are 0 and outputs on arcs from r1 are 1.
The input always takes the machine to the state that remembers the input
appropriately.

r0

0/0

1/0
r1 1/1

0/1

Figure 210: A multiply-by-2 machine

3 •• MB2n (multiply-by-2n, where n is a fixed natural number)  (This is a separate
problem for each n.)  This machine is a transducer with binary inputs and outputs,

both least-significant bit first, producing a numeral that is 2n times as large the
input. That is, if the input is ...x2x1x0 where x0 is input first, then the output will
be ... x2x1x00 where 0 is output first, then x0, etc.

4 •• Add1  This machine is a transducer with binary input and outputs, both least-
significant bit first, producing a numeral that is 1 + the input.

Answer: The states of this machine will represent the value that is "carried" to the
next bit position. Initially 1 is "carried". The carry is "propagated" as long as the
input bits are 1. When an input bit of 0 is encountered, the carry is "absorbed" and
1 is output. After that point, the input is just replicated.
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c1

1/0

0/1
c0 1/1

0/0

Figure 211: An add-1 machine

5 •• W2 (Within 2)  This is an acceptor with input alphabet {0, 1}. It accepts those
strings such that for every prefix of the string, the difference between the number
of 0's and the number of 1's is always within 2. For example, 100110101 would be
accepted but 111000 would not.

6 ••• Add3  This machine is a transducer with binary input and outputs, both least-
significant bit first, producing a numeral that is 3 + the input.

7 ••• Add-n, where n is a fixed natural number  (This is a separate problem for each
n.)  This machine is a transducer with binary input and outputs, both least-
significant bit first, producing a numeral that is n + the input.

8 •• Binary adder  This is a transducer with binary inputs occurring in pairs. That is,
the input alphabet is all pairs over {0, 1}: {(0, 0), (0, 1), (1, 0), (1, 1)}. The inputs
are to be interpreted as bits of two binary numerals, least-significant bit first as in
the previous problem. The output is a numeral representing the sum of the inputs,
also least-significant bit first. As before, we need to input a final (0, 0) if we wish
to see the final answer.

   decimal value of
       input           output                input              output

(0, 0) 0 0, 0 0
(0, 1) 1 0, 1 1

(0, 0)(1, 1) 10 1, 1 2
(0, 0)(1, 1)(0, 0) 100 2, 2 4
(0, 0)(1, 1)(1, 1) 110 3, 3 6
first input pair ^

Answer:  Apparently only the value of the "carry" needs to be remembered from
one state to the next. Since only two values of carry are possible, this tells us that
two states will be adequate.
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c1c0

(0, 0) / 0
(0, 1) / 1
(1, 0) / 1

(1, 1) / 0

(0, 0) / 1

(0,  1) / 0
(1, 0)  / 0
(1, 1)  / 1

Figure 212: Serial binary adder, least-significant bits first

9 ••• MB3 (multiply-by-three)  Similar to MB2, except the input is multiplied by 3.
For example

  decimal value of
       input           output                input              output

0 0 0 0
01 11 1 3

010 110 2 6
001011 100001 11 33

Note that two final 0's might be necessary to get the full output. Why?

10 •••• MBN (multiply-by-n, where n is a fixed natural number)  (This is a separate
problem for each n.)  This machine is a transducer with binary input and
outputs, both least-significant bit first, producing a numeral that is n times the
input.

11 ••• Binary maximum  This is similar to the adder, but the inputs occur most-
significant digit first and both inputs are assumed to be the same length
numeral.

       decimal value of
                input                                      output                input            output

(0, 0) 0 0, 0 0
(0, 1) 1 0, 1 1
(0, 1)(1, 1) 11 1, 3 3
(0, 1)(1, 1)(1, 0)110 3, 6 6
(1, 1)(1, 0)(0, 1)110 6, 5 6

              ^ first input pair

12 •• Maximum classifier  This is a classifier version of the preceding. There are
three possible outputs assigned to a state: {tie, 1, 2}, where 1 indicates that the
first input sequence is greater, 2 indicates the second is greater, and 'tie'
indicates that the two inputs are equal so far.
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input                                            class
(1, 1) tie
(1, 1)(0, 1) 2
(1, 1)(0, 1)(1, 1) 2
(1, 0)(0, 1)(1, 1) 1

13 •• 1DB3 (Unary divisible by 3)  This is an acceptor with input alphabet {1}. It
accepts exactly those strings having a multiple of three 1's (including λ).

14 ••• 2DB3 (Binary divisible by 3) This is an acceptor with input alphabet {0, 1}. It
accepts exactly those strings that are a numeral representing a multiple of 3 in
binary, least-significant digit first. (Hint:  Simulate the division algorithm.)
Thus the accepted strings include:  0, 11, 110, 1001, 1100, 1111, 10010, ...

15 ••• Sequential combination locks (an infinite family of problems):  A single
string over the alphabet is called the "combination". Any string containing this
combination is accepted by the automaton ("opens the lock"). For example, for
the combination 01101, the acceptor is:

0

0

a
1

0

1

0

0, 1

b c d e f

0

1 1

1

Figure 213: A combination lock state diagram

The tricky thing about such problems is the construction of the
backward arcs; they do not necessarily go back to the initial state if
a "wrong" digit is entered, but only back to the state that results
from the longest usable suffix of the digits entered so far. The
construction can be achieved by the "subset" principle, or by
devising an algorithm that will produce the state diagram for any
given combination lock problem. This is what is done in a string
matching algorithm known as the "Knuth-Morris-Pratt" algorithm.

Construct the state-diagram for the locks with the following different
combinations:  1011; 111010; 010010001.

16 ••• Assume three different people have different combinations to the same lock.
Each combination enters the user into a different security class. Construct a
classifier for the three combinations in the previous problem.
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17 ••• The preceding lock problems assume that the lock stays open once the
combination has been entered. Rework the example and the problems assuming
that the lock shuts itself if more digits are entered after the correct combination,
until the combination is again entered.

12.2 Finite-State Grammars and Non-Deterministic Machines

An alternate way to define the language accepted by a finite-state acceptor is through a
grammar. In this case, the grammar can be restricted to have a particular form of
production. Each production is either of the form:

N → σM

where N and M are auxiliaries and σ is a terminal symbol, or of the form

N → λ

recalling that λ is the empty string. The idea is that auxiliary symbols are identified
with states. The start state is the start symbol. For each transition in an acceptor for the
language, of the form

Figure 214: State transition corresponding to a grammar production

there is a corresponding production of the form

q1 → σq2

In addition, if q2 happens to be an accepting state, there is also a production of the form.

q2 → λ

Example:  Grammar from Acceptor

For our acceptor for exactly one edge, we can apply these two rules to get the following
grammar for generating all strings with one edge:

q1
σ

q2
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The start state is a. The auxiliaries are {a, b, c, d, e, f}. The terminals are {0, 1}. The
productions are:

a → 0b c → 0e
a → 1c c → 1c
b → 0b e → 0e
b → 1d e → 1f
d → 0f e → λ
d → 1d f → 0f
d → λ f → 1f

To see how the grammar derives the 1-edged string 0011 for example, the derivation tree
is:

a

0 b

0 b

1 d

1 d

λ

Figure 215: Derivation tree in the previous finite-state grammar,
deriving the 1-edged string 0011

While it is easy to see how a finite-state grammar is derived from any finite-state
acceptor, the converse is not as obvious.  Difficulties arise in productions that have the
same lefthand-side with the same terminal symbol being produced on the right, e.g. in a
grammar, nothing stops us from using the two productions

a → 0b
a → 0c

Yet this would introduce an anomaly in the state-transition diagram, since when given
input symbol 0 in state a, the machine would not know to which state to go next:
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b

c

0

a

0

Figure 216: A non-deterministic transition

This automaton would be regarded as non-deterministic, since the next state given input 0
is not determined.  Fortunately, there is a way around this problem.  In order to show it,
we first have to define the notion of "acceptance" by a non-deterministic acceptor.

A non-deterministic acceptor accepts a string if there is some path from a
starting state to an accepting state having a sequence of arc labels equal to
that string.

We say a starting state, rather than the starting state, since a non-deterministic acceptor is
allowed to have multiple starting states. It is useful to also include λ transitions in non-
deterministic acceptors. These are arcs that have λ as their label. Since λ designates the
empty string, these arcs can be used in a path but do not contributed any symbols to the
sequence.

Example: Non-deterministic to Deterministic Conversion

Recall that a string in the language generated by a grammar consists only of terminal
symbols. Suppose the productions of a grammar are (with start symbol a, and terminal
alphabet {0, 1}):

a → 0d b → 1c
a → 0b b → 1
a → 1 d → 0d
c → 0b d → 1

The language defined by this grammar is the set of all strings ending in 1 that either have
exactly one 1 or that consist of alternating 01. The corresponding (non-deterministic)
automaton is:
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0

d

b

0

a

0

1

1
1

c

0

1

e

Figure 217: A non-deterministic automaton that accepts the set of all strings
ending in 1that have exactly one 1 or consist of an alternating 01's.

There are two instances of non-determinism identifiable in this diagram: the two 0-
transitions leaving a and the two 1-transitions leaving b. Nonetheless, we can derive from
this diagram a corresponding deterministic finite-automaton. The derivation results in the
deterministic automaton shown below.

0

0

A
1

0

B 1

D

C

E

1
1

0, 1 O
0, 1

0

0

0

0

1
F

Figure 218: A deterministic automaton that accepts the set of all strings ending in 1
that have exactly one 1 or consist of an alternating 01's.

We can derive a deterministic automaton D from the non-deterministic one N by using
subsets of the states of N as states of D. In this particular example, the subset associations
are as follows:

A ~ {a}
B ~ {b, d}
C ~ {c, e}
D ~ {d}
E ~ {e}
F ~ {b}
O ~ {}



500 Finite-State Machines

General method for deriving a deterministic acceptor D from a non-deterministic
one N:

The state set of D is the set of all subsets of N.

The initial state of D is the set of all initial states of N, together with states reachable
from initial states in N using only λ transitions.

There is a transition from a set S to a set T of D with label σ (where σ is a single input
symbol).

  T = {q' | there is a q in S with a sequence of transitions from q to q'
                 corresponding to a one symbol string σ}

The reason we say sequence is due to the possibility of λ transitions; these do not add any
new symbols to the string. Note that λ is not regarded as an input symbol.

The accepting states of the derived acceptor are those that contain at least one accepting
state of the original acceptor.

In essence, what this method does is "compile" a breadth-first search of the non-
deterministic state graph into a deterministic finite-state system. The reason this works is
that the set of all subsets of a finite set is finite.

Exercises

Construct deterministic acceptors corresponding to the following non-deterministic
acceptors, where the alphabet is {0, 1}.

1 •

a b
0

2 •

a b
0

1

3 ••

a

0

1

0

1
b c
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4 ••

a
1

b
0

c

0 1

12.3 Meaning of Regular Expressions

From the chapter on grammars, you already have a good idea of what regular expressions
mean already. While a grammar for regular expression was given in that chapter, for
purposes of giving a meaning to regular expressions, it is more convenient to use a
grammar that is intentionally ambiguous, expressing constructs in pairs rather than in
sequences:

R → 'λ '
R → ∅
R → σ, for each letter σ in A
R → R R // juxtaposition
R → ( R | R ) // alternation

R → (R)* // iteration

To resolve the ambiguity in the grammar, we simply "overlay" on the grammar some
conventions about precedence. The standard precedence rules are:

    * binds more tightly than either juxtaposition or  |

    juxtaposition binds more tightly than |

We now wish to use this ambiguous grammar to assign a meaning to regular expressions.
With each expression E, the meaning of E is a language, i.e. set of strings, over the
alphabet A. We define this meaning recursively, according to the structure of the
grammar:

Basis:

• L(λ) is {λ}, the set consisting of one string, the empty string λ.
• L(∅ ) is ∅ , the empty set.
• For each letter σ in A, and L(σ) is { σ }, the set consisting of one string of

one letter,  σ.



502 Finite-State Machines

Induction rules:

• L(RS) = L(R)L(S), where by the latter we mean the set of all strings of the
form of the concatenation rs, where r ∈ L(R) and s ∈  L(S).

• L(R | S) = L(R) ∪  L(S).

• L(R*) = L(R)*

To clarify the first bullet, for any two languages L and M, the "set concatenation" LM is
defined to be {rs | r ∈ L and s ∈  M}. That is, the "concatenation” of two sets of strings is
the set of all possible concatenations, one string taken from the first set and another taken
from the second. For example,

{0}{1} is defined to be {01}.

{0, 01}{1, 10} is defined to be {01, 010, 011, 0110}.

{01}{0, 00, 000, ...} is defined to be {010, 0100, 01000, ...}.

To explain the third bullet, we need to define the * operator on an arbitrary language. If L
is a language, the L* is defined to be (using the definition of concatenation above)

{λ} ∪  L ∪  LL ∪ LLL   ∪ ...

That is, L* consists of all strings formed by concatenating zero or more strings, each of
which is in L.

Regular Expression Examples over alphabet {a, b, c}

Expression Set denoted
a | b | c The set of 1-symbol strings {"a", "b", "c"}
λ | (a | b | c) | (a | b | c)(a | b | c) The set of strings with two or fewer

symbols
a* The set of strings using only symbol a
a*b*c* The set of strings in which no a follows a b

and no a or b follows a c
(a | b)* The set of strings using only a and b.
a* | b* The set of strings using only a or only b
(a | b | c)(a | b | c)(a | b | c)* The set of strings with at least two

symbols.
((b | c)* ab (b | c)*)* The set of strings in which each a is

immediately followed by a b.
(b | c)* | ((b | c)* a (b | c) (b | c)*)* (λ | a) The set of strings with no two consecutive

a's.
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Regular expressions are  finite  symbol strings, but the sets  they denote can be finite or
infinite. Infinite sets arise only by virtue of the * operator (also sometimes called the
Kleene-star operator).

Identities for Regular Expressions

One good way of becoming more familiar with regular expressions is to consider some
identities, that is equalities between the sets described by the expressions. Here are some
examples. The reader is invited to discover more.

For any regular expressions R and S:

R | S = S | R
R  | ∅ = R ∅  | R = R
Rλ = R λR = R
R ∅ = ∅ ∅ R = ∅
λ* = λ
∅ * = λ
R* = λ | RR*
(R  | λ)* = R*
(R*)* = R*

Exercises

1 •• Determine whether or not the following are valid regular expression identities:

λ∅  = λ
R (S | T) = RS | RT
R* = λ | R*R
RS = SR
(R | S)* = R* | S*
R*R = RR*
(R* | S*)* = (R | S)*
(R*S*) = (R | S)*

For any n, R* = λ | R | RR | RRR | .... | Rn-1 | RnR*, where Rn is an abbreviation
for RR....R.
n times

2 ••• Equations involving languages with a language as an unknown can sometimes be
solved using regular operators. For example,

S = RS | T
can be solved for unknown S by the solution S = R*T. Justify this solution.
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3 ••• Suppose that we have grammars that respectively generate sets L and M as
languages. Show how to use these grammars to form a grammar that generates
each of the following languages

L ∪ MLM L*

Regular Languages

The regular operators (|, *, and concatenation) are applicable to any languages. However,
a special name is given to languages that can be constructed using only these operators
and languages consisting of a single string, and the empty set.

Definition:  A language (set of strings over a given alphabet) is called regular  if it is a
set of strings denoted by some regular expression. (A regular language is also called a
regular set.)

Let us informally explore the relation between regular languages and finite-state
acceptors. The general idea is that the regular languages exactly characterize sets of paths
from the initial state to some accepting state. We illustrate this by giving an acceptor for
each of the above examples.

a,  b,  c a,  b,  c

a,  b,  c

Figure 219: Acceptor for a | b | c

a,  b,  ca,  b,  c a,  b,  c a,  b,  c

Figure 220: Acceptor for λ | (a | b | c) | (a | b | c)(a | b | c)

a,  b,  ca

b,  c

Figure 221: Acceptor for a*
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a,b

b a,  b,  ca

b

c

c

c

a

Figure 222: Acceptor for a*b*c*

a,
a,  b,  c

c

b

Figure 223: Acceptor for (a | b)*

a
a,  b,  c

c

b

a

b

b, c

a, c

Figure 224: Acceptor for  a* | b*

a,  b,  c
a,  b,  ca,  b,  c

Figure 225: Acceptor for (a | b | c)(a | b | c)(a | b | c)*
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b,c

a a,c

a,  b,  c

b a

b,c

Figure 226: Acceptor for ((b | c)* ab (b | c))*

As we can see, the connection between regular expressions and finite-state acceptors is
rather close and natural. The following result makes precise the nature of this
relationship.

Kleene's Theorem (Kleene, 1956)  A language is regular iff it is accepted
by some finite-state acceptor.

The "if" part of Kleene's theorem can be shown by an algorithm similar to Floyd's
algorithm. The "only if" part uses the non-deterministic to deterministic transformation.

The Language Accepted by a Finite-State Acceptor is Regular

The proof relies on the following constructive method:

Augment the graph of the acceptor with a single distinguished starting node and
accepting node, connected via λ-transitions to the original initial state and
accepting states in the manner shown below. The reason for this step is to isolate
the properties of being initial and accepting so that we can more easily apply the
transformations in the second step.

original 
initial 
state

original finite-state acceptor

new accepting statenew initial state

original 
accepting 
states

λ

λ

λ

λ

Figure 227: Modifying acceptor in preparation for deriving the regular expression
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One at a time, eliminate the nodes in the original acceptor, preserving the set of
paths through each node by recording an appropriate regular expression between
each pair of other nodes. When this process is complete, the regular expression
connecting the initial state to the accepting state is the regular expression for the
language accepted by the original finite-state machine.

To make the proof complete, we have to describe the node elimination step. Suppose that
prior to the elimination, the situation is as shown below.

X Z

y

xz

R Rxy yz

yyR

R

Figure 228: A situation in the graph before elimination of node y

Here x and z represent arbitrary nodes and y represents the node being eliminated. A
variable of the form Rij represents the regular expression for paths from i to j using nodes
previously eliminated. Since we are eliminating y, we replace the previous expression
Rxz with a new expression

Rxz | Rxy Ryy* Ryz

The rationale here is that Rxz represents the paths that were there before, and

Rxy Ryy* Ryz represents the paths that went through the eliminated node y.

X Z
xz R

     
| Rxy R

yy
R

yz
*

Figure 229: The replacement situation after eliminating node y

The catch here is that we must perform this updating for every pair of nodes x, z,
including the case where x and z are the same. In other words, if there are m nodes left,

then m2 regular expression updates must be done. Eliminating each of n nodes then

requires O(n3) steps. The entire elimination process is very similar to the Floyd and
Warshall algorithms discussed in the chapter on Complexity. The only difference is that
here we are dealing with the domain of regular expressions, whereas those algorithms
dealt with the domains of non-negative real numbers and bits respectively.
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Prior to the start of the process, we can perform the following simplification:

Any states from which no accepting state is reachable can be eliminated, along
with arcs connecting to or from them.

Example: Regular Expression Derivation

Derive a regular expression for the following finite-state acceptor:

1
b

2
b

a
3

b

4
a

a, ba

Figure 230: A finite-state acceptor from which a regular expression is to be derived

First we simplify by removing node 4, from which no accepting state is reachable. Then
we augment the graph with two new nodes, 0 and 5, connected by λ-transitions. Notice
that for some pairs of nodes there is no connection. This is equivalent to the
corresponding regular expression being ∅ . Whenever ∅  is juxtaposed with another
regular expression, the result is equivalent to ∅.  Similarly, whenever λ is juxtaposed
with another regular expression R, the result is equivalent to R itself.

0

a

1 b 2 5
λ

a

b

b

3

λ

λ

Figure 231: The first step in deriving a regular expression. Nodes 0 and 5 are added.

Now eliminate one of the nodes 1 through 3, say node 1. Here we will use the identity
that states λa*b = a*b.
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0

aa*b

2 5

3

b

b

a *b λ

λ

Figure 232: After removal of node 1

Next eliminate node 2.

0 5

3

b

b aa b* *a ( * )

λb aa ba ( ) b∗ ∗∗

Figure 233: After removal of node 2

Finally eliminate node 3.

0
a * )b *aa( b | a * b (aa  b)  b b* * *

5

*

Figure 234: After removal of node 1

The derived regular expression is

a*b(aa*b)* | a*b(aa*b)*bb*
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Every Regular Language is Accepted by a Finite-State Acceptor

We already know that we can construct a deterministic finite-state acceptor equivalent to
any non-deterministic one. Hence it is adequate to show how to derive a non-
deterministic finite-state acceptor from a regular expression. The paths from initial node
to accepting node in the acceptor will correspond in an obvious way to the strings
represented by the regular expression.

Since regular expressions are defined inductively, it is very natural that this proof proceed
along the same lines as the definition. We expect a basis, corresponding to the base cases
λ, ∅ , and σ (for σ each in A). We then assume that an acceptor is constructable for

regular expressions R and S and demonstrate an acceptor for the cases RS, R | S, and R*.
The only thing slightly tricky is connecting the acceptors in the inductive cases. It might
be necessary to introduce additional states in order to properly isolate the paths in the
constituent acceptors. Toward this end, we stipulate that

(i) the acceptors constructed shall always have a single initial state and single
accepting state.

(ii)  no arc is directed from some state into the initial state

Call these property P.

Basis:  The acceptors for λ, ∅ , and σ (for σ each in A) are as shown below:

Figure 235: Acceptor for ∅  with property P

λ

Figure 236: Acceptor for λ (the empty sequence) with property P

σ

Figure 237: Acceptor for σ (where  σ ∈ A) with property P
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Induction Step:  Assume that acceptors for R and S, with property P above, have been
constructed, with their single initial and accepting states as indicated on the left and right,
respectively.

R S

Figure 238: Acceptors assumed to exist for R and S respectively, having property P

Then for each of the cases above, we construct new acceptors that accept the same
language and which have property P, as now shown:

R S

λ

formerly accepting, 
now non-accepting

Figure 239: Acceptor for RS, having property P

R

S

λ λ

λ λ

Figure 240: Acceptor for R | S, having property P
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R

λ

λλ

λ

Figure 241: Acceptor for R*, having property P

Regular expressions in UNIX   

Program egrep is one of several UNIX  tools that use some  form of regular expression
for  pattern  matching. Other  such  tools are ed, ex, sed, awk, and archie. The notations
appropriate for each tool may differ slightly. Possible usage:

egrep regular-expression filename

searches the file line-by-line for lines containing strings matching the regular-expression
and prints out those lines. The scan starts anew with each line. In the following
description, 'character' means excluding the newline character:

A single character not otherwise endowed with special meaning matches that
character. For example, 'x' matches the character x.

The character '.' matches any character.

A regular expression followed by an * (asterisk) matches a sequence of 0 or more
matches of the regular expression.

Effectively a regular expression used for searching is preceded and followed by an
implied .*, meaning that any sequence of characters before or after the string of
interest can exist on the line. To exclude such sequences, use ^ and $:

The character ^ matches the beginning of a line.

The character $ matches the end of a line.

A regular expression followed by a + (plus) matches a sequence of 1 or more matches
of the regular expression.

A regular expression followed by a ? (question mark) matches a sequence of 0 or 1
matches of the regular expression.
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A \ followed by a single character other than newline matches that character. This is
used to escape from the special meaning given to some characters.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in a-z0-9, which means all characters
in the range a-z and 0-9. A literal - in such a context must be placed after \ so that it
can't be mistaken as a range indicator.

Two regular expressions concatenated match a match of the first followed by a match
of the second.

Two regular expressions separated by | or newline match either a match for the first or
a match for the second.

A regular expression enclosed in parentheses matches a match for the regular
expression.

The order of precedence of operators at the same parenthesis level is [] then *+? then
concatenation then | and newline.

Care should be taken when using the characters $ * [ ] ^ | ( ) and \ in the expression as
they are also meaningful to the various shells. It is safest to enclose the entire
expression argument in single quotes.

Examples: UNIX  Regular Expressions
Description of lines to be selected Regular Expression

containing the letters qu in combination qu

beginning with qu ^qu

ending with az az$

beginning with qu and ending with az ^qu.*az$

containing the letters qu or uq uq|qu

containing two or more a's in a row a.*a

containing four or more i's i.*i.*i.*i

containing five or more a's and i's [ai].*[ai].*[ai].*[ai].*[ai]

containing ai at least twice (ai).*(ai)

containing uq or qu at least twice (uq|qu).*(uq|qu)

Exercises

Construct deterministic finite-state acceptors for the following regular expressions:

1 • 0*1*

2 • (0*1*)*
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3 •• (01 | 011)*

4 •• (0* | (01)*)*

5 •• (0 | 1)*(10110)(0 | 1)*

6 ••• The regular operators are concatenation, union ( | ), and the * operator. Because
any combination of regular languages using these operators is itself a regular
language, we say that the regular languages are closed under the regular
operators. Although intersection and complementation (relative to the set of all
strings, Σ*) are not included among the regular languages, it turns out that the
regular languages are closed under these operators as well. Show that this is true,
by using the connection between regular languages and finite-state acceptors.

7 ••• Devise a method for determining whether or not two regular expressions denote
the same language.

8 •••• Construct a program that inputs a regular expression and outputs a program that
accepts the language denoted by that regular expression.

9 ••• Give a UNIX regular expression for lines containing floating-point numerals.

12.4 Synthesizing Finite-State Machines from Logical Elements

We now wish to extend techniques for the implementation of functions on finite domains
in terms of logical elements to implementing finite-state machines. One reason that this is
important is that digital computers are constructed out of collections of finite-state
machines interconnected together.As already stated, the input sequences for finite-state
machines are elements of an infinite set Σ*, where Σ is the input alphabet. Because the
output of the propositional functions we studied earlier were simply a combination of the
input values, those functions are called combinational, to distinguish them from the
more general functions on Σ*, which are called sequential.

We will show how the implementation of machines can be decomposed into
combinational functions and memory elements, as suggested by the equation

Sequential Function = Combinational Functions + Memory

Recall the earlier structural diagrams for transducer and classifiers, shown as "feedback"
systems. Note that these two diagrams share a common essence, namely the next-state
portion. Initially, we will focus on how just this portion is implemented. The rest of the
machine is relatively simple to add.
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F

∆

next-state function

delay or memory

input

Figure 242: The essence of finite-state machine structure

Implementation using Logic Elements

Before we can "implement" such a diagram, we must be clearer on what items correspond
to changes of input, output, and state. The combinational logical elements, such as AND-
gates and OR-gates, as discussed earlier are abstractions of physical devices. In those
devices, the logical values of 0 and 1 are interpretations of physical states. The output of
a device is a function of its inputs, with some qualification. No device can change state
instantaneously. When the input values are first presented, the device's output might be in
a different state from that indicated by the function. There is some delay time or
switching time associated with the device that must elapse before the output stabilizes to
the value prescribed by the function. Thus, each device has an inherent sequential
behavior, even if we choose to think of it as a combinational device.

Example  Consider a 2-input AND-gate. Suppose that a device implements this gate due
to our being able to give logical values to two voltages, say LO and HI, which correspond
to 0 and 1 respectively. Then, observed over time, we might see the following behavior of
the gate in response to changing inputs. The arrows in the diagram indicate a causal
relationship between the input changes and output changes. Note that there is always
some delay associated with these changes.

HI

LO

HI

LO

HI

LO

input a

input b

output

t ime

Figure 243: Sequential behavior of an AND-gate
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Modeling the sequential behavior of a device can be complex. Computer designers deal
with an abstraction of the behavior in which the outputs can only change at specific
instants. This simplifies reasoning about behaviors. The abstract view of the AND-gate
shown above can be obtained by straightening all of the changes of the inputs and
outputs, to make it appear as if they were instantaneous.

HI

LO

HI

LO

HI

LO

input a

input b

output

t ime

Figure 244: An abstraction of the sequential behavior of an AND-gate

Quantization and Clocks

In order to implement a sequential machine with logic gates, it is necessary to select a
scheme for quantizing the values of the signal. As suggested by the preceding diagram,
the signal can change continuously. On the other hand, the finite-state machine
abstraction requires a series of discrete input and output values. For example, as we look
at input a in the preceding diagram, do we say that the corresponding sequence is 0101
based on just the input changes?  If that were the case, what would be the input
corresponding to sequence 00110011?  In other words, how do we know that a value that
stays high for some time is a single 1 or a series of 1's?  The most common means of
resolving this issue is to use a system-wide clock as a timing standard. The clock "ticks"
at regular intervals, and the value of a signal can be sampled when this tick occurs.
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The effect of using a clock is to superimpose a series of tick marks atop the signals and
agree that the discrete valued signals correspond to the values at the tick marks.
Obviously this means that the discrete interpretation of the signals depends on the clock
interval. For example, one quantization of the above signals is shown as follows:

HI

LO

HI

LO

HI

LO

input a

input b

output

t ime

01001

01101

01101

Figure 245: AND-gate behavior with one possible clock quantization

Corresponding to the five ticks, the first input sequence would be 01001, the second
would be 01101, and the output sequence would be 01101. Notice that the output is not
quite the AND function of the two inputs, as we might have expected. This is due to the
fact that the second output change was about to take place when the clock ticked and the
previous output value carried over. Generally we avoid this kind of phenomenon by
designing such that the changes take place between ticks and at each tick the signals are,
for the moment, stable.

The next figure shows the same signals with a slightly wider clock interval superimposed.
In this instance, no changes straddle the clock ticks, and the input output sequences
appear to be what is predicted by the definition of the AND function.
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HI

LO

HI

LO

HI

LO

input a

input b

output

t ime

0101

0101

0101

Figure 246: AND-gate behavior with wider quantization

Flip-Flops and Clocks

As stated above, in order to maintain the effect of instantaneous changes when there
really is no such thing, the inputs of gates are only sampled at specific instants. By using
the value of the sample, rather than the true signal, we can approach the effect desired. In
order to hold the value of the sample from one instant to the next, a memory device
known as a D flip-flop is used.

The D flip-flop has two different kinds of inputs: a signal input and a clock input.
Whenever the clock "ticks", as represented, say, by the rising edge of a square wave, the
signal input is sampled and held until the next tick. In other words, the flip-flop
"remembers" the input value until the next tick; then it takes on the value at that time.
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t ime

HI

LO

HI

LO

signal
input

clock

output

Figure 247: D flip-flop behavior:
The output of the flip-flop changes only in response to the rising edge
 of the clock, and will reflect the value of the signal input at that time.

Note that the signal input can change in between clock ticks, but it should not be
changing near the same time. If it does, a phenomenon known as "meta-stability" can
result, which can upset the abstraction as presented. We shall say more about this later.

Clock-based design is called synchronous design. This is not the only form of design, but
it is certainly the most prevalent, with at least 99% of computer design being based on
this model. We will indicate more about the reasons for this later, but for now,
synchronous design is the mode on which we will concentrate.

In synchronous design, the inputs to a device will themselves be outputs of flip-flops, and
will change after the clock ticks. For example, the following diagram shows an AND-
gate in the context of D flip-flops controlled by a common clock. The inputs to a and b
are not shown. However, we assume that they change between clock ticks and thus the
outputs of a and b will change right after the clock tick, as will the output c.

a

b

c

clock

Figure 248: An AND-gate in a synchronous system.
Inputs to the flip-flops with outputs a and b are not shown.
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The next diagram shows a sample behavior of the AND-gate in a synchronous system.
This should be compared with the abstracted AND-gate presented earlier, to verify that
synchronous design implements the abstract behavior.

input a

input b

output 
of AND

clock

output

time

Figure 249: Example behavior of the AND-gate in a synchronous system.
Note that the output only changes right after the rising edge of the clock.

The assumption in synchronous design is that the inputs to a device are held constant
during each clock interval. During the interval itself, the device has an opportunity to
change to the value represented by its logical function. In fact, the length of the interval is
chosen in such a way that the device can achieve this value by the end of the interval. At
the end of the interval, the output of the device will thus have stabilized. It can then be
used as the input to some other device.

Closing the Loop

The previous example of an AND-gate in the context of three flip-flops can be thought of
as a simple sequential machine. The state of the machine is held in the output flip-flop c.
Thus, the current state always represents the logical AND of the inputs at the previous
clock tick. In general, the state is a function of not just the inputs, but also the previous
state. This can be accomplished by using the output of the state flip-flop to drive the next
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state. An example obtained by modifying the previous example is shown below. Here we
connect the output c to the place where the input a was.

 

b

c

clock

initially 1

Figure 250: A sequential machine that remembers if b were ever 0

Suppose that we observe this machine from a point at which the output flip-flop c is 1. At
the next clock tick, if b is 1, then the flip-flop will stay at 1. However, if b is 0, then the
flip-flop will be switched to 0. Once flip-flop c is at 0, it will stay there forever, because
no input value anded with 0 will ever give 1. The following diagram shows a possible
behavior.

HI

LO

HI

LO

HI

LO

input b

output 
of AND

clock

output

Figure 251: Example behavior of the previous sequential machine

The timing diagram above shows only one possible behavior. To capture all possible
behaviors, we need to use the state-transition diagram, as shown below. Again, the state
in this case is the output of flip-flop c.
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1

1

0
0 1

0

Figure 252: The state diagram for a machine that remembers if it ever saw 0

The state-transition structure of this machine is the same as that of a transducer that adds
1 to a binary representation, least-significant-bit-first:

c1

1/0

c0 1/1
0/0

0/1

Figure 253: The add-1 transducer

Before giving the general method for synthesizing the logic from a state-transition
behavior, we give a couple more examples of structure vs. function.

Sequential Binary Adder Example

This is the essence of the sequential binary adder that adds a pair of numerals together,
least-significant bit first. Its state remembers the carry. We present both the full
transducer and the abstracted state-transition behavior.

c1c0

(0, 0) / 0
(0, 1) / 1
(1, 0) / 1

(1, 1) / 0

(0, 0) / 1

(0,  1) / 0
(1, 0)  / 0
(1, 1)  / 1

c1c0

(0, 0)
(0, 1)
(1, 0) 

(1, 1)

(0, 0)

(0,  1) 
(1, 0) 
(1, 1) 

Figure 254: Transducer and state-transition behavior for the binary adder
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The machine has 2 inputs that are used in parallel, one for each bit of the two addends.
Assuming that we represent the carry by the 1 or 0 value of the output flip-flop, the
structure of the adder can be realized as follows:

a

b

c

clock

c
M

Figure 255: State-transition implementation of the binary adder

The box marked M is the majority combination function, as given by the following table:

a b c F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

As we can see, the output of function M is 1 iff at least two out of three inputs are 1.
These combinations could be described by giving the minterm form, or the simplified
form:

F(a, b, c) = ab + ac + bc
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Were we to implement this M using AND- and OR- gates, the result would appear as:

a b

c

clock

c

Figure 256: The binary adder state-transition behavior implemented
using combinational gates and a flip-flop

Combination Lock Example

This example, a combination lock with combination 01101, was given earlier:

0

0

a
1

0

1

0

0, 1

b c d e f

0

1 1

1

Figure 257: Combination lock state transitions

Suppose we encode the states by using three flip-flops, u, v, and w, as follows:

flip-flops
state name u v w

a 0 0 0
b 0 0 1
c 0 1 0
d 0 1 1
e 1 0 0
f 1 1 1
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From the tabular form for the state-transition function:

next state as a function of input
current state 0 1

a b a
b b c
c b d
d e a
e b f
f f f

we transcribe the table by substituting (e.g. by using a text editor) flip-flop values for
each state. This is the same process we used in implementing combinational logic
functions.

next uvw as a function of input
current uvw 0 1

000 001 000
001 001 010
010 001 011
011 100 000
100 001 111
111 111 111

For each flip-flop, we derive the next-state in terms of the current one simply by
separating this table:

next u as a function of input
current uvw 0 1

000 0 0
001 0 0
010 0 0
011 1 0
100 0 1
111 1 1

 Letting x represent the input, from this table, we can see that

next u = u'vwx' + uv'w'x + uvwx' + uvwx

(using the minterm form),but  a simpler version derived from considering "don't cares" is:

next u = vwx' + ux
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next v as a function of input
current uvw 0 1

000 0 0
001 0 1
010 0 1
011 0 0
100 0 1
111 1 1

From this table, we can derive:

next v = u'v'wx + u'vw'x + uv'w'x + uvw

next w as a function of input
current uvw 0 1

000 1 0
001 1 0
010 1 1
011 0 0
100 1 1
111 1 1

From this table, we can derive the simplified form:

 next w =v'x' + vw' + u

Putting these together, we can realize the combination lock as shown on the next page.

12.5 Procedure for Implementing a State-Transition Function

To implement a state-transition function for a finite-state machine in terms of
combinational logic and flip-flops:

1. Choose encodings for the input alphabet Σ  and the state set Q.

2. Transcribe the table for the state-transition function F: Q x Σ → Q into
propositional logic functions using the selected encodings.

3. Implement the transcribed F functions from logical elements

4. The functions thus implemented are used as inputs to a bank of D flip-flops,
one per bit in the state encoding.
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Inclusion of Output Functions   

In order to synthesize a finite-state machine having output, we need to augment the state-
transition implementation with an output function implementation. Fortunately, the
output function is simply a combinational function of the state (in the case of a classifier
or acceptor) or of the state and input (in the case of a transducer).

Example: Inclusion of Output for the Combination Lock Example

We see that the lock accepts only when in state f. Equating acceptance to an output of 1,
we see that the lock produces a 1 output only when uvw = 1. Therefore, we need only add
an AND-gate with inputs from all three flip-flops to get the acceptor output. The
complete lock is shown below.

v

w

u

uvw

x

next u = vw + ux 

next v = u'v'wx + u'vw'x + uv'w'x + uvwx

next w = v'x' + vw' + u

Figure 258: Implementation of a combination lock using flip-flops and gates
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Example: Binary Adder with Output

The binary adder is an example of a transducer. The output value is 1 when the one or
three of the two inputs and the carry are 1. When none or two of those values are 1, the
output is 0. This functionality can be represented as a 3-input exclusive-OR gate, as
shown in the figure, but this gate can also be further implemented using AND-, OR-, and
NOT- gates as always. Typically the output would be used as input to a system in which
this machine is embedded.

a b

c

clock

c

output

Figure 259: Implementation of a sequential binary adder

12.6  Inside Flip-Flops

In keeping with our desire to show a relatively complete vertical picture of computer
structure, we briefly go into the construction of flip-flops themselves. Flip-flops can be
constructed from combinational logic, assuming that such logic has a delay between input
changes and output changes, as all physical devices do. Flip-flops can be constructed
from a component that realizes the memory aspect, coupled with additional logic to
handle clocking. The memory aspect alone is often referred to as a latch because it holds
or "latches" the last value that was appropriately signaled to it.
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To a first approximation, a latch can be constructed from two NOR gates, as shown
below.

S

R
Q

Q'

Figure 260: An electronic latch from opposing NOR-gates

In order for the latch to function properly, the inputs have to be controlled with a specific
discipline; at this level, there is no clock to help us out. Let the state of the latch be
represented by SRQQ'. Normally Q and Q' will be complementary, but there will be
times at which they are not. Consider the state SRQQ' = 0010. Here we say the latch is
"set". In the similar state 0001, the latch is "reset". The function of the inputs S and R is
to put the latch into one of these two states. Specifically, when S is raised to 1, the latch
should change to the set state, or stay in the set state if it was already there. Similarly,
when R is raised to 1, the latch should change to the reset state. When the input that was
raised is lowered again, the latch is supposed to stay in its current state.

We must first verify that the set and reset states are stable, i.e. not tending to change on
their own. In 0010, the inputs to the top NOR gate are 01, making the output 0. This
agrees with the value of Q' in 0010. Likewise, the inputs to the bottom NOR gate are 00,
making the output 1. This agrees with the value of Q in 0010. Therefore 0010 is stable.
Similarly, we can see that 0001 is also stable.

Now consider what happens if the latch is in 0010 (set) and R is raised. We then have
state 0110. The upper NOR gate's output does not tend to change at this point. However,
the lower NOR gate's output is driven toward 0, i.e. Q changes from 1 to 0. Following
this, the upper NOR gate's output is driven toward 1, so Q' changes from 0 to 1. Now the
latch is in state 0101. We can see this is stable. If R is now lowered, we have state 0001,
which was already observed to be stable. In summary, raising R for sufficiently long,
then lowering it, results in the reset state. Also, if the latch were in state 0001 when R is
raised, then no change would take place and the latch would stay in state 0001 when R is
lowered.

Similarly, we can see that raising S momentarily changes the latch to state 0010. So S and
R are identified with the functions of setting and resetting the latch, respectively. Thus
the latch is called a set-reset or SR latch. The following state diagram summarizes the
behavior we have discussed, with stable states being circled and transient states left
uncircled.
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S: 0 → 1

output

S

Q'

Q

R

SRQQ'

0010

1010 0110

R: 0 → 1

S: 1 → 0

0100

0101

0001

R: 1 → 0

R: 0 → 11001

S: 0 → 1

1000

Figure 261: State-transition behavior of the electronic latch.
States not outlined (1000, 0100) are unstable and tend to make

autonomous transitions toward stable states as shown.

In describing the latch behavior, we dealt with the cases where only one of R or S is
changing at a time. This constitutes a constraint under which the latch is assumed to
operate. If this condition is not maintained, then the latch will not necessarily behave in a
predictable fashion. We invite you to explore this in the exercises.

Next we show how a latch becomes a flip-flop by adding the clock element. To a first
approximation, a flip-flop is a latch with some added gates so that one of S or R is only
activated when the clock is raised. This approximation is shown below. However, we do
not yet have a true flip-flop, but only a clocked latch, also called a transparent latch.
The reason for this hedging is that if the input to the unit is changed while the clock is
high, the latch will change. In contrast, in our assumptions about a D flip-flop, the flip-
flop is supposed to only change depending on the value of the input at the leading edge of
the clock, i.e. the flip-flop is supposed to be edge-triggered.
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clk

Q

Q
_D

latching componentclocking component

Figure 262: A  "transparent" D latch

In order to get edge triggering, we need to latch the input at the time the clock rises, and
then desensitize the latch to further changes while the clock is high. This is typically done
using a circuit with a more complex clocking component, such as the one below. The
assumption made here is that the D input is held constant long enough during the clock
high for the flip-flops on the left-hand side to stabilize.

D

clk Q

Q
_

Figure 263: Edge-triggered D flip-flop using NAND gates

Exercises

1 • Explain in your own words why raising and lowering S changes the latch to 0010.

2 •• Explore the state transition behavior for states not shown in the diagram, in
particular from the state 1100.

3 ••• By using a state diagram, verify that the edge-triggered D flip-flop is indeed edge-
triggered.
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12.7 The Progression to Computers

We have already seen hints of the relationship of finite-state machines to computers. For
example, the control unit of a Turing machine looks very much like a finite-state
transducer. In these notes, we use the "classifier" variety of finite-state machine to act as
controllers for computers, introducing a type of design known as register-transfer level
(RTL). From there, it is easy to explain the workings of a stored-program computer,
which is the primary medium on which programs are commonly run.

Representing states of computers explicitly, as is called for in state diagrams and tables,
yields state sets that are too large to be practically manageable. Not only is the number of
states too big to fit in the memory of a computer that would be usable as a tool for
analyzing such finite-state machines, it is also impossible for a human to understand the
workings of a machine based on explicit representation of its states. We therefore turn to
methods that combine finite-state machines with data operations of a higher level.

A Larger Sequential Adder

A machine that adds up, modulo 16, a sequence of numbers in the range 0 to 15, each
represented in binary. Such a machine is depicted below.

Input sequence

State sequence 
0 1 6 9 0 8 ...

1 5 3 7 8 ...

Figure 264: Sequence adding machine, modulo 16

We could show the state transition function for this machine explicitly. It would look like
the following large addition table:
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next state input

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

3 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

5 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4

current 6 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5

state 7 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9

11 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10

12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

13 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12

14 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13

15 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

If we chose a much larger modulus than 16 the state table would be correspondingly
larger, growing as the square of the modulus. However, the basic principle would remain
the same. We can show this principle using a diagram like the finite-state machine
diagram:

∆

adder

state = accumulated value

input

Figure 265: Diagram for the sequence adder.
The adder box adds two numbers together

As before, we can implement the adder in terms of combinational logic and the state in
terms of a bank of D flip-flops. The combination logic in this is recognized as the adder
module introduced in Proposition Logic.
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adder

D flip-flops

clock

input

Figure 266: The sequence adder at the next level of detail

Registers

Now return to our diagram of the sequence adder. In computer design, it is common to
group flip-flops holding an encoded value together and call them a register, as suggested
by the following figure.
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D flip-flops

clock

inputs

register

clock

inputs =

Figure 267: Expansion of a 4-bit register

Every time the clock ticks, the current logical values at the input side are stored into (or
"gated into") the flip-flops. This shows a register of minimum functionality. Usually
other functions are present. For example, we will often want to selectively gate
information into the register. This can be accomplished by controlling whether or not the
flip-flops "see" the clock tick. This can be done simply using an AND-gate. The control
line is known as a "strobe":  when the strobe is 1 and the clock ticks, the external values
are gated into the register. When the strobe is 0, the register maintains its previous state.

Note that a register is essentially a (classifier) finite-state machine that just remembers its
last data input. For example, suppose that we have a register constructed from two flip-
flops. Then the state diagram for this machine is:

00 01 10 11

00
01 10

11

01 10 11

10 11

11

01

00

00 01 10

00

Figure 268: State-transition diagram for a 2-bit register.
Each input takes the machine to a state matching the input.

A typical use of this selective gating is in selective transfer from one register to another.
The situation is shown below.
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D flip-flops

clock

strobe input transfer on clock

don't transfer on clock

Register A Register B

Figure 269: Transferring from one register to another using a strobe

In a similar fashion, the output of any combinational unit can be gated selectively into a
register. Typically, the gate with the strobe is considered to be part of the register itself.
In this case, the view of the register as a finite state-machine includes the strobe as one of
the inputs. If the strobe value is 1, the transitions are as shown in the previous state
diagram. If the strobe value is 0, the transitions are to the current state. For ultra-high-
speed designs, strobing against the clock this way is not desirable, as it introduces an
extra gate delay. It is possible to avoid this defect at the expense of a more complicated
register design. We will not go into the details here.

Composition of Finite-State Machines

A computer processor, the kind you can buy, rather than an abstract computer like a
Turing machine, is essentially a very large finite-state machine. In order to understand the
behavior of such a machine, we must resort to a modular decomposition. We cannot hope
to enumerate all the states of even a simple computer, even if we use all the resources in
the universe.
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There are several fundamental ways to compose finite-state machines. In each case, the
overall machine has as its state set a subset of the Cartesian product of the state sets of the
individual machines. Consider first the parallel composition of two machines, as shown
below.

M

N

C

Figure 270: Parallel Composition of machines M and N

The two machines share a common input. They go through their transitions in "lock step"
according to the clock. Unit C is combinational logic that combines the outputs produced
by the machines but that does not have memory of its own.

To how the structure of this machine relates to the individual machines, let's show
something interesting:

The intersection of two regular languages is regular.

Unlike the union of two regular languages, his statement does not follow directly from
the definition of regular expressions. But we can show it using the parallel composition
notion. Let M and N be the machines accepting the two languages in question. We will
see how a parallel composition can be made to accept the intersection. What unit C does
in this case is to form the logic product of the outputs of the machines, so that the overall
machine accepts a string when, and only when, both component machines accept. This is,
after all, the definition of intersection.

Example: Parallel Composition

Consider two acceptors used as examples earlier.

a,  b a,  b

a,  b

1 2 3

Figure 271: Acceptor for a | b
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a,  ba

b
54

Figure 272: Acceptor for a*

To make an acceptor for the intersection of these two regular languages, we construct a

machine that has as its state set the product {1, 2, 3} x {4, 5} = {(1, 4), (1, 5), (2, 4),
(2, 5), (3, 4), (3, 5)}. We might not actually use all of these states, as some might not be
reachable from the initial state, which is (1, 4) (the pair of initial states of each machine).
There is just one accepting state, (2, 4), since it is the only one in which both components
are accepting.

The following transitions occur in the product machine:

input
state a b 
(1, 4) (2, 4) (2, 5)
(2, 4) (3, 4) (3, 5)
(2, 5) (3, 5) (3, 5)
(3, 4) (3, 4) (3, 5)
(3, 5) (3, 5) (3, 5)

We see that one state in the product, namely (1, 5), is not reachable. This is because once
we leave 1, we can never return. The diagram for the product machine is thus shown in
the following figure.

a,  b

a

1,4 2,4
a

2,5

b

3,4
a

3,5

b

a,  b

Figure 273: State diagram for the product of the preceding two acceptors

In a similar vein, we may construct other kinds of composition, such as ones in which one
machine feeds the other, or in which there is cross-feeding or feedback. These are
suggested by the following structural diagrams, but the experimentation with the state
constructions is left to the reader.
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M N

M

N

C

Figure 274: Examples of other machine compositions

Again, we claim that a computer is just one large composition of many smaller machines.
A clear example of this will be seen in the next chapter.

Additional Capabilities of Registers

We saw in Part 1 how data can be transferred from one register to another as an array of
bits in one clock tick. This is known as a parallel transfer. Another way to get data to or
from a register is via a serial transfer, i.e. one bit at a time. Typically this is done by
having the bits gated into one flip-flop and shifting the bits from one flip-flop to the next.
A register with this capability is called a shift register. The following diagram shows
how the shift register functionality can be implemented.

clock

serial 
data in

serial 
data out

Figure 275: Shift register constructed from D flip-flops

Once the data have been shifted in serially, they can be transferred out in parallel. Also,
data could be transferred in parallel and transferred out in serial. Thus the shift register
can serve as a serial-parallel converter in both directions.

A shift register is an implementation of finite-state machine, in the same model discussed
earlier, i.e. a bank of flip-flops serve as memory and a set of combinational functions
compute the next-state function. The functions in this case are trivial: they just copy the
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value from one flip-flop to the next. For the 4-flip-flop machine shown above, the
transition table would be:

next state input
current

state
0 1

0 0 0 _ 0 0 0 0 1 0 0 0
0 0 1 _ 0 0 0 1 1 0 0 1
0 1 0 _ 0 0 1 0 1 0 1 0
0 1 1 _ 0 0 1 1 1 0 1 1
1 0 0 _ 0 1 0 0 1 1 0 0
1 0 1 _ 0 1 0 1 1 1 0 1
1 1 0 _ 0 1 1 0 1 1 1 0
1 1 1 _ 0 1 1 1 1 1 1 1

Here the _ indicates that we have the same next state whether the _ is a 0 or 1. This is
because the right end bit gets "shifted off".

In order to combine functionalities of shifting and parallel input to a register, additional
combinational logic has to be used so that each flip-flop's input can select either function.
This can accomplished by the simple combinational circuit known as a multiplexor, as
introduced in the Proposition Logic chapter. By using such multiplexors to select
between a parallel input and the adjacent flip-flop's output, we can achieve a two-function
register. The address line of each multiplexor is tied to a control line (which could be
called a "strobe") that specifies the function of the register at a given clock.

clock

MMMM

serial 
data in

parallel data in

control
(shift/ load)

Figure 276: Structure of a shift register with two functions:
serial data in and parallel data in

A commercial shift-register is typically constructed from a different type of flip-flop than
the D, to simplify the attendant multiplexing logic. Thus the above diagram should be
regarded as being for conceptual purposes. Multiplexors (also called MUXes) are more
often found used in other applications, as will be discussed subsequently.
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Buses and Multiplexing

Quite often in computer design we have the need to selectively transfer into a register
from one of several other registers. One way to accomplish this is to put a multiplexor
with one input per register from which we wish to transfer with the output connected to
the register to which we wish to transfer. The address lines can then select one of the
input registers. As before, the actual transfer takes place on a clock tick.

M

address

a
b
c
d

A

B

C

D

target 
register

source 
registers

multiplexor

Figure 277: Selective transfer using a multiplexor (one bit shown)

This approach can be both expensive and slow (due to multiple levels of delay in the
multiplexor) if the number of source registers is appreciable. An alternate approach is to
use a bus structure to achieve the multiplexing. To a first approximation, a bus just
consists of a single wire per bit. The understanding is that at most one source register will
be providing input to the bus at any one time. Hence the bus at that time provides a direct
connection to the target register. The problem is how to achieve this effect. We cannot
use logic gates to connect the sources to the bus, since by definition these gates always
have their output at either 0 or 1. If one gate output is 0 and the other is 1 and they are
connected to a common bus, the result will be undefined logically (but the effect is
similar to a short-circuit and could cause damage to the components).

A rather miraculous device known as a three-state buffer is used to achieve the bus
interconnection. As its name suggests, its output can be either 0, 1, or a special third state
known as "high impedance" or "unconnected". The effect of the third state is that the
output line of the 3-state buffer is effectively not connected to the bus logically.
Nonetheless, which of the three states the device is in is controlled electronically by two
logical inputs: one input determines whether the output is in the unconnected state or not,
and the other input has the value that is transmitted to the output when the device is not in
the connected state. Therefore the following function table represents the behavior of the
3-state buffer:

control data                  output
0 0 unconnected
0 1 unconnected
1 0 0
1 1 1
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in out

1

out = in

in out

out = "no connection" 

or "high impedance"
0

Figure 278: Three-state buffer behavior

The following figure illustrates how multiple source registers can be multiplexed using a
bus and one 3-state buffer per source. Notice that the selection is done by one 3-state
device being activated at a time, i.e. a "one-hot" encoding, in contrast to the binary
encoding we used with a multiplexor. Often we have the control strobe in the form of a
one-hot encoding anyway, but if not, we could always use a decoder to achieve this
effect. Of course, if there are multiple bits in the register, we must have multiple bus
wires and one 3-state buffer per bit per register.

A

B

C

D

target 
register

source
registers

one-hot selection

3-state buffers
bus

Figure 279: Multiplexing register sources using a bus and 3-state buffers

If there are multiple targets as well as sources, then we can control the inputs to the
targets by selectively enabling the clock input to those registers. One contrast to the
multiple-source case, however, is that we can "broadcast" the same input to multiple
targets in a single clock tick. Put another way, the selection of the target register(s) can be
done by a subset encoding rather than a one-hot encoding. This is shown in the next
figure.
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A

B

C

D

target 
registers

source
registers

one-hot selection

3-state buffers
bus

clocksubset 
selection

Figure 280: Multiple source and target selections on a bus

The other point to note about a bus is that inputs need not come from a register; they can
come from the output of any combinational logic, such as an adder.

At a sufficiently coarse level of abstraction, buses are shown as a single data path,
suppressing the details of 3-state devices, selection gates, etc. An example is the diagram
of the ISC (Incredibly Simple Computer) in the next chapter.

Exercises

1 •• Show how to construct a 2-function shift-register that has the functions shift-left
and shift-right.

2 ••• Show how to construct a 5-function shift-register, with functions shift-left, shift-
right, parallel load, clear (set all bits to 0), and no-operation (all bits left as is).

3 ••• While the shift register described is convenient for converting serial data to
parallel data, it is too slow to serve as an implementation of the shift instructions
found in most computers, where it is desired to shift any number of bits in one
clock interval. A combinational device can be designed that accomplishes this
type of shift based on using the binary representation of the amount to be shifted
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to shift in log N stages, shifting successive powers of two positions at each stage.
Sketch the design of such a device based on 2-input multiplexors. In the trade, this
is known as a "barrel shifter". Earlier, we referred to the principle on which the
barrel shifter is based as the radix principle.

12.8 Chapter Review

Define the following terms:

acceptor
bus
classifier
clock
D flip-flop
edge-triggered
feedback system
finite-state machine
flip-flop
Kleene's theorem
latch
multiplexor
non-deterministic finite-state machine
parallel composition
quantization
regular expression
register
sequencer
shift register
stable state
synchronous
three-state buffer
transducer
Turing machine

Demonstrate how to convert a non-deterministic finite-state acceptor to a deterministic
one.

Demonstrate how to derive a non-deterministic finite-state acceptor from a regular
expression.

Demonstrate how to derive a regular expression from a finite-state machine.

Demonstrate how to synthesize a switching circuit from a finite-state machine
specification.
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12.9 Further Reading

Frederick C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, 1968.
[Further examples of finite-state machines and regular expressions. Moderate.]

S.C. Kleene, Representation of events in nerve nets and finite automata, pp 3-41 in
Shannon and McCarthy (eds.), Automata Studies, Annals of Mathematics Studies,
Number 34, Princeton University Press, 1956. [The original presentation of regular
expressions and their connection with machines. Moderate.]

G.H. Mealy, A method for synthesizing sequential circuits, The Bell System Technical
Journal, 34, 5, pp. 1045-1079, September 1955. [Introduces the Mealy model of finite-
state machine. Moderate.]

Edward F. Moore, Gedanken-experiments on sequential machines, pp 129-153 in
Shannon and McCarthy (eds.), Automata Studies, Annals of Mathematics Studies,
Number 34, Princeton University Press, 1956. [Introduces the Moore model of finite-state
machine. Moderate to difficult.]



13. Stored-Program Computers

13.1 Introduction

This chapter concentrates on the low-level usage and structure of stored program
computers. We focus on a particular hypothetical machine known as the ISC, describing
its programming in assembly language. We show how recursion and switch statements
are compiled into machine language, and how memory-mapped overlapped I/O is
achieved. We also show the logic implement of the ISC, in terms of registers, buses, and
finite-state machine controllers.

13.2 Programmer's Abstraction for a Stored-Program Computer

By stored-program computer, we mean a machine in which the program, as well as the
data, are stored in memory, each word of which can be accessed in uniform time. Most of
the high-level language programming the reader has done will likely have used this kind
of computer implicitly. However, the program that is stored is not high-level language
text. If it were, then it would be necessary to constantly parse this text, which would slow
down execution immensely. Instead one of two other forms of storage is used: An
abstract syntax representation of the program could be stored. The identifiers in this
representation are pre-translated, and the structure is traversed dynamically as needed
during execution. This is the approach used by an interpreter for the language. A second
approach is to use a compiler for the language. The compiler translates the program into
the very low-level language native to the machine, appropriately called machine
language. The native machine language acts as a least-common-denominator language
for the computer. A machine that had to understand, at a native level, many different
languages would be prohibitively complex and slow. Machine language is rarely
programmed directly, since that would involve manipulating bits, with which it is easy to
err. Instead, an equivalent symbolic form known as assembly language is employed.

In this chapter, we will build up a stored-program computer using our knowledge of
finite-state machine components described earlier. But first, we describe the native
language of a simple computer using assembly language. Then we "build-down" from
higher-level language constructs to the assembly language to see how various algorithmic
concepts get translated.

In the mid-1980's, a major paradigm shift began, from CISCs (Complex Instruction Set
Computers) to RISCs (Reduced Instruction Set Computers). RISCs tried to take a "lean
and mean" approach, in contrast to their predecessor CISCs, which were becoming
bloated with complexity. RISCs focused on features related to speed and simplicity and
consciously avoided including the "kitchen sink" in the instruction repertoire. The
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machine we use here for illustration is called the ISC, for Incredibly Simple Computer. It
is of the RISC philosophy, but simpler than most RISCs for tutorial purposes.

The following is a terse description of the ISC. The unit of addressability of the ISC is

one 32-bit word. The ISC has a 32-bit address space. This means that up to 232 different
words can be addressed in the memory, in principle, although a given implementation
will usually contain far fewer words. Memory words are addressed by a signed integer,
and negative addresses are typically used for "memory-mapped I/O", as described later.
Instructions in the ISC are all one word long. Both instructions and data are stored in the
memory of the computer. The instructions get into the memory by the execution of a
special program known as the loader, which takes the output of the compiler and loads it
into memory. A special part of memory known as the read-only memory (ROM) contains
a primitive loader that brings in other programs from a cold-start.

Although the instructions operate on data stored in the memory, ISC instructions do not
reference memory locations directly. Instead, the data in memory are brought into
registers and the instructions specify operation on the registers. The registers also serve
to hold addresses designating the locations in memory to and from which data fetching
and storage occurs.

Internal to the ISC processor, but accessible by the programmer, are 32 registers,
numbered 0-31. All processor state is contained in the registers and the instruction pointer
(IP) (equivalent to what is sometimes called "program counter" (PC), unfortunately not a
thing that counts programs). The IP contains the address of the next instruction to be
executed.

The following kinds of addressing are used within ISC:

Register-indirect addressing is used in all operations involving
addressing, including the jump operations, load, and store. In other
words, the memory address is contained in a register (put there earlier by
the program itself) and the instruction refers to the register that contains
the address.

Immediate values are used in the lim and aim operations. The term
"immediate" means that the datum comes immediately from the
instruction itself, rather than from a register or memory.

In the following table, Ra, Rb, and Rc stand for register indices. The Java language
equivalent is given, followed by a brief English description of the action of each
instruction. In the cases of the arithmetic instructions (add, sub, mul, div), if the result
does not fit into 32 bits, only the lower-order 32 bits are stored.
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lim Ra C reg[Ra] = C
Load immediate to register Ra the signed 24-bit integer (or address)
constant C.

aim Ra C reg[Ra] += C
Add immediate to register Ra the signed 24-bit integer (or address)
constant C.

load Ra Rb reg[Ra] = mem[reg[Rb]]
Load into Ra the contents of the memory location addressed by Rb.

store Ra Rb mem[reg[Ra]] = reg[Rb]
Store into the memory location addressed by Ra the contents of Rb.

copy Ra Rb reg[Ra] = reg[Rb]
Copy into Ra the contents of register Rb.

add Ra Rb Rc reg[Ra] = reg[Rb] + reg[Rc]
Put  into Ra the sum of the contents of Rb and the contents of Rc.

sub Ra Rb Rc reg[Ra] = reg[Rb] - reg[Rc]
Put  into Ra the contents of Rb minus the contents of Rc.

mul Ra Rb Rc reg[Ra] = reg[Rb] * reg[Rc]
Put into Ra the product the contents of Rb and the contents of Rc.

div Ra Rb Rc reg[Ra] = reg[Rb] / reg[Rc]
Put into Ra the contents of Rb divided by the contents of Rc.

and Ra Rb Rc reg[Ra] = reg[Rb] & reg[Rc]
Put  into Ra the contents of Rb bitwise-and the contents of Rc.

or Ra Rb Rc reg[Ra] = reg[Rb] | reg[Rc]
Put  into Ra the contents of Rb bitwise-or the contents of Rc.

comp Ra Rb reg[Ra] = ~reg[Rb]
Put  into Ra the bitwise-complement of the contents of Rb.

shr Ra Rb Rc reg[Ra] = reg[Rb] >> reg[Rc]
The contents of Rb is shifted  right by the amount specified in
register Rc and the result is stored in R a. If the value in Rc is
negative, the value is shifted left by the negative of that amount.

shl Ra Rb Rc reg[Ra] = reg[Rb] << reg[Rc]
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The value in register Rb is shifted left by the amount specified in
register Rc and the result is stored in R a. If the value in Rc is
negative, the value is shifted right by the negative of that amount.

jeq Ra Rb Rc Jump to the address in Ra if the values in Rb and Rc are equal.
Otherwise continue.

jne Ra Rb Rc Jump to the address in Ra if the values in Rb and Rc are not equal.
Otherwise continue.

jgt Ra Rb Rc Jump to the address in Ra if the value in Rb is greater than that in
Rc. Otherwise continue.

jgte Ra Rb Rc Jump to the address in Ra if the value in R b is greater than or
equal that in Rc. Otherwise continue.

jlt Ra Rb Rc Jump to the address in Ra if the value in Rb is less than that in Rc.
Otherwise continue.

jlte Ra Rb Rc Jump to the address in Ra if the value in Rb is less than or equal
that in Rc. Otherwise continue.

junc Ra Jump to the address in Ra unconditionally.

jsub Ra Rb Jump to subroutine in the address in Ra.   The value of the IP (i.e.
what would have been the next instruction) is put into Rb. Therefore
this can be used for jumping to a subroutine. If the return address is
not needed, some register not in use should be specified.
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Although it is not critical for the current explanation, the following shows a plausible
formatting of the ISC instructions into 32-bit words, showing possible assignment of op-
code bits. Each register field uses five bits. It appears that there is wasted space in many
of the instructions. There are techniques, such as having instructions of different lengths,
for dealing with this. We are using the present form for simplicity.

Figure 281: Plausible ISC instruction formatting
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13.3 Examples of Machine-Level Programs

Example  Add the values in registers 0, 1, and 2 and put the result into register 3:

add 3 0  1 // register 3 gets sum of registers 0 and 1
add 3 2  3 // register 3 gets sum of registers 2 and 3

Here we use register 3 to hold a temporary value, which is used as an operand in the
second instruction.

Example  Suppose x is stored in register 0, and y in register 1. Compute the value of (x +
y) * (x - y) and put it in register 3. Assume register 4 is available for use, if needed.

add 3 0 1 // register 3 gets x + y
sub 4 0 1 // register 4 gets x - y
mul 3 3 4 // register 3 gets (x + y)(x - y)

Example  Add the contents of memory locations 1000 and 1001 and put the result into
1002. Assume registers 0 and 1 are available.

lim 0 1000 // get addresses of operands into registers 0
lim 1 1001 //   and 1
load 0 0 // overlay addresses with operands
load 1 1
add 1 0 1 // put sum  in register 1
lim  0 1002 // re-use register 0 for address of result
store 0 1 // store the value in register 1 into 1002

Example  Assume that register 0 contains the address of the first location of an array in
memory and register 1 contains the number of locations in the array. Add up the locations
and leave the result in register 2. Assume that registers 0 and 1 can be changed in the
process and that registers 3 through 8 can be used for temporaries. Assume that the
program starts in location 0.

lim 2 0 // initialize sum
lim 3 0 // comparison value
lim 6 10 // address of instruction following this code
lim 7 4 // address of next instruction
jlte 6 1 3 // jump to location 10 if the count is <= 0
load 5 0 // load register 5 from the next memory location
add 2 5 2 // add the next number to the sum
aim 0 1 // add 1 to the array address
aim 1 -1 // add -1 to the count
junc 7 // go back to location 4 and compare

Note that location 10 is the next location following this program fragment. This was
determined from our assumption that the first instruction is in location 0 and instructions
are one word long each. Similarly, the jump unconditionally back to 4 (the address in
register 7) is for the next iteration of the loop.



Stored-Program Computers 553

Exercises

1 •• Show how the following could be evaluated using ISC machine language:

The sum of the squares of four numbers in registers.

The sum of the squares of numbers in an array.

2 • Show how an xor (exclusive-OR) instruction could be added to the ISC.

3 •• Show how a mim (multiply-immediate) instruction could be added to the ISC.

4 •• Show how a jim (jump-immediate) instruction could be added to the ISC.

Assembly Language  

A reader who has worked through a simple example such as the above will no doubt
immediately realize a need to invent a symbolic notation within which to construct
programs. When constructing the preceding example program, at the third instruction, we
did not know initially to put the 10 into lim 6 10, since we did not know where the next
instruction following would be. Instead, we put in a symbol, say xx, to be resolved later.
Once all the instructions were in place, we counted to find that the value of xx should be
10. This kind of record keeping becomes tedious with even modest size programs. For
this reason, a computer program called an assembler is usually used to do this work for
us. In an assembler, we can use symbolic values that either we equate to actual values or,
as in the case of the address 10 above, the assembler will equate automatically for us.
The assembler, not the programmer, does the counting of locations. This eliminates many
possible errors in counting and is of exceptional benefit if the program needs to be
changed. In the latter case, we would have to go back and track down any uses of
addresses. We call the assembly language for the ISC ISCAL (ISC Assembly Language).
The previous program in ISCAL might appear as:

lim 2 0 // initialize sum
lim 3 0 // comparison value
lim 6 done_loc // address of instruction following this code
lim 7 loop_loc // address of next instruction

label loop_loc // implicitly define label 'loop'
jlte 6 1 3 // jump to location 10 if the count <= 0
load 5 0 // load register 5 from the next location
add 2 5 2 // add the next number to the sum
aim 0 1 // add 1 to the array address
aim 1 -1 // add -1 to the count
junc 7 // go back and compare

label done_loc // implicitly define label 'done'
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The readability of the code is also considerably improved through the use of mnemonic
labels in place of absolute addresses. Note that, in contrast to the other instructions, the
lines beginning with label are not executable instructions, but rather merely directives
that define the labels loop_loc and done_loc. The general term for such directives in the
jargon is pseudo-op, for "pseudo-operation". The label pseudo-op equates the identifier
following the label to the address of the next instruction. This allows us to use that label
as an address and load a register with, in preparation for jumping to that instruction.

Other pseudo-ops of immediate interest in ISCAL are:

origin Location Indicates that the following code is to be loaded into successive
locations starting at Location.

define Identifier Value Causes the assembly-time value of Identifier to be equated
to the integer value given.

We can take the idea of symbolic names a step further by allowing symbolic names for
registers in place of the absolute register names. Let us agree to call the registers by the
following names in this example:

0 array_loc
1 count
2 sum
3 zero (for comparing against)
5 value (one of the array elements)
6 done
7 loop

One way to equate the symbolic names to the register numbers is through the use of the
register pseudo-op. Using this pseudo-op, the code would then appear as:

register array_loc 0
register count 1
register sum 2
register zero 3
register value 5
register done 6
register loop 7
...
lim sum  0  // initialize sum
lim zero  0  // comparison value
lim done done_loc // address of instruction following
lim loop loop_loc // address of next instruction

label loop_loc
jlte done count zero // jump if <= 0
load value array_loc // load register next array value
add sum value sum // add the next number to the sum
aim array_loc 1 // add 1 to the array address
aim count -1 // add -1 to the count
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junc loop // go back and compare
label done_loc

Note that array_loc is assumed to be initialized before we get to the executable code, e.g.
this takes place somewhere within “...” . In order to use a jump instruction, we would
normally expect to see a preceding lim instruction that loads an address into a jump target
register. Above, both done and loop are used as jump target registers. Note that the lim
instruction need not be immediately before the jump, although it often is. In the case of
loops, for example, the target is sometimes left in its own register that is only loaded
once, at the beginning of the loop sequence.

In the code above, the computation, for the most part, did not depend on specific registers
being used. To avoid manually assigning register indices to registers when it doesn't
matter, the ISC assembler provides another pseudo-op to automatically manage register
indices. This is the use pseudo-op. When the assembler encounters the use pseudo-op, it
attempts to allocate a free register of its choice to the identifier. Registers that have not
been identified in register pseudo-ops, or in previous use pseudo-ops, are assumed to be
free for this purpose. Furthermore, a register, once used, can be released by naming it in
the release pseudo-op. Keep in mind that use and release are not executable instructions.
They are interpreted in a purely textual fashion when the assembler input is scanned.

Let's rewrite the preceding code using use and release. We will assume that array_loc,
count, and sum are to be kept as fixed registers, since they must be used to communicate
with other code, i.e. they are not arbitrary.

register array 0
register count 1
register sum 2

use loop
use zero                        // register to hold zero
use value
use done
    lim sum  0                  // initialize sum
    lim zero 0                  // comparison value
    lim done done_loc           // address of instruction following
    lim loop loop_loc           // address of next instruction
label loop_loc
    jlte done count zero        // jump if <= 0
    load value array            // load register next array value
    add sum value sum           // add the next number to the sum
    aim array 1                 // add 1 to the array address
    aim count -1                // add -1 to the count
    junc loop                   // go back and compare
label done_loc
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Procedures and Calling Conventions

It is common to have specific calling conventions with respect to registers used for
procedure entry and exit. This helps standardize the compilation process. An example
might be:

Use register 0 for the return address.
Use register 1 for the returned result.
Use register 2 for the first argument.
Use register 3 for the second argument.
....

up to some convened number of arguments. A procedure having more than this number
of arguments would transfer the remaining ones through some sort of memory structure.
The registers beyond this number are assumed to be available for internal use within the
procedure.

Here is an example of calling a factorial procedure using this convention. There is only
one argument.

// register definitions

register return 0       // standard return address reg
register result 1       // standard result register
register arg1   2       // first argument register

...

// calling sequence
// get argument in arg1

lim jump_target fac
jsub jump_target return

// use result from result

// procedure definition

label fac     // iterative factorial routine
              // initializes counter 'count' with argument value 'arg'
              // initializes an accumulator with value 1
              // repeats as long as counter greater than 0
              //    multiply accumulator by counter
              //    decrement counter
use zero
      lim zero 0
      lim result 1              // seed result with 1
      lim jump_target test      // set up for loop
label test
      jlte return arg1 zero     // return if arg is 0 or less
      mul  result result arg1   // multiply acc value by counter
      aim arg1 -1               // subtract 1 from the down counter
      junc jump_target          // jump back to the test
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If such a convention is to be observed, then additional care must be taken when nested
procedure calls are present. For example, if a main program calls procedure A, the return
address to the point in main is put in register return. If A calls B, then the return address
to the point in A is put into return. Thus, before calling B, A should save the contents of
return somewhere, e.g. another register or a special location in memory. Following the
return from B, and before returning, A should either return to the alternate register or
restore return to what it was before B was called.

The following code demonstrates return address saving in a procedure that calls fac
twice: given argument x, it computes fac(fac(x)). [Note: "nested refers here to fac_fac
calling fac, not to the nesting fac(fac(x)).]

label fac_fac                 // calls fac(fac(arg))
use return2                   // return2 avoids clobbering return reg
      copy return2 return     // save original return
      lim jump_target fac     // call fac the first time (original arg)
      jsub jump_target return

      copy arg1 result        // copy result to argument register

      lim jump_target fac
      jsub jump_target return // call fac on the result

      junc return2

In the example above, we had no need to save the original argument of fac_fac.
However, in some cases, we will need to use the original argument again after making the
inner call. In this event, the argument too must be saved, much in the same manner as the
return address.

Recursive Procedures in Machine Language

When a procedure is recursive, the technique described above has to be extended. There
is generally no a priori limit on the number of levels of nesting. Thus no fixed number of
registers nor special memory locations will suffice to store the return addresses and
arguments. In this case, we must use some form of stack. There are two ways in which a
stack could be used:  The argument and return address could be put on the stack by the
caller, or they could be put there by the callee, when and if it makes a nested call. In the
following code, we use the latter method: data are not stacked unless a nested call is
made. In either case, the stack itself must be set up beforehand. Once we are in the
procedure, it is too late, as the procedure assumes the stack is present if needed.

A stack here will be implemented simply as an array in some otherwise unused area of
memory. The code below does not check for stack overflow. Adding appropriate code for
this is left as an exercise.
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// set up stack
lim stack_pointer save_area_loc  // initialize stack pointer
aim stack_pointer     -1         // always point to top of stack

...

label fac     // recursive factorial routine

lim result 1               // basis is 1
jlte return arg zero       // return if count is 0 or less

aim  stack_pointer +1      // increment stack pointer
store stack_pointer return // save return address on stack

aim  stack_pointer +1      // increment stack pointer
store stack_pointer arg    // save argument on stack

aim arg -1                 // subtract 1 from argument

jsub jump_target return    // call recursively

load arg stack_pointer     // restore original arg
aim  stack_pointer -1

load return stack_pointer  // restore original return address
aim  stack_pointer -1

mul  result result arg     // multiply by original arg

junc return                // return to caller

...

label save_area_loc              // first location in save area

There are many ways to optimize the code above. But the purpose of the code is to
exemplify recursive calling, not to give the best way to compute factorial.

The following diagram shows the stack growth in the case of calling fac with argument 4.
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At second call:

stack_pointer

return address

4

argument is 3
return value will be 6

At third call:

stack_pointer

return address

3

return address

4

argument is 2
return value will be 2

At fourth call:

stack_pointer

return address

3

return address

return address

4

2
argument is 1
return value will be 1

At fifth call:

stack_pointer

return address

3

return address

return address

2

return address

4

1
argument is 0
return value will be 1

Figure 282: Snapshots of the stack in computing recursive factorial on the ISC

Exercises

1 •• Implement the recursive version of the Fibonacci function in ISCAL. Note:
Unlike the case of fac above, the return address values will not always be the
same.

2 ••• Implement Ackermann’s function in ISCAL.

3 ••• Try to get rid of some of the recursions in Ackermann's function by converting
them to iterations. Can you get rid of all recursion?  [Ackermann's function is an
example of a function that can be proved to be non-primitive-recursive.]

4 ••• Implement Quicksort in ISCAL.
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Switch Statement Equivalents

While we are discussing machine language, it would be worthwhile to see how Java
switch statements are compiled to take advantage of the linear addressing principle, as
discussed earlier. As mentioned, the idea is that switches over a dense set of values are
compiled to an array of jumps. Let us illustrate with an example. Consider the Java  code

int i, x, y, z;
....
switch( i )
  {
  case 0: x = y + z; break;
  case 1: x = y - z; break;
  case 2: x = y * z; break;
  case 3: x = y / z; break;
  default: x = 0; break;
  }

An ISC equivalent of this code is shown below. The structure should be understood
carefully, as it exemplifies the structure that could be used for any switch statement.
There is an initial part where outlying cases, those corresponding to the default, are
handled. Then there is a dispatch part where a jump address is computed by adding to a
base jump address an appropriate multiple (in this case 2) of the integer upon which we
are switching. Then there are branches, one for each different case and the default.
Finally, there is a final part, to which each branch converges.

      use temp
      use zero
      use jump_target
      use converge
      lim converge converge_loc      // set up location for converging

// initial part
      lim zero 0
      lim jump_target default_branch
      jlt jump_target i zero         // handle i < 0
      lim temp 3
      jgt jump_target i temp         // handle i > 3

// dispatch part
      lim jump_target branch_array   // set up jump address
      add jump_target i jump_target
      add jump_target i jump_target  // add twice i
      junc jump_target               // jump to branch_array+2*i

label branch_array                   // dispatching array of jumps
                                     // each 2 locations
      lim jump_target branch_0       // case 0
      junc jump_target

      lim jump_target branch_1       // case 1
      junc jump_target

      lim jump_target branch_2       // case 2
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      junc jump_target

      lim jump_target branch_3       // case 3
      junc jump_target

// one branch for each default and switch case

label default_branch                 // default case
      lim x 0
      junc converge

label branch_0                       // case 0
      add x y z
      junc converge

label branch_1                       // case 1
      sub x y z
      junc converge

label branch_2                       // case 2
      mul x y z
      junc converge

label branch_3                       // case 3
      div x y z
      junc converge

// converge here
label converge_loc                   // statements after switch

13.4 Memory-mapped I/O

There is a notable absence of any I/O (input/output) instructions in the ISC. While I/O
instructions were included in early machines, modern architectures prefer to move such
capabilities outside the processor itself. Part of the motivation for doing so includes:

I/O devices are typically slower than computational speeds, so there is a
hesitancy to provide instructions that would encourage tying up the
processor waiting for I/O.

The wide variety of I/O devices makes it difficult to provide for all
possibilities in one processor architecture.

Instead of providing specific I/O instructions, modern architectures use the memory
addressing mechanism to deal with I/O devices. These devices are identified with various
memory locations, hence the term "memory-mapped I/O". When writing to those
locations occurs, detection logic on the memory bus will interpret the contents as
intended for the I/O device, rather than as an actual memory write. Thus the variety of
I/O devices is essentially unlimited and the processor does not have to take such devices
into account.
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The most straightforward way to memory map I/O would be to assume a sequential or
stream-oriented devices and have one location for input and one location for output.
Whenever a read from the input location is issued, the next word in the input is read.
Similarly, whenever a write to the output location is issued, a word is sent to the output
device. As simple as it is, this picture is slightly undesirable, due to the disparity in
speeds between typical I/O devices and processors. If the processor tried to read the
location and the device was not ready to send anything, there would have to be a long
wait for that memory access to return, during which time the processor is essentially idle.
By providing a little more sophistication, there are ways to use this otherwise-idle time. A
processor can separate the request for input and checking of whether the next word is
ready to be transferred. In the intervening interval, other work could be done in principle.
We achieve this effect by having two words per device, one for the datum being
transferred and one for the status of the device.

Below we describe one possible memory mapping of an input device and an output
device. These would be serial devices, such as a keyboard and monitor.

Location -1 (called input_word) is the location from which a word of input is read by the
program. Location -2 (called input_status) controls the reading of data from the input
device and serves as a location that can be tested for input status (e.g. normal vs. end-of-
file). In order to read a word, input_status is set to 0 by the program. A write of 0 to this
location triggers the input read. When the word has been input and is ready to be read by
the program, the computer will change input_status to a non-zero value. The value 1 is
used for normal input, while -1 is used for end-of-file condition.

The program should only set input_status to 0 if it is currently 1. If input_status is 0, then
a read is already in progress and could be lost due to lack of synchronization. It can be
assumed that input_status is initially 1, indicating the readiness of the input device. So a
possible input sequence will be something like:

input_status = 0; // start first read
end_of_file = 0;

while( ! end_of_file )
{
  ...... // other processing can go on here
  while( input_status == 0 ) // wait for read complete
    {}
  switch( input_status )
    {
    case 1:
    use input_word;
    input_status = 0; // start next read

break;

    case -1:
    end_of_file = 1; // indicate done
    }
}
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Below we show a simpler input reader in ISCAL. This reader can be called as a
procedure by the programmer to transfer the next input word. It assumes that the first
input word has been requested by setting input_status to 0 earlier on.

define input_word_loc    -1 // fixed location for input word
define input_status_loc  -2 // fixed location for input status
use input_status            // register to hold input_status

register return 0       // standard return address reg
register result 1       // standard result register
register arg1   2       // first argument register

      lim input_status  input_status_loc  // setup input status reg
      store input_status zero             // request input
....

label input     // input routine, returns result in register 'result'
use input_word  // register to hold input_word_loc
use jump_target
use zero
use temp                            // temporary register
      lim zero 0
      lim input_word input_word_loc // memory-mapped input
      lim jump_target input_loop    // set up to loop back
label input_loop
      load  temp input_status       // get input status
      jeq   jump_target temp zero   // loop if previous input not ready
      jlt   halt temp zero          // quit if -1 (end-of-file)
      load  result input_word       // load from input word
      store input_status zero       // request next input
      junc  return

Output in the ISC gets a similar, although not identical, treatment. The routines are not
identical because, unlike input, we cannot request output before the program knows the
word to be output. Location -3 (called output_word) is the location to which a word of
input is written by the program. Location -4 (called output_status) controls the writing
of data to the output device and serves as a location that can be tested for output status. In
order to write a word, output_status is set to 0 by the program, which in turn triggers the
output write. When the word has been output, the computer will change output_status to a
non-zero value.

It is important that output_status be tested to see that it is not already 0 before changing
it. Otherwise, an output value can be lost. It can be assumed that output_status is 1 when
the machine is started. So the normal output sequence will be something like:

while( more to be written )
  {
  ......                       // other processing can go on here
  while( output_status == 0 )   // wait for write complete
    {}
  output_word = next word to write;
  output_status = 0;
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  }

A procedure for output of one word using this scheme in ISCAL is:

define output_word_loc   -3 // fixed location for output word
define output_status_loc -4 // fixed location for output status

register return 0       // standard return address reg
register result 1       // standard result register
register arg1   2       // first argument register

use output_status       // register to hold output_status

label output     // output routine, outputs word in register 'arg1'
use output_word  // register to hold output_word_loc
use jump_target
use zero
use temp                              // temporary register
      lim output_word output_word_loc // memory-mapped output
      lim zero 0
      lim jump_target output_loop     // set up loop address
label output_loop
      load  temp output_status        // get output status in temp
      jeq   jump_target temp zero     // jump back if output not ready
      store output_word arg1          // set up for output of result
      store output_status zero        // request output
      junc  return

The timing diagram below shows how these two routines could be called in a loop to
keep both the input and output device busy, by requesting input in advance and only
waiting when the processor cannot proceed without input or output being complete. This
is an example of overlapped I/O, that is, input-output overlapped with processing.
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13.5 Finite-State Control Unit of a Computer Processor

Up to this point, we have seen the ISC primarily from the programmer's viewpoint. Next
we look at a possible internal structure, particularly the various finite-state machine
components that comprise it. Viewed from the processor, the instructions of the stored



Stored-Program Computers 565

program are also a form of "data". The computer reads the instructions as if data from
memory and interprets them as instructions. In this sense, a computer is an interpreter,
just as certain language processors are interpreters.

A typical memory abstraction employed in stored-program computers is as follows:  The
address of a word to be read or written is put into the MAR (memory address register). If
the operation is a write, the word to be written is first put into the MDR (memory data
register). On command from the sequencer of the computer, the memory is directed to
write and transfers the word in the MDR into the address presented by the MAR. If the
operation is a read, then the word read from the location presented in the MAR is put into
the MDR by control external to the processor.

Instructions are normally taken from successive locations in memory. The register IP
(instruction pointer) maintains the address of the location for the next instruction. Only
when there is a "jump" indicated by an instruction does the IP value deviate from simply
going from one location to the next. While the instruction is being interpreted, it is kept in
the IR (instruction register). The reason that it cannot be kept in the MDR is because the
MDR will be used for other purposes, namely reading or writing data to memory, during
the instruction's execution. Unlike the numbered registers used in programming, the
registers MAR, MDR, IP, and IR are not directly visible or referenceable by the
programmer.

Refer to the ISC diagram below, showing a bus encircling most of the registers in the
processor. (In actuality, multiple buses would probably be used, but this version is used
for simplicity at this point.)  This bus allows virtually any register shown to be gated into
any other. At the lower left-hand corner, we see the control sequencer, a finite state
machine that is responsible for the overall control of the processor. The control sequencer
achieves its effect by selectively enabling the transfer of values from one register to
another. The inputs to the sequencer consist of the value in the instruction register and the
ALU test bit. Based on these, the sequencer goes through a series of state changes. In
each state, certain transfers are enabled.

Every instruction executed undergoes the following instruction fetch cycle to obtain the
instruction from memory (using Java notation):

MAR = IP;      // load the MDR with the address of next instruction
read_memory(); // get the instruction from that address into the MDR
IP++;          // set up for next instruction
IR = MDR;      // move the instruction to the IR

The portion of the sequencer for the instruction fetch cycle simply consists of four states.
In the first state, the bus is used to gate IP into MAR. If we were to look at a lower level,
this would mean that a set of 3-state buffers on the output of the IP is enabled, and a set
of AND-gates on the input of the MAR is enabled. In the next state, read_memory is
enabled (signaled to the memory controller). In the next state the IP register is
incremented (we can build this logic into the register itself, similar to our discussion
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regarding shift registers), and in the last state of the cycle, the output of the MDR is
enabled onto the bus while the input to the IR is enabled.

The description above is simplified. If we had a fast memory, it would pay to do IP++ at
the same time as read_memory(), i.e. in parallel, so that we used one fewer clock time
for instruction fetch. More likely, we might have a slow memory that takes multiple clock
cycles just to read a word. In this case, we would have additional wait states in the
sequencer to wait until the memory read is done before going on. This would show up in
our state diagram as a loop from the memory access state to itself, conditioned on
memory not being finished.
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Figure 283: Possible ISC Internal Structure (unoptimized)
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enable IP to bus, and 
enable bus to MAR

enable IP++ 

enable memory read

enable MDR to bus, and 
enable bus to IP

read not 
complete

read complete

"wait state"

Figure 284: A possible state diagram for the instruction-fetch cycle of the ISC

Once the instruction to be interpreted is in the IR, a different cycle of states is used
depending on the bits in the instruction. We give just a couple of examples here:

If the instruction were add Ra Rb Rc, the intention is that we want to add
the values in Rb and Rc and put the result in Ra. The sequence would be:

ALU_in[0] = Ra;
ALU_in[1] = Rb;

// add done by the ALU here
Rc = ALU_out;

The registers Ra, Rb, and Rc are selected by decoding the binary register indices in the
instruction and using it to drive 3-state selection (in the case of Ra and Rb) or and-gates
(in the case of Rc), as per earlier discussion. We assume here that the combinational
addition can be done in one clock interval. If not, additional states would be inserted to
allow enough time for the addition to complete.
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enable Ra to bus, and 
enable bus to ALU[0]

enable add operation 
(result to ALU_out)

enable Rb to bus, and 
enable bus to ALU[1]

enable ALU_out to bus, and 
enable bus to Rc

Figure 285: Portion of the ISC state diagram corresponding to the add operation

The ALU is capable of multiple functions: adding, subtracting, multiplying, shifting,
AND-ing, shifting, etc. Exactly which function is performed is determined by bits
provided by the IR. Most of the instructions involving data processing follow the same
pattern as above.

If the instruction were jeq Ra Rb Rc, this is an example where the next
instruction might be taken from a different location. The sequence would
be:

ALU_in[0] = Rb;
ALU_in[1] = Rc;

// comparison is done by the ALU here
if( the result of comparison is equal )
IP = Ra

Here Ra contains the address of the next instruction to be used in case Rb and Rc are
equal. Otherwise, the current value of IP will just be used.

Overall, then, the behavior of the machine can be depicted as:

for( ; ; )
  {
  instruction_fetch();
  switch( IR OpCode bits )
    {
    case add: add_cycle; break;
    case sub: subtract_cycle: break;
    .
    .
    case jeq: jeq_cycle; break;
    .
    .
    }
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  }

enable Rb to bus, and 
enable bus to ALU[0]

enable equality comparison  
(result bit to sequencer)

enable Rc to bus, and 
enable bus to ALU[1]

result == 1 
(equality)

enable Ra to bus, and 
enable bus to IP

( first state in instruction fetch)
enable IP to bus, and 
enable bus to MAR

result == 0 
(inequality)

Figure 286: Portion of the ISC state diagram for the jeq instruction

instruction fetch cycle
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other 
instruction 
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.... ....
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Figure 287: Overall state behavior of the ISC
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Exercises

1 •• Based on the above discussion, estimate the number of states in each of the cycles
for the various instructions in the ISC instruction set. Obtain an estimate of the
number of states in the instruction sequencer. Assume that all memory operations
and ALU operations take one clock period.

2 •••• How many flip-flops (in addition to those in the IR) would be sufficient to
implement the sequencer?  Give a naive estimate based on the preceding question,
then a better estimate based on a careful assignment analysis of how functionality
in the sequencer can be shared.

3 ••• By using more than one bus, some register transfers that would have been done in
sequence can be done concurrently, or "in parallel". For example, in the add cycle,
both Rb and Rc need to be transferred. This could, in principle, be done
concurrently, but two buses would be required. Go through the instruction set and
determine where parallelism is possible. Then optimize the ISC register-transfer
structure so as to reduce the number of cycles required by as many instructions as
possible.

13.6 Forms of Addressing in Other Machines

As mentioned earlier, the ISC uses register-indirect and immediate addressing only. The
following diagrams abstract these two general forms.

OpCode Operand

Registers

Memory

Typical 
ALU 

Operation

Reg

Figure 288: Immediate operand
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Figure 289: Register indirect addressing

For contrast, other machines might employ some or all of the following types of
addressing:

direct addressing – The address of a datum is in the instruction itself. It is
not necessary to load a register with the address. The problem with this
mode of addressing is that addresses can be very large, making it difficult
for a single instruction to directly address all of memory. For example, the
ISC's address space is 32-bits, the same size as an instruction. This would
leave no space in the instruction for op-code information.

OpCode Address

Direct 
Addressing

Registers

Memory

Typical 
ALU 

Operation

Reg

Figure 290: Direct addressing

indirect addressing – The address of the datum is in a word in memory.
The instruction contains the address of the latter word. An example of the
use of this type of addressing is pointer dereferencing. In a C++ statement

x = *p;
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The address of p would be in the instruction. The contents of p is
interpreted as a memory address. The contents of the latter address is
stored into a register. The contents of the register would be stored into x
by a subsequent instruction (unless the instruction can contain two
addresses, one of which would be the address of x).

OpCode Address

Indirect 
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Registers

Memory

Typical 
ALU 

Operation

Reg

Memory

Figure 291: Indirect addressing

indexed addressing – The address of the datum is formed by adding the
address in the instruction to the contents of a register, called the index
register. This sum is called the effective address and is used as the address
of the actual datum. In Java or C++, indexed addressing would be useful
in indexing arrays. For example, in the statement

x = a[i];

the instruction could contain the base address, &a[0] and the index register
could contain the value of i.

OpCode Reg Address
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ALU 

Operation

Reg

Index
Register 
Selection

Address 
Arithmetic

Address can be viewed as either:
      base-address, with index register as offset, 
or as offset, with index register as base

Figure 292: Indexed addressing
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based addressing – This is similar to indexed addressing, except that the
base address &a[0] is contained in a register. The value of i, called an
offset, is contained in the word addressed by the instruction.

based indexed addressing – This uses two registers, one containing a
base address and one containing an index. The instruction specifies an
offset. The effective address is obtained by adding the base address, the
index, and the offset. An example of a statement using such addressing
would be

x = a[i+5];

where 5 would be the offset.

There are, of course, other possible combinations of addressing. Machines such as the
ISC that do not have all of these forms of addressing must achieve the same effect by a
sequence of instructions.

Exercises

1 •• Consider adding a lix (load-indexed) instruction to the ISC. This is similar to the
load instruction, except that there is an additional register, called the index
register. The address of the word in memory to be loaded (called the effective
address) is formed by taking the sum of the address register, as in the current load
instruction, plus the index register. Show how this instruction could be added to
the ISC. Then suggest a possible use for the instruction. To retain symmetry, what
other indexed instructions would be worthwhile?

2 •• Explain why a jix (jump-indexed) instruction might be useful.

3 •• How could indexing be useful in implementing recursion?

4 •• Give a diagram that abstracts based indexed addressing.

13.7 Processor-Memory Communication

Our diagram of the ISC internal structure omitted details of how the processor and
memory interact. We indicated the presence of a data bus for communicating data to and
from the memory and an address bus for communicating the address, but other details
have been left out. There are numerous reasons for not including the memory in the same
physical unit as the processor. For one thing, the processor will fit on a single VLSI chip,
whereas a nominal-sized memory will not, at least not with current technology. It is also
common for users to add more memory to the initial system configuration, necessitating a
more modular approach to memory. Another reason for separation is that memory
technology is generally slower than processors. Moderately-priced memory cannot
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deliver data at the rate demanded by sophisticated processors. However, the memory
industry keeps making memory faster, opening the possibility of an upgrade in speed.
This is another reason not to tie down the processor to a particular memory speed.

Let us take a look at the control aspects of processor-memory communication. The
processor and memory can be regarded as separate agents. When the processor needs data
from the memory, it sends a request to the memory. The memory can respond when it has
fulfilled the request. This type of dialog is called handshaking. The key components in
handshaking, assuming the processor is making a read request, are:

a. Processor asserts address onto address bus.

b. Processor tells memory that it has a read request.

c. Memory performs the read.

d. Memory asserts data onto data bus.

e. Memory tells processor that data is there.

f. Process tells memory that it has the data.

g. Memory tells processor that it is ok to present the next request.

The following timing diagram indicates a simple implementation of handshaking along
these lines. The transitions are labeled to correspond to the events above. However, step c
is not shown because it is implicitly done by the memory, without communication. The
strobe signal is under control of the processor to indicate initiation of a read. The ack
signal is under control of the memory.
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0

1

0

Address 
Bus

1

0

Clock
1

0

Data 
Bus

1

0
?? ??

??a

b

i
d

e

f

g

h

Figure 293: Handshaking sequence for a memory read
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The address and data bus lines are shown as indicating both 0 and 1 during some part of
the cycle. This means that the values could be either 0 or 1. Since addresses and data
consist of several lines in parallel, some lines will typically be each. When the signal is
shown mid-way, it means that it is not important what the value is at that point.

Events shown as h and i in the diagram are of less importance. Event h indicates that once
the memory has read the data (indicated by event e), the address lines no longer need to
be held.

The advantage of the handshaking principle is that it is effective no matter how long it
takes for the memory to respond:  The period between events b  and e can just be
lengthened accordingly. Meanwhile, if the processor cannot otherwise progress without
the memory action having been completed, it can stay in a wait state, as shown in earlier
diagrams. This form of communication is called semi-asynchronous. It is not truly
asynchronous, since the changes in signals are still supposed to occur between clock
signal changes.

The sequence for a memory write is similar. Since reads and writes typically share the
same buses to save on hardware, it is necessary to have another signal so that the
processor can indicate the type of operation. This is called the read/write strobe, and is
indicated as R/W, with a value of 1 indicating read and a value of 0 indicating a write.

The following table and diagram shows the timing of a write sequence.

a. Processor asserts address onto address bus.

b. Processor asserts data onto data bus.

c. Processor tells memory that it has a request.

d. Memory performs the write.

e. Memory tells processor that write is performed.

f. Processor acknowledges previous signal from memory.

g. Memory tells processor that it is ok to present the next request.
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Figure 294: Handshaking sequence for a memory write

Again, it is the responsibility of the RW strobe to convey the type of request to the
memory and thereby determine which of the above patterns applies. The handshaking
principle is usable whenever it is necessary to communicate between independent sub-
systems, not just between processor and memory. The general setup for such
communication is shown by the following diagram, where function strobe is, for
example, the RW line. The sub-system initiating the communication is called the master
and the sub-system responding is called the slave.

Bus

Function strobe

Action Strobe

Acknowledge

Master
Sub-System

Slave
Sub-System

Figure 295: Set-up for communication using handshaking

13.8 Interrupts

When a processor wishes to initiate communication with the outside world, it can use the
approach taken here for input/output: writing to certain special memory locations is
interpreted by the processor's environment as a directive to carry out some action, such as
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start an i/o device. It is also necessary to provide a way for the environment to get the
attention of the processor. Without such a method, the processor would have to explicitly
"poll" the environment to know whether certain events have taken place, e.g. the
completion of an i/o operation. The problems with exclusive reliance on polling are the
following:

• It is often unclear where the best place is in the program to insert
polling instructions. If polling is done too often, time can be wasted. If
it is done too seldom, then critical events can be left waiting the
processor's attention too long.

• An end-user's program cannot be burdened with the insertion of
polling code.

• If the program is errant, then polling might not take place at all.

The concept of "interrupt" is introduced to solve such problems. An interrupt is similar to
a procedure call in that there is a return to the point where the program was interrupted
(i.e. to where the procedure was called). However, an interrupt is different in that the call
is not done explicitly by the interrupted code but rather by some external condition.

The fact that the call is not explicit in the code raises the issue of where the procedure
servicing the interrupt is to reside, so that the processor can go there and execute
instructions. Typically, there are preset agreed upon locations for this purpose. These
locations are aggregated in a small array known as the interrupt vector. Typically a
special register indicates where this vector is in memory. The interrupt vector is indexed
by an integer that indicates the cause of the interrupt. For example, if there are four
different classes of devices that can interrupt, there might be four locations in the
interrupt vector. The locations within the interrupt vector are address of routines called
interrupt service routines.

The sequence of actions that take place at an interrupt is:

The cause of interrupt is translated by the hardware into an index, used to
access the interrupt vector.

The current value of the instruction pointer (IP register) is saved in a
special interrupt save location. This provides the return address later on.

The IP register is loaded with the address specified at the indexed position
within the interrupt vector.

Execution at this point is within the interrupt service routine.
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At the end of the interrupt service routine, a return-from-interrupt
instruction causes the IP to be reloaded with the address in the interrupt
save location.

Execution is now back within the program that was interrupted in the first
place.

The addition of interrupts has thus necessitated the introduction of one new instruction,
return-from-interrupt, to the repertoire of the processor. It also requires a new processor
register to point to the base of the interrupt vector. Finally, there needs to be a way to get
to the interrupt save location. One scheme for doing this might be to interleave the save
locations with the addresses in the interrupt vector. In this way, no additional register is
needed to point to the interrupt save location. Furthermore, we have one such location per
interrupt vector index. This is useful, since it should be possible for a higher priority
interrupt to interrupt the service routine of a lower priority interrupt. Finally, we don't
want to allow the converse, i.e. a lower priority interrupt to interrupt a higher priority
one. To achieve this, there would typically be an interrupt mask register in the
processor that indicates which class of interrupts is enabled. The interrupt mask register
contents is changed automatically by the processor when an interrupt occurs and when a
return-from-interrupt instruction is executed.

Interrupts vs. Traps

Communication with the environment is not the only need for an interrupt mechanism.
There are also needs internal to the processor, which correspond to events that we don't
want to have to test repeatedly but which nonetheless occur. Examples include checking
for arithmetic overflow within registers and for memory protection violations. The latter
are designed to keep an errant program from over-writing itself. Sometimes these internal
causes are distinguished from interrupts by calling them "traps". Traps are also used for
debugging and for communicating with the operating system. It is unreasonable to simply
allow a user program to jump to the operating system code; the latter must have special
privileges that the user program does not. The only way to provide the transfer from an
unprivileged domain to a privileged one is through a trap, which causes a change in a set
of mask registers that deal with privileges.

13.9 Direct Memory Access I/O

While interrupts assist in the ability for a processor to communicate with input/output
devices at high speed, it is often too slow to have an interrupt deal with every word
transferred to or from a device. Some devices demand such great attention that it would
slow down the executing program significantly to be interrupted so often. To avoid such
slow down, special secondary processors are often introduced to handle the flow of data
to and from high-speed devices. These are variously known as DMA (direct memory
access) channels (or simply "channels") or peripheral processors. A channel competes
with the processor for memory access. It transfers an entire array of locations in one
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single interaction from the processor, maintaining its own pointer to a word in memory
that is next to be transferred. Rather than interrupting the processor at every word
transfer, it only interrupts the processor on special events, such as the completion of an
array transfer.

13.10 Pipelining within the Processor

In order to gain an additional factor in execution speed, modern processors are designed
for "pipelined" execution. This means that multiple, rather than a single, instructions are
being executed concurrently, albeit at different stages within their execution cycles. For
example, instruction n can be executing an add instruction while instruction n+1 is
fetching some data from memory. In order for pipelining to work, there must be
additional internal registers and control provided that make the net result for pipelined
execution be the same as for sequential execution. To give a detailed exposition of
pipelining is beyond the scope of the present text. The reader may wish to consult a more
advanced text or the tutorial article [Keller 1975].

13.11 Virtual Memory

Virtual memory is a scheme that simplifies programming by allowing there to be more
accessible words than there is physical memory space. This is accomplished by
"swapping" some of the memory contents to a secondary storage device, such as a disk.
The hardware manages the record-keeping of what is on disk vs. in main memory. This is
accomplished by translating addresses from the program to physical addresses through a
"page table". Memory is divided up into blocks of words known as pages, which contain
sets of contiguous storage locations. When the processor wants to access a word, it uses
the higher-order so many bits to access the page table first. The page table indicates
where the page, either in main memory or secondary storage, and where it is. If the page
is in main memory, the processor can get the word by addressing relative to the physical
page boundary. If it is on disk, the processor issues an i/o command to bring the page in
from disk. This may also entail issuing a command to write the current contents of some
physical memory page to disk, to make room for the incoming page. The page idea also
alleviates certain aspects of main memory allocation, since physical pages are not
required to be contiguous across page boundaries. This is an example of the linear-
addressing principle being applied at two levels: once to find the page and a second time
to find the word within the page. There is a constant-factor net slow-down in access as a
result, but this is generally considered worth it in terms of the greater convenience it
provides in programming.
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Figure 296: How address translation is done for virtual memory;
The physical memory pages could be in main memory or on disk.

13.12 Processor's Relation to the Operating System

Very seldom is a processor accessed directly by the user. At a minimum, a set of software
known as the "operating system" provides utility functions that would be too complex to
code for the average user. These include:

Loading programs into memory from external storage (e.g. disk).

Communication with devices, interrupt-handling, etc.

A file system for program and data storage.

Virtual memory services, to give the user program the illusion that it has much
more memory available than it really does.
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Multiple-user coordination, so that the processor resource can be kept in constant
use if there is sufficient demand.

The close connection between processors and operating systems demands that operating
systems, as well as other software, must be kept in mind when processors are designed.
For this reason, it is unreasonable to consider designing a modern processor without a
thorough knowledge of the kind of operating system and languages that are anticipated
being run on it.

Exercises

1 ••• Modify the design of the ISC to include an interrupt handling facility. Show all
additional registers and define the control sequences for when an interrupt occurs.

2 ••• Design a channel processor for the ISC. Show how the ISC would initiate channel
operations and how the channel would interact with the interrupt mechanism.

3 ••• Design a paging mechanism for the ISC.

4 ••• A feature of most modern processors is memory protection. This can be
implemented using a pair of registers in the processor that hold the lower and
upper limit of addresses having contents modifiable by the currently-running
program. Modify the ISC design to include memory protection registers. Provide
an instruction for setting these limit registers under program control.

13.13 Chapter Review

Define the following terms:

assembly language
complex-instruction set computer
direct memory access (DMA)
directives (assembler)
effective address
handshaking
instruction decoding
interpreter
interrupt
linear addressing principle
memory address register
memory data register
recursion
reduced-instruction set computer
stack
strobe
switch statement
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trap
virtual memory
wait state
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14. Parallel Computing

14.1 Introduction

This chapter describes approaches to problems to which multiple computing agents are
applied simultaneously.

By "parallel computing", we mean using several computing agents concurrently to
achieve a common result. Another term used for this meaning is "concurrency". We will
use the terms parallelism and concurrency synonymously in this book, although some
authors differentiate them.

Some of the issues to be addressed are:

What is the role of parallelism in providing clear decomposition of
problems into sub-problems?

How is parallelism specified in computation?

How is parallelism effected in computation?

Is parallel processing worth the extra effort?

14.2 Independent Parallelism

Undoubtedly the simplest form of parallelism entails computing with totally independent
tasks, i.e. there is no need for these tasks to communicate. Imagine that there is a large
field to be plowed. It takes a certain amount of time to plow the field with one tractor. If
two equal tractors are available, along with equally capable personnel to man them, then
the field can be plowed in about half the time. The field can be divided in half initially
and each tractor given half the field to plow. One tractor doesn't get into another's way if
they are plowing disjoint halves of the field. Thus they don't need to communicate. Note
however that there is some initial overhead that was not present with the one-tractor
model, namely the need to divide the field. This takes some measurements and might not
be that trivial. In fact, if the field is relatively small, the time to do the divisions might be
more than the time saved by the second tractor. Such overhead is one source of dilution
of the effect of parallelism.

Rather than dividing the field only two ways, if N tractors are available, it can be divided
N ways, to achieve close to an N-fold gain in speed, if overhead is ignored. However,
the larger we make N, the more significant the overhead becomes (and the more tractors
we have to buy).
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In UNIX® command-line shells, independent parallelism can be achieved by the user
within the command line. If c1, c2, ...., cn are commands, then these commands can be
executed in parallel in principal by the compound command:

c1 & c2 & .... & cn

This does not imply that there are n processors that do the work in a truly simultaneous
fashion. It only says that logically these commands can be done in parallel. It is up to the
operating system to allocate processors to the commands. As long as the commands do
not have interfering side-effects, it doesn't matter how many processors there are or in
what order the commands are selected. If there are interfering side-effects, then the
result of the compound command is not guaranteed. This is known as indeterminacy,
and will be discussed in a later section.

There is a counterpart to independent parallelism that can be expressed in C++. This
uses the fork system call. Execution of fork() creates a new process (program in
execution) that is executing the same code as the program that created it. The new
process is called a child, with the process executing fork being called the parent. The
child gets a complete, but independent, copy of all the data accessible by the parent
process.

When a child is created using fork, it comes to life as if it had just completed the call to
fork itself. The only way the child can distinguish itself from its parent is by the return
value of fork. The child process gets a return value of 0, while the parent gets a non-zero
value. Thus a process can tell whether it is the parent or the child by examining the
return value of fork. As a consequence, the program can be written so as to have the
parent and child do entirely different things within the same program that they share.

The value returned by fork to the parent is known as the process id (pid) of the child.
This can be used by the parent to control the child in various ways. One of the uses of
the pid, for example, is to identify that the child has terminated. The system call wait,
when given the pid of the child, will wait for the child to terminate, then return. This
provides a mechanism for the parent to make sure that something has been done before
continuing. A more liberal mechanism involves giving wait an argument of 0. In this
case, the parent waits for termination of any one of its children and returns the pid of the
first that terminates.

Below is a simple example that demonstrates the creation of a child process using fork in
a UNIX® environment. This is C++ code, rather than Java, but hopefully it is close
enough to being recognizable that the idea is conveyed.

#include <iostream.h>                   // for <<, cin, cout,
cerr
#include <sys/types.h>                  // for pid_t
#include <unistd.h>                     // for fork()
#include <wait.h>                       // for wait()
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main()
{
pid_t pid, ret_pid;  // pids of forked and finishing child

pid = fork();                           // do it

// fork() creates a child that is a copy of the parent
// fork() returns:
//       0 to the child
//       the pid of the child to the parent

if( pid == 0 )
  {
  // If I am here, then I am the child process.
  cout << "Hello from the child" << endl << endl;
  }
else
  {
  // If I am here, then I am the parent process.
  cout << "Hello from the parent" << endl << endl;

  ret_pid = wait(0);                    // wait for the child
  if( pid == ret_pid )
    cout << "child pid matched" << endl << endl;
  else
    cout << "child pid did not match" << endl << endl;
  }
}

The result of executing this program is:

Hello from the parent

Hello from the child

child pid matched

14.3  Scheduling

In the UNIX® example above, there could well be more processes than there are
processors to execute those processes. In this case, the states of non-running processes
are saved in a pool and executed when a processor becomes available. This happens, for
example, when a process terminates. But it also happens when a process waits for i/o.
This notion of multiprocessing is one of the key ways of keeping a processor busy when
processes do i/o requests.

In the absence of any priority discipline, a process is taken from the pool whenever a
processor becomes idle. To provide an analogy with the field-plowing problem, work
apportionment is simplified in the following way: Instead of dividing the field into one
segment per tractor, divide it into many small parcels. When a tractor is done plowing its
current parcel, it finds another unplowed parcel and does that. This scheme, sometimes
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called self-scheduling, has the advantage that the tractors stay busy even if some run at
much different rates than others. The opposite of self-scheduling, where the work is
divided up in advance, will be called a priori scheduling.

14.4  Stream Parallelism

Sets of tasks that are totally independent of each other do not occur as frequently as one
might wish. More interesting are sets of tasks that need to communicate with each other
in some fashion. We already discussed command-line versions of a form of
communication in the chapter on high-level functional programming. There, the
compound command

c1 | c2 | .... | cn

is similar in execution to the command with | replaced by &, as discussed earlier.
However, in the new case, the processes are synchronized so that the input of one waits
for the output of another, on a character-by-character basis, as communicated through
the standard inputs and standard outputs. This form of parallelism is called stream
parallelism, suggesting data flowing through the commands in a stream-like fashion.

The following C++ program shows how pipes can be used with the C++ iostream
interface. Here class filebuf is used to connect file buffers that are used with streams to
the system-wide filed descriptors that are produced by the call to function pipe.

#include <streambuf.h>
#include <iostream.h> // for <<, cin, cout, cerr
#include <stdio.h> // for fscanf, fprintf
#include <sys/types.h> // for pid_t
#include <unistd.h> // for fork()
#include <wait.h> // for wait()

main()
{
int pipe_fd[2]; // pipe file descriptors:

// pipe_fd[0] is used for the read end
// pipe_fd[1] is used for the write end

pid_t pid; // process id of forked child

pipe(pipe_fd); // make pipe, set file descriptors

pid = fork(); // fork a child

int chars_read;

if( pid == 0 )
  {
  // Child process does this

  // read pipe into character buffer repeatedly, until end-of-file,
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  // sending what was read to cout

  // note: a copy of the array pipe_fd exists in both processes

  close(pipe_fd[1]); // close unused write end

  filebuf fb_in(pipe_fd[0]);
  istream in(&fb_in);

  char c;

  while( in.get(c) )
    cout.put(c);

  cout << endl;
  }
else
  {
  close(pipe_fd[0]);  // close unused read end

  filebuf fb_out(pipe_fd[1]);
  ostream out(&fb_out);

  char c;

  while( cin.get(c) )
    out.put(c);

  close(pipe_fd[1]);

  wait(0); // wait for child to finish
  }
}

It is difficult to present a plowing analogy for stream parallelism – this would be like the
field being forced through the plow. A better analogy would be an assembly line in a
factory. The partially-assembled objects move from station to station; the parallelism is
among the stations themselves.

Exercises

Which of the following familiar parallel enterprises use self-scheduling, which use a
priori scheduling, and which use stream parallelism? (The answers may be locality-
dependent.)

1 • check-out lanes in a supermarket

2 • teller lines in a bank

3 • gas station pumps

4 • tables in a restaurant
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5 • carwash

6 ••••  Develop a C++ class for pipe streams that hides the details of file descriptors, etc.

14.5  Expression Evaluation

Parallelism can be exhibited in many kinds of expression evaluations. The UNIX®
command-line expressions are indeed a form of this. But how about with ordinary
arithmetic expressions, such as

(a + b) * ((c - d) / (e + f)))

Here too there is the implicit possibility of parallelism, but at a finer level of granularity.
The sum a + b can be done in parallel with the expression (c - d) / (e + f). This expression
itself has implicit parallelism. Synchronization is required in the sense that the result of a
given sub-expression can't be computed before the principal components have been
computed. Interestingly, this form of parallelism shows up if we inspect the dag (directed
acyclic graph) representation of the expression. When there are two nodes with neither
having a path to the other, the nodes could be done concurrently in principle.

*

+

+-

/

fedc

ba

Figure 297: Parallelism in an expression tree:
The left + node can be done in parallel with any

of the nodes other than the * node.
The - node can be done in parallel with the right + node.

In the sense that synchronization has to be done from two different sources, this form of
parallelism is more complex than stream parallelism. However, stream parallelism has
the element of repeated synchronization (for each character) that scalar arithmetic
expressions do not. Still, there is a class of languages in which the above expression
might represent computation on vectors of values. These afford the use of stream
parallelism in handling the vectors.

For scalar arithmetic expressions, the level of granularity is too fine to create processes –
the overhead of creation would be too great compared to the gain from doing the
operations. Instead, arithmetic expressions that can be done in parallel are usually used to
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exploit the "pipelining" capability present in high-performance processors. There are
typically several instructions in execution simultaneously, at different stages. A high
degree of parallelism translates into lessened constraints among these instructions,
allowing more of the instruction-execution capabilities to be in use simultaneously.

Expression-based parallelism also occurs when data structures, such as lists and trees, are
involved. One way to exploit a large degree of parallelism is through the application of
functions such as map on large lists. In mapping a function over list, we essentially are
specifying one function application for each element of the list. Each of these
applications is independent of the other. The only synchronization needed is in the use vs.
formation of the list itself: a list element can't be used before the corresponding
application that created it is done.

Recall that the definition of map in rex  is:

map(Fun, []) => [].

map(Fun, [A | X]) => [apply(Fun, A) | map(Fun, X)].

The following figure shows how concurrency results from an application of map of a
function f to a list [x1, x2, x3, ... ]. The corresponding function in rex that evaluates those
function applications in parallel is called pmap.

x1 x2 x3

f f f

result list

argument list

f(x1) f(x2) f(x3)

Figure 298: Parallel mapping a function over a list for independent execution.
Each copy of f can be simultaneously executing.

Exercises

Which of the following programs can exploit parallelism for improved performance over
sequential execution? Informally describe how.

1 •• finding the maximum element in an array



592 Parallel Computing

2 •• finding an element in a sorted array

3 •• merge sort

4 •• insertion sort

5 •• Quicksort

6 ••• finding a maximum in a uni-modal array (an array in which the elements are
increasing up to a point, then decreasing)

7 •• finding the inner-product of two vectors

8 •• multiplying two matrices

14.6 Data-Parallel Machines

We next turn our attention to the realization of parallelism on actual computers. There are
two general classes of machines for this purpose: data-parallel machines and control-
parallel machines. Each of these classes can be sub-divided further. Furthermore, each
class of machines can simulate the other, although one kind of machine will usually be
preferred for a given kind of problem.

Data parallel machines can be broadly classified into the following:

SIMD multiprocessors
Vector Processors
Cellular Automata

SIMD Multiprocessors

"SIMD" stands for "single-instruction stream, multiple data stream". This means that
there is one stream of instructions controlling the overall operation of the machine, but
multiple data operation units to carry out the instructions on distinct data. The general
structure of a SIMD machine can thus be depicted as follows:
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Control 
Processor

Control 
Program 
Memory

Data 
Processor

Data 
Memory

Data 
Processor

Data 
Memory

Data 
Processor

Data 
Memory

Data 
Processor

Data 
Memory

....

Figure 299: SIMD multiprocessor organization

Notice that in the SIMD organization, each data processor is coupled with its own data
memory. However, in order to get data from one memory to another, it is necessary for
each processor to have access to the memories of its neighbors, at a minimum. Without
this, the machine would be reduced to a collection of almost-independent computers.

Also not clear in the diagram is how branching (jumps) dependent on data values take
place in control memory. There must be some way for the control processor to look at
selected data to make a branch decision. This can be accomplished by instructions that
form some sort of aggregate (such as the maximum) from data values in each data
processors' registers.

SIMD Multiprocessors are also sometimes called array processors, due to their obvious
application to problems in which an array can be distributed across the data memories.

Vector Processors

The name "vector processor" sounds similar to "array processor" discussed above.
However, vector processor connotes something different to those in the field: a processor
in which the data stored in registers are vectors. Typically there are both scalar registers
and vector registers, with the instruction code determining whether an addressed register
is one or the other. Vector processors differ from array processors in that not all elements
of the vector are operated on concurrently. Instead pipelining is used to reduce the cost of
a machine that might otherwise have one arithmetic unit for each vector element.

Typically, vector operations are floating-point. Floating point arithmetic can be broken
into four to eight separate stages. This means that a degree of concurrency equal to the
number of stages can be achieved without additional arithmetic units. If still greater
concurrency is desired, additional pipelined arithmetic units can be added, and the vectors
apportioned between them.
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Cellular Automata

A cellular automaton is a theoretical model that, in some ways, is the ultimate data
parallel machine. The machine consists of an infinite array of cells. Each cell contains a
state drawn from a finite set, as well as a finite state machine, which is typically the same
for every cell. The state transitions of the machine use the cell's own state, as well as the
states of selected other cells (known as the cell's neighbors), to determine the cell's next
state. All cells compute their next states simultaneously. The entire infinite array
therefore operates in locked-step fashion.

In most problems of interest, only a finite number of the cells are in a non-quiescent state.
In other words, most of the cells are marking time. The state-transition rules are usually
designed this way. The automaton is started with some specified cells being non-
quiescent. This is how the input is specified. Then non-quiescent states generally
propagate from those initial non-quiescent cells.

Figure 300: Fragment of a two-dimensional cellular automaton;
cells extend forever in all four compass directions

We have shown above a two-dimensional cellular automaton. However, cellular automata
can be constructed in any number of dimensions, including just one. It is also possible to
consider irregular cellular automata, connected as an arbitrary graph structure, in which
there is no clear notion of dimension. Most cellular automata that have been studied are
rectangular ones in one, two, or three dimensions. It is also possible to use different sets
of neighbors than the one shown. For example, an eight-neighbor automaton is common.
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Figure 301: Four- vs. eight-neighbor cellular automata

Cellular automata were studied early by John von Neumann. He showed how Turing
machines can be embedded within them, and moreover how they can be made to
reproduce themselves. A popular cellular automaton is Conway's "Game of Life". Life is
a two-dimensional cellular automaton in which each cell has eight neighbors and only
two states (say "living" and "non-living", or simply 1 and 0). The non-living state
corresponds to the quiescent state described earlier.

The transition rules for Life are very simple:  If three of a cell's neighbors are living, the
cell itself becomes living. Also, if a cell is living, then if its number of living neighbors is
other than two or three, it becomes non-living.

The following diagram suggests the two kinds of cases in which the cell in the center is
living in the next state. Each of these rules is only an example. A complete set of rules
would number sixteen.

Figure 302: Examples of Life rules

Many interesting phenomena have been observed in the game of life, including patterns
of living cells that appear to move or "glide" through the cellular space, as well as
patterns of cells that produce these "gliders".

Figure 303: A Life glider pattern
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It has been shown that Life can simulate logic circuits (using the presence or absence of a
glider to represent a 1 or 0 "flowing" on a wire). It has also been shown that Life can
simulate a Turing machine, and therefore is a universal computational model.

Exercises

1 • Enumerate all of the life rules for making the center cell living.

2 •• Write a program to simulate an approximation to Life on a bounded grid. Assume
that cells outside the grid are forever non-living.

3 •• In the Fredkin automaton, there are eight neighbors, as with life. The rules are that
a cell becomes living if it is non-living and an odd number of neighbors are living.
It becomes non-living if it is living and an even number of neighbors are living.
Otherwise it stays as is. Construct a program that simulates a Fredkin automaton.
Observe the remarkable property that any pattern in such an automaton will
reproduce itself in sufficient time.

Figure 304: The Fredkin automaton, with an initial pattern
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Figure 305: The Fredkin automaton, after 8 transitions from the initial pattern

4 ••• For the Fredkin automaton, make a conjecture about the reproduction time as a
function of the number of cells to be reproduced.

5 •• Show that any Turing machine can be simulated by an appropriate cellular
automaton.

6 •••• Write a program to simulate Life on an unbounded grid. This program will have
to dynamically allocate storage when cells become living that were never living
before.

7 ••••• A "garden-of-Eden" pattern for a cellular automaton is one that cannot be the
successor of any other state. Find such a pattern for Life.

14.7  Control-Parallel Machines

We saw earlier how data-parallel machines rely on multiple processors conducting
similar operations on each of a large set of data. In  control-parallel machines, there are
multiple instruction streams and no common control. Thus these machines are also often
called MIMD ("Multiple-Instruction, Multiple-Data") machines. Within this category,
there are two predominant organizations:

Shared memory

Distributed memory
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Shared Memory Multiprocessors

In a shared memory machine, all processors conceptually share a common memory. Each
processor is executing its own instruction stream. The processors can communicate with
one another based on inspection and modification of data common to both of them.

Processor Processor Processor Processor

Memory

....

Figure 306: Shared Memory Multiprocessor

As an example of how shared memory permits one process to control another, suppose
we want to make one process wait until an event occurs, as determined by another
process. We can achieve this in a shared memory machine by agreeing on a common
location to contain a flag bit. We agree in advance that a 0 in this bit means the event has
not occurred, while a 1 indicates it has. Then the process that potentially waits will test
the bit. If it is 0, it loops back and tests again, and so on. If it is 1, it continues. All the
signaling processor has to do is set the bit to 1.

The following code fragments show the use of a flag for signaling between two
processes.

Flag = 0 initially
Process A: Process B:

A1:  .... B1: ....
A2: Flag = 1; B2: if( Flag == 0 )

goto B2;
A3: .... B3: ....

The following state diagram shows that the signaling scheme works. The progress of
process A corresponds to the vertical dimension, and that of process B to the horizontal.
The components of each state are:

(ip of A, ip of B, Flag)

Note that states in which ip of B is B3 cannot be reached as long as Flag is 0. Only when
A has set the flag to 1 can such a state (at the lower-left corner) be reached.
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A1, B1, 0

A2, B1, 0

A3, B1, 1

A1, B2, 0

A2, B2, 0

A3, B2, 1

A1, B3, 0

A2, B3, 0

A3, B3, 1

Figure 307: State-transition diagram of multiprocessor flag signaling

The type of signaling described above is called "busy-waiting" because the looping
processor is kept busy, but does no real work. To avoid this apparent waste of the
processor as a resource, we can interleave the testing of the bit with some useful work. Or
we can have the process "go to sleep" and try again later. Going to sleep means that the
process gives up the processor to another process, so that more use is made of the
resource.

Above we have shown how a shared variable can be used to control the progress of one
process in relation to another. While this type of technique could be regarded as a feature
of shared memory program, it can also present a liability. When two or more processors
share memory, it is possible for the overall result of a computation to fail to be unique.
This phenomenon is known as indeterminacy. Consider, for example, the case where two
processors are responsible for adding up a set of numbers. One way to do this would be to
share a variable used to collect the sum. Depending on how this variable is handled,
indeterminacy could result. Suppose, for example, that a process assigns the sum variable
to a local variable, adds a quantity to the local variable, then writes back the result to the
sum:

local = sum;
local += quantity to be added;
sum = local;

Suppose two processes follow this protocol, and each has its own local variable. Suppose
that sum is initially 0 and one process is going to add 4 and the other 5. Then depending
on how the individual instructions are interleaved, the result could be 9 or it could be 4 or
5. This can be demonstrated by a state diagram. The combined programs are

A1:  localA = sum; B1: localB = sum;
A2:  localA += 4; B2: localA += 5;
A3:  sum = localA; B3: sum = localB;
A4: B4:
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The state is:

(ip of A, ip of B, localA, localB, sum)

A1, B1, _, _, 0

A2, B1,0, _, 0

A3, B1, 4, _, 0

A1, B2, _, 0, 0

A2, B2, 0, 0, 0

A3, B2, 4, 0, 0

A1, B3, _, 5, 0

A2, B3, 0, 5, 0

A3, B3, 4, 5, 0

A1, B4, _, 5, 5

A2, B4,5, 5, 5

A3, B4, 9, 5, 5

A4, B1, 4, _, 4 A4, B2, 4, 4, 4 A4, B3, 4, 9, 4 A4, B4, 9, 9,9

A4, B2, 4, 0, 4 A4, B3, 4, 5, 4

A2, B4, 0, 5, 5

A3, B4, 4, 5, 5

A4, B4, 4, 5, 4

A4, B4, 4, 5,5

Figure 308: A state diagram exhibiting indeterminacy

Note that in the state diagram there are three states having the ip components A4, B4,
each with a different value for sum. One state corresponds to the two processes having
done their operations one after the other, and the other two corresponds to one process
writing while the other is still computing. Thus we have indeterminacy in the final value
of sum. This phenomenon is also called a race condition, as if processes A and B were
racing with each other to get access to the shared variable.

Race conditions and indeterminacy are generally undesirable because they make it
difficult to reason about parallel programs and to prove their correctness. Various
abstractions and programming techniques can be used to reduce the possibilities for
indeterminacies. For example, if we use a purely functional programming model, there
are no shared variables and no procedural side-effects. Yet there can still be a substantial
amount of parallelism, as seen in previous examples, such as the function map.
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Semaphores

Computer scientists have worked extensively on the problem of using processor
resources efficiently. They have invented various abstractions to not only allow a process
to go to sleep, but also to wake it when the bit has been set, and not sooner. One such
abstraction is known as a semaphore. In one form, a semaphore is an object that contains
a positive integer value. The two methods for this object are called P and V. When P is
done on the semaphore, if the integer is positive, it is lowered by one (P is from a Dutch
word meaning "to lower") and the process goes on. If it is not positive, however, the
process is put to sleep until a state is reached in which lower can be done without making
the integer negative. The only way that such a state is reached is by another process
executing the V ("to raise") operation. If no process is sleeping for the semaphore, the V
operation simply increments the integer value by one. If, on the other hand, at least one
process is sleeping, one of those processes is chosen for awakening and the integer value
remains the same (i.e. the net effect is as if the value had been raised and then lowered,
the latter by the sleeping process that was not able to lower it earlier). The exact order for
awakening is not specified. Most often, the process sleeping for the longest time is
awakened next, i.e. a queue data structure is used.

The following program fragments show the use of a semaphore for signaling.

Semaphore S's integer value is  0 initially

Process A: Process B:

A1:  .... B1: ....
A2: V(S); B2: P(S)
A3: .... B3: ....

The state-transition diagram is similar to the case using an integer flag. The main
difference is that no looping is shown. If the semaphore value is 0, process B simply
cannot proceed. The components of each state are:

(ip of A, ip of B, Semaphore value)
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A1, B1, 0

A2, B1, 0

A3, B1, 1

A1, B2, 0

A2, B2, 0

A3, B2, 1

A1, B3, 0

A2, B3, 0

A3, B3, 1

Figure 309: State diagram for signaling using a semaphore

Above we saw a flag and a semaphore being used to synchronize one process to another.
Another type of control that is often needed is called mutual exclusion. In contrast to
synchronization, this form is symmetric. Imagine that there is some data to which two
processes have access. Either process can access the data, but only one can access it at a
time. The segment of code in which a process accesses the data is called a critical
section. A semaphore, initialized to 1 rather than 0, can be used to achieve the mutual
exclusion effect.

Semaphore S's integer value is 1 initially

Process A: Process B:

A1: .... B1: ....
A2: P(S); B2: P(S)
A3: critical section B3: critical section
A4: V(S) B4: V(S)
A5: .... B5: ....

A useful extension of the semaphore concept is that of a message queue or mailbox. In
this abstraction, what was a non-negative integer in the case of the semaphore is replaced
by a queue of messages. In effect, the semaphore value is like the length of the queue. A
process can send a message to another through a common mailbox. For example, we can
extend the P operation, which formerly waited for the semaphore to have a positive value,
to return the next message on the queue:

P(S, M); sets M to the next message in S

If there is no message in S when this operation is attempted, the process doing P will wait
until there is a message. Likewise, we extend the V operation to deposit a message:
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V(S, M); puts message M into S

Mailboxes between UNIX® processes can be simulated by an abstraction known as a
pipe. A pipe is accessed in the same way a file is accessed, except that the pipe is not
really a permanent file. Instead, it is just a buffer that allows bytes to be transferred from
one process to another in a disciplined way. As with an input stream, if the pipe is
currently empty, the reading process will wait until something is in the pipe. In UNIX®,
a single table common to all processes is used to hold descriptors for open files. Pipes are
also stored in this table. A pipe is created by a system call that returns two file
descriptors, one for each end of the pipe. The user of streams in C++ does not typically
see the file descriptors. These are created dynamically and held in the state of the stream
object. By appropriate low-level coding, it is possible to make a stream object connect to
a pipe instead of a file.

Exercises

1 •• Construct a state-transition diagram for the case of a semaphore used to achieve
mutual exclusion. Observe that no state is reached in which both processes are in
their critical sections.

2 ••• Show that a message queue can be constructed out of ordinary semaphores. (Hint:
Semaphores can be used in at least two ways: for synchronization and for mutual
exclusion.)

3 ••• Using a linked-list to implement a message queue, give some examples of what
can go wrong if the access to the queue is not treated as a critical section.

14.8  Distributed Memory Multiprocessors

A distributed memory multiprocessor provides an alternative to shared memory. In this
type of design, processors don't contend for a common memory. Instead, each processor
is closely linked with its own memory. Processors must communicate by sending
messages to one another. The only means for a processor to get something from another
processor's memory is for the former to send a message to the latter indicating its desire.
It is up to the receiving processor to package a response as a message back to the
requesting processor.
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Processor Processor Processor Processor....

Memory

Communication 
Switch or Bus

Memory Memory Memory

Figure 310: Distributed Memory Multiprocessor

What possible advantage could a distributed memory multiprocessor have?  For one
thing, there is no contention for a common memory module. This improves performance.
On the other hand, having to go through an intermediary to get information is generally
slower than in the case of shared memory.

A related issue is known as scalability. Assuming that there is enough parallelism
inherent in the application, one might wish to put a very large number of processors to
work. Doing this exacerbates the problem of memory contention: only one processor can
access a single memory module at a time. The problem can be alleviated somewhat by
adding more memory modules to the shared memory configuration. The bottleneck then
shifts to the processor-memory communication mechanism. If, for example, a bus
interconnection is used, there is a limit to the number of memory transactions per unit
time, as determined by the bus technology. If the number of processors and memory
modules greatly exceeds this limit, there will be little point in having multiple units. To
overcome the bus limitation, a large variety of multi-stage interconnect switches have
been proposed. A typical example of such a switch is the butterfly interconnection, as
shown below.

P P P P P P P P

M M M M M M M M

S S S S

S S S S

S S S S

Figure 311: Butterfly interconnection for shared memory
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A major problem with such interconnection schemes is known as cache coherency. If
processors cache data in memory, there is the possibility that one processor could have a
datum in its cache while another processor updates the memory version of that datum. In
order to manage this possibility, a cached copy would have to be invalidated whenever
such an update occurs. Achieving this invalidation requires communication from the
memory to the processor, or some kind of vigilance (called "snooping") in the
interconnection switch. On the other hand, a distributed memory computer does not incur
the cache coherency problem, but rather trades this for a generally longer access time for
remote data.

Distributed memory multiprocessors bet on a high degree of locality, in the sense that
most accesses will be made to local memory, in order to achieve performance. They also
mask latency of memory accesses by switching to a different thread when a remote
access is needed.

Networking and Client-Server Parallelism

Another type of distributed memory computer is a computer network. In this type of
system, several computers, each capable of operating stand-alone, are interconnected.
The interconnection scheme is typically in the nature of a bus, such as an Ethernet®.
These networks were not originally conceived for purposes of parallel computing as
much as they were for information sharing. However, they can be used for parallel
computing effectively if the degree of locality is very high.

A common paradigm for parallel computing in a network is known as client-server. In
this model, long-term processes running on selected nodes of the network provide a
service for processes on other nodes. The latter, called clients, communicate with the
server by sending it messages. Many servers and clients can be running concurrently. A
given node might support both client and server processes. Furthermore, a server of one
function might be a client of others. The idea is similar to object-oriented computing,
except that the objects in this case run concurrently with each other, rather than being
dormant until the next message is received.

From the programmer's point of view, communication between client and server takes
place using data abstractions such as sockets. The socket concept permits establishment
of a connection between a client and a server by the client knowing the server's address in
the network. Knowing the address allows the client to send the server an initial connect
message. After connection is established, messages can be exchanged without the need,
by the program, to use the address explicitly. Of course, the address is still used implicitly
to route the message from one node to another. A common form of socket is called the
stream socket. In this form, once the connection is established, reading and writing
appears to be an ordinary i/o operation, similar to using streams in C++.
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14.9  Speedup and Efficiency

The speedup of a parallel computation is the ratio of the sequential execution time to the
parallel execution time for the same problem. Conventions vary as to whether the same
algorithm has to be used in both time computaions. The most fair comparison is probably
to compare the speed of the parallel algorithm to that of the best-known sequential
algorithm.

An ideal speedup factor would be equal to the number of processors, but rarely is this
achieved. The reasons that prevent it from being achieved are: (i) not all problems lend
themselves to parallel execution; some are inherently sequential, and (ii) there is
overhead involved in creating parallel tasks and communicating between them.

The idea of efficiency attempts to measure overhead; it is defined as the amount of work
actually done in a parallel computation divided by the product of the run-time and the
number of processors, the latter product being regarded as the effort

A thorough study of speedup issues is beyond the scope of this book. Suffice it to say that
difficulty in attaining acceptable speedup on a large class of problems has been one of the
main factors in the slow acceptance of parallel computation. The other factor is the extra
programming effort typically required to achieve parallel execution. The next chapter
mentions Amdahl’s law, which is one attempt at quantifying an important issue, namely
that some algorithms might be inherently sequential.

14.9  Chapter Review

Define the following terms:

cellular automaton
client-server
distributed-memory
efficiency
expression parallelism
fork
map
MIMD
pipeline processing
process
scheduling
shared-memory
semaphore
SIMD
speedup
stream-parallelism
vector processor
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self-reproduction and simulation of switching circuits. Moderate.]

A.W. Burks (ed.), Essays on cellular automata, University of Illinois Press, 1970. [A
collection of essays by Burks, von Neumann, Thatcher, Holland, and others. Includes an
analysis of von Neumann's theory of self-reproducing automata. Moderate.]

Vipin Kumar, et al., Introduction to parallel computing – Design and Analysis of
Algorithms, Benjamin/Cummings, 1994. [Moderate.]

Michael J. Quinn, Parallel computing –theory and practice, McGraw-Hill, 1994. [An
introduction, with emphasis on algorithms. Moderate.]

William Poundstone, The recursive universe, Contemporary books, Inc., Chicago, Ill.,
1985. [A popular discussion of the game of Life and physics. Easy.]

Evan Tick, Parallel logic programming, MIT Press, 1991. [Ties together parallelism and
logic programming. Moderate.]

Stephen Wolfram, Cellular automata and complexity, Addison-Wesley, 1994. [A
collection of papers by Wolfram. Difficult.]



15. Limitations to Computing

15.1 Introduction

We conclude the book with a discussion of what is very difficult or even not possible in
various models, or in computation as a whole.

In the course up to this point, we have concentrated on what is "doable", with what
models, what speed, etc. Other questions asked in computer science focus on what is not
doable, or not doable in less than certain time, etc. Here we briefly survey the kinds of
things that are known.

15.2 Algorithm lower bounds

For any given problem, the growth rate of an algorithm to solve the problem will have an
absolute minimum. Unlike upper bounds on algorithmic performance, which are
demonstrated for specific algorithms, lower bounds are for problems, and span all
possible algorithms. Thus establishing them is much more difficult.

An example of a fairly accessible lower-bound argument is for sorting using two-way
comparisons between data objects without regard to their internal structure (this excludes
radix sort, which relies on a radix representation of the objects). For this problem, we
have a lower bound of

Ω (N log N)

to sort N data objects, meaning that N log N is O(the growth rate for any algorithm for
the problem). This means that sorts such as heapsort and mergesort are "optimal" to
within a constant factor.

In order to derive this bound, we take an abstract view of what it means to compute by
comparisons. Each time a program makes a comparison, that provides new information
about the data. Since each comparison has two outcomes, we can cast the information
states about the data as an information tree. The root of the tree represents the state where
we are completely ignorant of the data since we have not yet made any comparisons.
From a general information state, a comparison will take us to one of two other states. At
some point, we will have made sufficiently many comparisons to have determined the
original order of the data, in other words to determine which permutation of the data is
needed to put the elements into sorted order. Such an unambiguous state is a leaf of the
information tree. Thus there will be one leaf for each permutation of the data. The
sequence of comparisons made during a given run of the program will correspond to a
path from root to leaf. A lower bound on the time to sort is thus the minimum length of
all such paths.
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We know the following: For N data elements, there are P = N! permutations, hence P
leaves. Secondly, in a binary tree with P leaves, some path must have length at least log

P. With all paths less than log P, we would have fewer than 2log P = P leaves, a
contradiction. The worst case sorting time is thus at least log P = log N!. An
approximation known as Stirling’s formula says

log N! ≈ k N log N + lower order constants

for appropriate k, which is what we need for our lower bound.

There are many areas where tight lower bounds are not known, e.g. in the area of NP-
complete problems that includes the traveling salesman problem, proposition logic
satisfiability, and many others.

15.3 Limitations on Specific Classes of Machines

For example, finite-state machines are limited in the kinds of functions they can compute.
Some examples of languages that are not finite-state acceptable are:

matched-parenthesis languages

{0n1n | n a natural number} = {λ, 01, 0011, 000111, ...}

{1p | p a prime number} = {11, 111, 11111, 1111111, ...}

The first two of these can be represented by a context-free grammar, but context-free
grammars have their own limitations, e.g. {0n1 n 2 n | n a natural number} is not generated
by any context-free grammar. All of the above are acceptable by Turing machines.

To see that the second language mentioned above is not acceptable by a finite-state
acceptor, suppose to the contrary that it is. Let N be the number of states of a machine
accepting {0 n 1 n | n a natural number}. Now consider the input 0N1 N. Since the machine
makes 2N > N state transitions in the process of reading this input, some state must recur.
(This is called the pigeon-hole principle; if one puts M pigeons (states occurring in a
sequence) into N < M holes (states in the machine), then some of holes must have more
than one pigeon in them.) Suppose that q is such a repeated state. If q occurs both times
during the processing of 0n, then we have a problem: it would then also be the case that
0p1n would be accepted for some p < n. Similarly, we also have a contradiction if a

repeated state occurs during processing of 1n. Finally, if q occurs the first time during the
processing of 0 n, and the second time during the processing of 1n, then we get a
contradiction in that a sequence where some 1's precede 0's is also acceptable.
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0 0 0 1 1 1
q q
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Figure 312: Anomalous acceptance arising from repeated states in a long sequence

15.4 The Halting Problem

Consider any class of reasonably-powerful machines (Turing machines, programs written
in C++, partial recursive functions, etc.) It is provable that there are well-defined
functions that cannot be computed in the framework. Consider the program-analysis
function H where

H(P) = 1 if program P diverges with P as input

H(P) diverges otherwise

 [Here "diverges" means "never halts".] H is well defined. Many programs can accept
programs as input (compilers, text formatters, etc.) Most of these sorts of programs
always halt, and could be modified to halt with answer 1 if desired.

The problem is that there is no program for the particular function H. To see why,
suppose P is the program for H. Then H(P) either diverges or it doesn't. But since P is a
program for H, the first line of the definition says that if H(P) diverges, then H(P) halts.
The second line says that if H(P) does not diverge, then H(P) diverges. Thus we have an
absurdity. We are forced to conclude that our assumption was wrong that a program for H
exists. This is usually summarized as

The halting problem is unsolvable.

Principle of Diagonalization

The proof that the halting problem is unsolvable relies on the Principle of
Diagonalization. A classical mathematical use of this principle is to prove that the set of
all subsets of the natural numbers is not countable. As promised in the first chapter, we
will now discuss this proof. Let 2

ω
 represent the set of all subsets of ω. Suppose that 2

ω
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were countable, i.e. there is an enumeration of it. Let the sets in the enumeration be
{S0, S1, S2, ... }. Now we construct a new subset of ω, call it S. The definition of S is

S = { n ∈ ω | n  ∉  Sn}

That is, S is the set of all natural numbers n such that n is not a member of Sn in the
supposed enumeration. The funny thing about S is that it is obviously a subset of ω.
Therefore, it should appear in the enumeration. But where does it appear? It must be Sn
for some n. However, then we have a problem: For the index n of Sn, is n ∈  Sn or not? If
we assume n ∈  Sn, then we get from the definition of S (a synonym for Sn) that n ∉  Sn.
If we assume n  ∉  Sn, then we get from the same definition that n ∈  Sn. We are
snookered either way. Therefore we must backtrack to where we made an assumption,
and that was that 2

ω
 could be enumerated. Thus 2

ω
 is not countable.

The reason this is called diagonalization is that if we create an infinite two-dimensional
array, listing the elements of along the top and the supposed enumeration along the side,
then put a 1 for the entry in column n, row Sm, if n ∈  Sm and put a 0 if  n  ∉  Sm.
Consider the diagonal of this array. Flip the values on the diagonal, i.e. interchange 0 and
1. If this diagonal is flattened out as a if a row, its 0's and 1's correspond to a subset of ω,
and it should therefore appear as one of the rows. However it cannot, because it differs
from every row in at least one position, according to its construction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …
S0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …
S1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 …
S2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 …
S3 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 …
S4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 …
S5 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 …
S6 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 …
S7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 …
S8 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 …
S9 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 …
S10 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 …
.
.
.

.

.

.

.

.

.

.
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Figure 313: Diagonalization construction

The row obtained by inverting the diagonal, 11100101110... ,
cannot appear as any row in the enumeration.
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In terms of Turing machines, we can list all of the Turing machines in the same way we
listed the subsets of the natural numbers. Across the top, we list the inputs to those Turing
machines, which as we have already discussed, can be enumerated. The diagonal of the
Turing machine array corresponds to those machines that halt on the tape with their own
description. By inverting that diagonal, we have a representation of the function in the
halting problem.

Although the definition of H might seem peculiar at first, other desirable, less peculiar
functions can be similarly shown to be unsolvable. For example, it turns out that we don't
need to rely on P being fed itself as input. We can fix the input, for example, to be a
totally blank tape in the case of Turing machines, and still get unsolvability. In this kind
of argument, we say that we have reduced the original halting problem to the blank-tape
halting problem: if the latter is solvable, then the former is as well.

Note that throughout such a discussion, the domain of interest is functions that range over
a wide set of inputs (e.g. all programs of a given model). We cannot prove unsolvability
of the halting question for a particular single program on a particular input. Such a
function would be a constant function (with a 0 or 1 answer) and would thus be
computable.However, we might not know which program to use for it: one that always
gives result 1 or one that always gives result 0.

Other Uncomputable Problems

The halting problem may sound very esoteric, something we'd never consider computing.
But there are other problems that sound more down-to-earth, but which can be proved
unsolvable by either an argument similar to the original halting problem, or by showing
that arbitrary Turing machines can be represented in the model:

Busy Beaver Problem

In 1962, T. Rado showed this problem to be uncomputable.

Fix the alphabet to {1, _} (_ is blank). Let BB(N) be the largest number of
1's that will be printed by any halting N-state Turing machine when started
on an all-blank tape. BB is not computable. It can be shown that BB has a
faster-growth rate than any computable function. To get some idea of how
large BB can be,

BB(5) is at least 4098.
BB(100) is at least ((((7!)!)!)!)

Domino Problems

In 1961, Hao Wang showed the following to be unsolvable.
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Is there an algorithm for determining whether the infinite half-plane can
be completely tiled (such that regions adjacent between dominos have the
same color) with an input set of types of 4-sided "dominoes"?

red

redgreen

blue

Figure 314: One of a finite set of dominoes to be used to tile an infinite plane

An algorithm for the domino problem would yield an algorithm for telling whether a TM
halts. (The dominoes can simulate the possible successive configurations of a tape on the
TM.)

For the quarter-plane, the question is "semi-decidable". It can be shown that the quarter-
plane is tileable iff every finite "prefix" square is tileable. If some prefix square is
untileable, this can be shown by enumerating all possible potential tilings of the square.
We can thus determine whether the quarter plane is untileable by an expanding series of
enumerations.

Rice's Theorem

The ultimate heartbreak of unsolvability is captured generally in an elegant theorem
known as Rice's theorem. It asserts:

Any property of computable functions that holds for some functions, but
not for all, is undecidable for the corresponding programs of those
functions. (includes halting, specialized halting, equivalence to a given
function, etc.)

Basically, this means that if we are dealing with models that are general enough to
represent any computable function, we can forget about developing algorithms
that analyze those models for any functional property precisely.

15.5 NP-Complete Problems

Around 1970, computer scientists Edmunds, Cook, and Karp made a series of
observations about various computational problems. Some of these problems seemed to
be "easy", in the sense that there is a known polynomial-time algorithm for them. Others
seemed "hard" in that no polynomial-time algorithm was known (the best known
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algorithms were exponential-time). It was observed that there were inter-conversions
among the hard algorithms. Indeed, there were conversion algorithms that ran in
polynomial time that would convert one hard problem into another. The implication was
that if we could find a polynomial algorithm for one such problem, we would
immediately have a polynomial time algorithm for several others, according to the known
conversions. Eventually the class of hard problems called "NP complete" (NPC) was
formulated. This was a set of problems all of that are interconvertible by polynomial time
algorithms. The "NP" stands for "non-deterministic polynomial" and alludes to the fact
that these problems can be run on a non-deterministic Turing machine in polynomial
time. Non-deterministic Turing machines are related to Turing machines in the same way
that non-deterministic finite-state machines are related to finite-state machines.
Unfortunately, unlike finite-state machines, there is no known general simulation of a
polynomial-time non-deterministic Turing machine that runs in polynomial time on a
deterministic one. To the present, the question of whether the problems in the class NPC
yield to any polynomial algorithm is open. Lacking is either a demonstration of such an
algorithm or a proof that no such algorithm exists. Either one of these would resolve the
question of the large family of NP complete problems. Meanwhile, simply showing a
problem to be a member of this family is an indication that the problem is
computationally quite difficult in terms of its complexity. See [Garey and Johnson 1975]
or most any algorithms text for further discussion.

15.6 Amdahl’s Law

Many computer scientists are interested in possible ways of speeding up computation by
doing several things simultaneously, or "in parallel". Gene Amdahl observed that the
success of such attempts is limited by the amount of the workload that is inherently
sequential. Suppose that a program has a number N basic steps such that a fraction F of
those steps cannot be done in parallel with any other steps, while the remainder of the
steps can be done in parallel on P processors. Thus the time to do those remaining steps
can be sped up by a factor of P.

The overall time to do the work with the parallel processing capability, counting 1 time
unit per step, is:

F*N + (1-F)*N / P

The speedup is the time to do the work on 1 processor (N) divided by this time. In other
words, the speedup is

____1____
F + (1-F)/P

or
speedup < ____1________

          F + (1-F)/Smax
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where Smax is the maximum speedup if everything were done in parallel.

This puts some limits on speedup that are perhaps surprising. If F were only 10%, then a
speedup of at most 10 can be obtained. If F = 50%, then a speedup of at most 2 can be
obtained, even if Smax were infinity. In other words, if a very fast technique is applicable
to only half of the work, then the entire job will never be reduced by more than a factor of
2. Therefore parallel computers are best applicable to tasks that have a low degree of
inherent sequentiality.

Amdahl's law is applicable to any speedup method, not just parallel computing. It
indicates one of the uses of program profiling: effort to improve a program's performance
is most effective if concentrated on the parts that take the most time.

15.7 The Glitch Phenomenon

We saw earlier how it is sometimes convenient to leave the digital abstraction. For
example, we used a three-state buffer to achieve multiplexing via a bus. The outputs of
such a buffer are 0, 1, and high-impedance, which is neither 0 or 1. When dealing with
the interface between synchronous (clocked) systems and asynchronous (unclocked)
systems, it should be understood that the digital abstraction is not quite sufficient.

Up to this point, we assumed that the signal to be gated into a latch was never changing
during the interval in which the clock is changing. But when interfacing to the outside
world, we have no control over when the sampled signal changes. This can cause
problems with latch behavior. The following diagram shows such an interface, typically
called a "synchronizer".

(external level,
changing 
asynchronously)

in

clock

internal
reset
level

S

R

SR latch

Figure 315: An attempted synchronizer
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The set-reset latch formed of NOR gates has an input that is the AND of the clock and an
unclocked external signal. The purpose of the circuit is to determine if the external signal
has been raised since the latch was last reset. When the external is changing at the same
time as the clock, the outputs of the top-left AND gate can be "runts", something in
between 0 and 1. A runt can be sufficiently in between 0 and 1 that it causes the latch not
to switch to the set state, but rather to "hang" mid way.

Figure 316: Possible timing of the interplay of the signals in the synchronizer

Metastable Behavior in Physical Terms

Three events of interest are shown. In the first, the external input rises between clock
changes, and is detected when the clock rises. In the second, the falling clock ANDed
with the rising external input produces a small runt pulse that is not enough to change the
state of the latch. A spike (perhaps harmless) results in the output of the latch. In the third
event, a similar coincidence creates a runt pulse with enough energy to bring the latch
into a mid-way or metastable state, resulting in a glitch: a signal that is neither a digital 0
nor a 1.
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VaVb

Vc Vd

Figure 317: Simplified situation representing the opposing NOR gates in the latch

Vb

Va

Vc

Vd

Figure 318: Response curves of the two inverters in isolation
(the curves are the same, but one is rotated and reflected

Va = Vd

Vb = Vc
stable point 
(attractor)

metastable 
point 
(repeller)

stable point 
(attractor)

metastable 
point 
(repeller)

stable point 
(attractor)

stable point 
(attractor)

Figure 319: Left: Superimposed response curves reflect the interconnection with
Vb = Vc and Va = Vd. The stable or equilibrium points are those where the curves
intersect. The metastable point is a "repeller" in the sense that points on either side
to move away from the repeller and toward one of the two attractors. Right: The
ball-on-hill analogy. The latch operation is analogous to pushing the ball from one
stable point to the other. With insufficient energy, the ball will not make it over the
hill and will roll back down. With just the right amount of energy, the ball will sit
atop the hill indefinitely (i.e. glitch).
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Solution for the glitch problem: A perfectly glitch-free system cannot be built if
asynchronous interaction is necessary. By waiting sufficiently long before sampling the
output of a synchronizer latch, an adequately-small probability of a glitch can be
achieved, e.g. one with expected time-to-failure of several centuries.

15.8 Chapter Review

Define the following terms:

Amdahl's law
diagonalization
glitch
halting problem
lower bound
metastable state
pigeon-hole principle
synchronizer

15.9 Further Reading

Michael R. Garey and David S. Johnson, Computers and intractability, W.H. Freeman,
San Francisco, 1979.

David Harel, Algorithmics – The Spirit of Computing, Addison-Wesley, Reading,
Massachusetts, 1987. [Further discussion of unsolvable problems. Easy to moderate.]

J.L. Hennessy and D.A. Patterson. Computer Architecture - A quantitative approach,
Morgan Kauffman, 1991. [Moderate.]

R. Machlin and Q.F. Stout, The complex behavior of simple machines, in S. Forrest (ed.),
Emergent Computation, MIT Press, 1991. [Recent results on the Busy Beaver problem.]

T. Rado, On non-computable functions, Bell Systems Technical Journal, May 1962, pp
877-884. [Introduces the Busy Beaver problem.]

H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill,
1967. [Rice's theorem and related arguments. Difficult.]

J.F. Wakerly. Digital design principles and practices, Prentice-Hall, 1990. [Easy to
moderate.]

Hao Wang, Proving theorems by pattern recognition, Bell Systems Technical Journal,
40, pp. 1-42, 1961. [Relationship of a domino problem to the halting problem.]
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15 puzzle, 200
1-adic, 106
5-tuple, 213
a priori scheduling, 588
abstract array, 53
abstract base class, 256
abstract data type, 52, 231
abstract grammar, 297
abstract-syntax tree, 296
acceptor, 481
accumulator, 133
Ackermann’s function, 109, 129,
559
acyclic, 26
add, 106
addition, 106
address, 39
adjacency matrix, 41
ADT, 52, 231
aggregation, 243
allocation, 230
ALU, 569
Amdahl’s law, 426, 615
anchor variable, 404
and function, 341
anonymous function, 67
antiprefix, 62
any, 76
append, 63, 83
append predicate, 396
applet, 247
applicative-order, 148

apply, 270
arithmetic series, 429
arity, 62, 79
array, 44, 85
array maximum, 405
array processor, 593
array sorting, 406
assembler, 553
assembly language, 547, 553
assignment, 313
assoc, 61, 64
association list, 64
atom, 31
atomic, 16
attribute, 229
auxiliary, 132, 284
awt (abstract window toolkit), 264
backtracking, 387
barrel shifter, 121, 544
base class, 246
based addressing, 574
based indexed addressing, 574
basis, 101
BCD, 331
beta reduction, 103
binary adder, 493
binary relation, 25, 64
binary representation, 49
binary search, 464
binary search tree, 465
binary-coded decimal, 331
binary-tree representation, 30
binding, 21, 313
bit, 49
bit vector, 466
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Boole/Shannon expansion
principle, 352
Boolean algebra, 327
bottom up, 211
bound, 21
braces-as-alternatives, 299
breadth-first ordering, 142
breadth-first search, 140, 186, 500
breadth-first traversal, 179
bucket, 181, 450
built-in functions in rex, 19
bus structure, 541
butterfly, 604
cache coherency, 605
cache memory, 422
caching, 61
calculus, 73
calling conventions, 556
Cartesian encoding, 331
Cartesian product, 75, 197, 213
cell, 166
cellular automaton, 594
chain rule, 73
channel, 579
child, 586
Chinese rings puzzle, 200
chunk, 238
Church/Turing Hypothesis, 280
CISC, 547
class, 229
classifier, 473, 481
client, 229
client-server, 605
clock quantization, 517
clocked latch, 530
closed list, 14, 168
closure, 272
code factoring, 243
combination lock, 524

combinational switching principle,
335
commute, 66
compiler, 547
compiler generator, 314
complexity, 421
compose, 272
compose_list, 85
composition, 71, 72, 243
computer network, 605
concat, 271
concrete, 53
concurrency, 585
conditional expression, 112
conjunction, 348
connection matrix, 41
connective, 339
consensus, 371
consensus rule, 369
consing, 22
constant function, 59
constructor, 230
context-free grammar, 285, 290
controller, 481
convolution, 160
copy rule, 103
copying, 261
countable, 277
countably-infinite, 277
counterexample, 357
counting principle, 197
critical section, 602
crossover point, 432
cursor, 268
cyclic, 26
D flip-flop, 518
dag, 46
data container, 239
database, 381
decoder, 376
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decoding, 568
deep copying, 261
defer, 47, 150
deferred binding, 47
define a function, 67
define operator, 20
definite iteration, 281
delay, 151, 152
DeMorgan’s laws for quantifiers,
384
demultiplexer, 375
dense, 466
depth-first ordering, 140
depth-first search, 139, 388
deque, 239, 242
dequeue, 239
dereference, 165
derivation tree, 291
derived class, 246
derives, 292
deterministic, 191
deterministic acceptor, 500
dictionary, 64
difference, 137
digit, 49
direct addressing, 572
direct memory access, 579
directed acyclic graph, 46
directed graph, 25, 143
directives, 554
directory structure, 28
disjunction, 348
dispatch, 560
distributed memory, 603
distribution sorting, 450
diverge, 149
divide, 59, 128
divide-and-conquer principle, 454
DMA, 579
DMUX, 375

domino problems, 613
double layer of arguments, 71
double-ended queue, 242
doubly-linked list, 166, 177
drop, 80, 128
dynamic programming principle,
211
edge-detector, 474
edge-triggered, 530
effective address, 574
effort, 606
ellipsis convention, 300
empty list, 17, 30
encoder, 376
encoding, 328
energy function, 413
enqueue, 239
enumerate, 60
enumeration, 60
envelope, 430
environment, 21
equal, 108
equal lists, 17
equality operator, 19
equation, 60, 112
equational guard, 112
error-correcting code, 332
Euclid’s algorithm, 110
Euler’s method, 158
evolutionary development, 230
exclusive-or, 341
existential quantifier, 384
extends, 246
factorial, 133, 202
factorial program in Lisp, 318
fail, 97
Fast Fourier Transform, 121
Fibonacci function, 210, 559
Fibonacci sequence, 155
field, 54, 449
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file memory, 422
find, 81
find_index, 127
find_indices, 81
finite, 277
finite-state automata, 471
finite-state machine, 471, 610
foldl, 83, 85, 134
foldr, 83, 85, 134
forest, 38
fork, 586
formal polynomial, 52
fractal, 189
Fredkin automaton, 596
free variable, 68
full adder, 373
function, 58
functional expression, 67
fundamental list-dichotomy, 17,
100
Game of Life, 595
gather, 81
gcd, 110, 112
general recursive function, 219
generator, 481
getter, 230
glitch, 616
goal, 387
grammar, 284
graphical user interface, 162
grouping, 303
guarded rule, 110
Halmos, 276
Hamming distance, 334
handshaking, 575
hash function, 181
hash table, 181
hashing, 44, 180, 467
header, 174
heap, 456

heap invariant, 456
heterogeneous list, 22
hierarchical list, 26
higher-order function, 67
higher-order predicate, 79
histogram, 162
homogeneous, 16
Horner’s Rule, 117, 118
hypercube, 279, 334, 362
hypertext link, 39
identifier, 20
identity, 65
if, 149
if function, 341
iff, 341
image, 42
immutable, 260
implementation inheritance, 253
implementing finite-state
machines, 514
implies function, 342
imported, 68, 69
includes, 137
indefinite iteration, 129, 281
indeterminacy, 600
index, 44
index register, 573
indexed addressing, 573
indirect addressing, 572
induction rule, 101
inductive, 101
inductive argument, 102, 105
infinite, 277
infinite list, 151
Infinity, 60
inheritance, 245
in-order traversal, 179
insertion sort, 122, 453
instance, 230
instance variable, 231
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instanceof, 259
instruction fetch cycle, 565
instruction pointer, 407, 548
instruction register, 565
interface, 132
interface inheritance, 253
internal representation of lists, 32
Internet, 39
interpret, 565
interpretation, 379
interpreter, 547
interrupt, 578
interrupt mask register, 579
interrupt service routine, 578
interrupt vector, 578
intersection, 137, 537
irreducible, 101
is a, 252, 253
is_integer, 75
is_number, 75
ISC, 548
ISC internal structure, 567
ISCAL, 553
iterated consensus, 369
iterative deepening, 146
Java, 15
Karnaugh map, 358
keep, 80, 84, 128
key, 449
Kleene's Theorem, 506
knowledge base, 381
L’Hopital's Rule, 446
labeled binary tree, 178
labeled directed graph, 40
labeled-tree interpretation, 28
lambda calculus, 69, 219
language, 283, 481
last, 174
latch, 528
leaf, 26, 88

leafcount, 24
left recursion, 305
leftmost applicative-order, 148
length, 101, 171
length, 24
less_than_or_equal, 108
level-order, 179
lexicographic ordering, 63
LIFO, 232
limit rule, 446
linear addressing principle, 44,
180, 182, 560
link, 48
linked list, 165
Lisp, 15
list, 59, 67
list of functions, 69
loader, 548
locality, 605
loop, 154
loop invariant, 408
lower bound, 446
lower-bound, 609
machine language, 547
mailbox, 602
make_array, 86
map, 66, 67, 76, 84, 86, 116, 271,
591
mappend, 134
mapping, 66
maps to, 58
Markov algorithm, 219
match, 77
matrix, 40
maximal sub-cubes, 362
McCarthy's Transformation
Principle, 204
Mealy machine, 473
meaning of an expression, 313
member, 135
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memory address register, 565
memory data register, 565
memory hierarchy, 422
memory protection, 582
memory-mapped I/O, 561
merge sort, 124, 463
message, 603
message queue, 602
method, 228
MIDI, 481
MIMD, 597
minsort, 453
minterm, 348
minterm expansion principle, 349
mixed radix, 128
mod, 111, 114, 119
modulo, 111
modulo-2 addition, 332
Moore machine, 473
Morse code, 40
multiple-instruction, multiple-data,
597
multiplexor, 121, 354, 540
multiplication rule, 438
multiply, 128
multiprocessing, 587
multipy-by-two, 491
multi-stage interconnect, 604
mutual exclusion, 602
mutual recursion, 139
MUX, 540
nand, 342
n-ary, 62
natural number, 106, 151
new operator, 231, 235
nim, 92
nim sum, 93
non_zero, 108
non-deterministic, 191
non-deterministic transition, 498

non-terminal, 284
non-termination, 60
nor, 341
normal order, 149
normzalization, 243
NP, 615
N-queens problem, 393
n-tuples, 137
null, 11
number, 49
Number class, 260
numbering of functions, 340
numeral, 49
object, 227
Object class, 259
object-oriented programming, 52
oct-tree, 36
offset, 574
one-to-one, 59
open list, 14, 168
operating system, 185
or function, 341
ordered dictionary, 65
oriented directed graph, 40
overload, 62, 133
over-riding, 246, 247
page table, 183, 580
pages, 183
paging memory, 422
pairs, 70, 75, 161
parallel, 57
parallel assignment, 205
parallel composition, 537
parallel transfer, 539
parallelism, 585
parent, 586
parity bit, 332
parsing, 293
partial correctness, 407
partial function, 59, 65
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partial function computed by a
TM, 213
partial recursive function, 219, 280
partial_sums, 152
pattern, 97, 284
peg solitaire, 198
peripheral processors, 579
permutation, 406, 610
phrase-structure grammar, 219,
285, 290
pid, 586
pigeon-hole principle, 610
pipe, 588, 603
pipe composition, 153
pipeline, 72, 580, 591
pixel, 33
PLA, 350
pointer, 11, 32, 45
Polylist, 264
polymorphic, 76, 264
polynomial rule, 437
pop, 232
post-condition, 409
post-order traversal, 179
power, 210
power set, 135
precedence, 294, 303
pre-condition, 409
predecessor, 107, 187
predicate, 138, 379
predicate logic, 379
prefix, 62
pre-order traversal, 179
prime implicants, 362
primes, 153
primitive recursion, 280
principle of diagonalization, 611
principle of inductive definition,
275
principle of interning, 262

principle of locality, 183
principle of modularity, 229
principle of radix representation,
118
principle of virtual contiguity, 182,
251
priority queue, 239, 457
procedural interpretation, 386
procedure, 58
process, 586
process id, 586
production, 284
profiling, 426
program compaction principle, 208
program counter, 548
program variables, 202
programmable logic array, 350
Prolog, 15, 192, 381
Prolog programmers' manifesto,
392
proper subtraction, 107
proposition logic, 327
proposition logic satisfiability, 610
pseudo-operation, 554
push, 232
quad-tree, 33
quantifier, 79, 383
quantifiers over array indices, 405
queue, 140, 174, 239, 253
Quicksort, 134, 454
quoting, 287
R expression, 51
race condition, 600
radix principle, 120, 125, 450, 544
radix sort, 121, 125
range, 62, 115
raster encoding, 35
reachability matrix, 41
reachability relation, 190
reachable, 26
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read/write strobe, 576
read-only variable, 403
recognizer, 481
record, 54
recursion manifesto, 115
recursive, 101
recursive descent, 305, 388
recursive function theory, 106
recursive procedures, 557
recursive type definition, 167
reduce, 82, 83, 84, 134
reference, 45, 47, 165, 168, 171,
231
referential transparency, 57
register, 534
register machine (Shepherdson and
Sturgis), 219
register-indirect addressing, 548
regular expression, 284, 501
regular expression identities, 503
regular language, 504
release (ISCAL), 555
remove_duplicates, 62, 87, 127
representation invariant, 23
resource, 421
rest, 17
return-from-interrupt instruction,
579
reverse, 63
reverse Polish notation, 316
rewrite rule, 101
rex, 15, 19
Rice's theorem, 614
ring, 178
ripple-carry, 373
RISC, 547
root, 26
RPN, 316
Runge-Kutta, 162
Russian peasants’ principle, 121

S expression, 51, 77, 264
satisfy, 79
scaffolding, 284
scalability, 604
scale, 115
scope, 113
select, 127, 129
select_min, 123
selection sort, 123
selector, 354
self-scheduling, 588
self-similar system, 189
semantics, 290
semaphore, 601
semi-asynchronous, 576
sequence, 44
sequencer, 481
sequences as functions, 85
sequential behavior of AND-gate,
515
sequential binary adder, 522
serial transfer, 539
set, 22
set of all subsets of ω, 278
set selection, 80
setter, 230
shallow copying, 261
shared memory, 598
shift register, 539
short-circuit convention, 345
side effect, 57
SIMD, 592
single-instruction stream, multiple
data stream, 592
singly-linked list, 51
size, 328
small-integer interning, 262
Smalltalk, 228
sockets, 605
solfege, 65
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some, 84
SOP, 362
sort, 63, 87
sorting, 122, 449
special element, 60
specifying properties of a program,
397
speedup, 606
spreadsheet model, 321
square root, 211
stack, 174, 232
stack, 253
stand-alone convention, 342, 379
star operator, 287
start symbol, 284
state, 185
state transition, 390
static method, 231
static variable, 231
step-counting principle, 422
Stirling’s formula, 610
stone age, 106
stored-program computer, 547
straight-line programs, 423
stratifying, 295
stream parallelism, 588
strobe, 575
struct, 54, 449
structural induction, 399
structure sharing, 319
sub-class, 252
sub-cube, 282
substitution principle, 344
subsumption rule, 369
subtract, 107
sub-tree, 26
successor, 187
successor function, 106
suffix, 62
sum rule, 436

sum-of-product, 362
superpower, 109
switch statement, 560
switching logic, 327
symmetric transition relation, 188
synchronize, 602
synchronizer, 616
synchronous design, 519
syntax, 290
syntax diagram, 300
syntax-directed compiler, 314
tag, 151
tag system, 219
tail of a list, 45
tail-recursion, 132
target, 26
target set, 26
tautology, 343
Taylor’s series, 160
template, 97
terminal alphabet, 284
termination, 407
three-state buffer, 541, 565, 616
tight upper bound, 431, 447
total correctness, 407
transducer, 473
transition, 187
transition function, 212
transition induction, 401
transition relation, 187
transition rules, 193
transitive closure, 42, 102, 190
transitivity rule, 435
transparent latch, 530
transpose, 52, 78
trap, 579
traveling salesman problem, 610
traversal, 179
tree, 26
tree structuring principle, 456
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trie, 36, 467
truth value, 339
Turing machine, 211
Turing's thesis, 215
two-valued domain, 327
type, 22, 75
type name, 230
unbound, 21, 68
undefined, 59
undirected graph, 43
union, 135
unit, 82
unit delay machine, 492
universal combinational logic
synthesis, 347
universal quantifier, 384
universal Turing Machine, 214
UNIX, 72, 586
unlabeled-tree interpretation, 28
unordered array, 464
upper bound, 430
use (ISCAL), 555
valid, 381
verification condition, 408

virtual memory, 580
voxel, 40
wait state, 566, 576
water jugs puzzle, 199, 389
weakest liberal  precondition, 416
web browser, 39
window, 252
World-Wide Web, 39
worst-case, 430
wrapper, 174
wrapper, 259
xor, 341
yacc, 314
yields, 58
zig-zagging, 161
zip, 63
∀ , 384
∃ , 384
Ω, 609
λ transition, 498
µ operator, 281
ω, 276


