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Current Trends in Graz Brain–Computer Interface (BCI)
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A. Schlögl, B. Obermaier, and M. Pregenzer

Abstract—This paper describes a research approach to develop a
brain–computer interface (BCI) based on recognition of subject-specific
EEG patterns. EEG signals recorded from sensorimotor areas during
mental imagination of specific movements are classified on-line and
used e.g. for cursor control. In a number of on-line experiments, various
methods for EEG feature extraction and classification have been evaluated.

Index Terms—Adaptive autoregressive models, brain–computer inter-
face (BCI), common spatial patterns (CSP), electroencephalogram (EEG)
feedback, event-related desynchronization (ERD).

I. INTRODUCTION

The “Graz Brain–Computer Interface” (BCI) project is aimed at de-
veloping a technical system that can support communication possibil-
ities for patients with severe neuromuscular disabilities, who are in
particular need of gaining reliable control via nonmuscular devices.
This BCI system uses oscillatory electroencephalogram (EEG) signals,
recorded during specific mental activity, as input and provides a control
option by its output. The obtained output signals are presently evalu-
ated for different purposes, such as cursor control, selection of letters
or words, or control of prosthesis.

Between 1991 and 2000, the Graz BCI project moved through var-
ious stages of prototypes. In the first years, mainly EEG patterns during
willful limb movement were used for classification of single EEG trials
[1]–[4]. In these experiments, a cursor was moved e.g. to the left, right
or downwards, depending on planning of left hand, right hand or foot
movement. Extensive off-line analyses have shown that classification
accuracy improved, when the input features, such as electrode positions
and frequency bands, were optimized in each subject [5]. Apart from
studies in healthy volunteers, BCI experiments were also performed in
patients, e.g., with an amputated upper limb [6].

It was demonstrated that not only unilateral movement execution [7],
[8] but also movement imaging activates primary sensorimotor areas
[9], whereby generally a circumscribed “event-related desynchroniza-
tion” (ERD) is characteristic for the contralateral, and an “event-related
synchronization” (ERS) for the ipsilateral hemisphere (see Figs. 1 and
2). This fact is exploited by the Graz BCI system using left–right dif-
ferences in sensorimotor rhythms to provide a control option in one
dimension [10].

II. M ETHODS

A. EEG Feature Extraction

For the analysis of oscillatory EEG components, we investigated the
following preprocessing methods:
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Fig. 1. Grand average ERD curves recorded during motor imagery from
the left (C3) and right sensorimotor cortex (C4). The ERD time courses were
calculated for the selected bands in the alpha range for 16 subjects. Positive
and negative deflections, with respect to baseline (second 0.5 to 2.5), represent
a band power increase (ERS) and decrease (ERD), respectively. The gray
bar indicates the time period of cue presentation. Modified from Neuper and
Pfurtscheller [6].

Fig. 2. ERD maps for a single subject calculated for the cortical surface of a
realistic head model. The spline surface Laplacian method was applied to the
bandpass filtered (9–13 Hz) single-trial EEG data and the distribution of the
alpha band ERD was calculated for left and right motor imagery. The spline
Laplace maps are shown att = 625 ms after presentation of the cue (arrow in
left or right direction). Modified from Neuper and Pfurtscheller [6].

1) calculation of band power in predefined, subject-specific fre-
quency bands in intervals of 250 (500) ms [10];

2) adaptive autoregressive (AAR) parameters estimated for each it-
eration with the recursive least squares algorithm (RLS) [11];

3) calculation of common spatial filters (CSP) [12].
Band power at each electrode position is estimated by first digitally
bandpass filtering the data, squaring each sample and then averaging
over several consecutive samples. Before the band power method is
used for classification, first the reactive frequency bands must be se-
lected for each subject. This means that data from an initial experi-
ment without feedback are required. Based on these training data, the
most relevant frequency components can be determined by using the
distinction sensitive learning vector quantization (DSLVQ) algorithm
[5], [13]. This method uses a weighted distance function and adjusts
the influence of different input features (e.g., frequency components)
through supervised learning. When DSLVQ is applied to spectral com-
ponents of the EEG signals (e.g., in the range from 5 to 30 Hz), weight
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values of individual frequency components according to their relevance
for the classification task are obtained.

The AAR parameters, in contrast, are estimated from the EEG sig-
nals limited only by the cutoff frequencies, providing a description
of the whole EEG signal. Thus, an important advantage of the AAR
method is that noa priori information about the frequency bands is
necessary [14].

For both approaches, two closely spaced bipolar recordings from the
left and right sensorimotor cortex were used. In further studies, spatial
information from a dense array of electrodes located over central areas
was considered to improve the classification accuracy. For this purpose,
the CSP method was used to estimate spatial filters that reflect the spe-
cific activation of cortical areas during hand movement imagination
[15]. Each electrode is weighted according to their importance for the
classification. The method makes a decomposition of EEG data into
spatial patterns which are extracted from two populations (EEG data
during left and right movement imagination) and is based on simulta-
neous diagonalization of two covarinance matrices. The pattern max-
imizes the difference between left and right population and the only
information contained in these patterns is where the variance of the
EEG varies most when comparing two conditions. During on-line op-
eration the EEG data is filtered with the most important spatial patterns
and the variance of the time series is calculated for several consecutive
samples.

B. Classification Procedures

An important step toward real-time processing and feedback presen-
tation is the setup of a subject-specific classifier. For this, two different
approaches have been investigated in more detail:

i) neural network based classification, e.g. a learning vector quan-
tization (LVQ) [2];

ii) linear discriminant analysis (LDA) [16], [17].
LVQ was mainly applied to online experiments with delayed feedback
presentation. In these experiments, the input features were extracted
from a 1-s epoch of EEG recorded during motor imagery. The EEG
was filtered in one or two subject-specific frequency bands before cal-
culating four band power estimates, each representing a time interval of
250 ms, per EEG channel and frequency range. Based on these features,
the LVQ classifier derived a classification and a measure describing the
certainty of this classification, which in turn was provided to the sub-
ject as a feedback symbol at the end of each trial [10].

In experiments with continuous feedback based on either AAR pa-
rameter estimation or CSP’s, a linear discriminant classifier has usu-
ally been applied for on-line classification. The AAR parameters of
two EEG channels or the variance time series of the CSP’s are linearly
combined and a time-varying signed distance (TSD) function is cal-
culated [11], [14], [18]. With this method it is possible to indicate the
result and the certainty of classification, e.g., by a continuously moving
feedback bar.

The different methods of EEG preprocessing and classification have
been compared in extended on-line experiments and data analyzes [18],
[19]. These experiments were carried out using a newly developed BCI
system running in real-time under Windows with a 2, 8, or 64 channel
EEG amplifier [20]. The installation of this system, based on a rapid
prototyping environment, includes a software package that supports the
real-time implementation and testing of different EEG parameter esti-
mation and classification algorithms [18].

III. EXPERIMENTS

A. Experimental Task

All experiments are based on the same basic imagination paradigm
(training session without feedback): At the beginning of each trial (t =

0:0 s), a fixation cross appears at the center of a monitor. At 2.0 s a
short warning tone (“beep”) is delivered and at 3.0 s, an arrow pointing
either to the right or to the left (cue stimulus) is presented for 1.25 s
indicating the target side of this trial. The subject’s task is to imagine
a movement of the right or the left hand, depending on the direction of
the arrow. One experimental session consists of four experimental runs
of 40 trials, providing a total of 160 trials per session.

Further experimental sessions differ mainly with regard to the setup
and presentation of feedback. In experiments with delayed feedback,
the success of discrimination between imagination of left and right
hand movement is provided at the end of each trial (t = 6:0 s). In par-
ticular, feedback consists of 5 different symbols, indicating how well
the subject-specific classifier could recognize the selected EEG fea-
tures [10].

In the case of an experiment with continuous feedback, a horizontal
bar moving to the right or left boundary of the screen is shown for a
period of 4.0 s. The subject is instructed to imagine the experience of
moving the right hand, in order to extend the bar toward the right side.
Concentration on moving the left hand, in contrast, would extend the
bar to the left. The length of the bar directly corresponds to the linear
distance function obtained by online analysis [21].

B. Protocol

The basic idea of the Graz BCI is to train the computer to recog-
nize and classify certain subject-specific EEG patterns generated by
motor imagery. Based on training sessions without feedback, the ac-
quired data are applied off-line to the 1) bandpower, 2) recursive least
squares, or 3) common spatial filters (CSP) algorithms, to calculate
the appropriate coefficients for each iteration. In other words, a sub-
ject-specific classifier is created and then applied to provide feedback in
the following sessions. During these feedback sessions, the coefficients
are calculated and classified in real-time e.g. to show the feedback bar
on the screen. As soon as feedback is provided, however, changes of
the EEG patterns can be expected, that require again adaptation of clas-
sification methods. There is evidence from several experiments that it
is favorable to update the classifier after a few feedback sessions [2],
[14], [18], [19].

IV. RESULTS

A. Experiments with Delayed Feedback

Long-term experimental series, using feedback computed with the
bandpower and LVQ approach, were carried out with four subjects.
This type of feedback yielded to minimum on-line classification errors
of around 10, 13, 14, and 17% after several sessions [14].

B. Experiments with Continuous Feedback

In these experiments, the feedback horizontal bar was continuously
updated in real-time by using either the CSP or AAR together with
LDA approach. After 6 or 7 sessions with several updates of the weight
vectors, the lowest on-line errors for three subjects were 1.8, 6.8, and
12.5% for the CSP method [19] and, around 5, 9, and 9% for the AAR
method [18].

To compare the classification results obtained with different prepro-
cessing methods, namely, bandpower, RLS, and CSP algorithm, the
time courses of error rates were computed with a ten times 10-fold
cross validation of a linear discriminant. The ten times 10-fold cross
validation mixes the data set randomly and divides it into ten equally
sized disjunct partitions. Each partition is then used once for testing,
the other partitions are used for training. This results in ten different
error rates, which are averaged. This is the error rate of a 10-fold cross
validation. To further improve the estimate the procedure is repeated
ten times and again all error rates are averaged. Fig. 3 shows the error
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Fig. 3. Classification results for one representative subject and session
(consisting of 160 trials) and three different algorithms: (i) CSP, (ii) RLS, and
(iii) bandpower. The error rates were obtained with a 10 times 10 fold cross
validation of a linear discriminant. The cue stimulus (arrow in left or right
direction) was presented from second 3 to 4.25.

time courses for one experimental session of a trained subject. On-line
feedback was given with the CSP method. After cue presentation, the
error rate decreases significantly for all three algorithms. The lowest
error rate for the CSP method (1%) was observed at second 5.5, the
lowest error rate for the RLS (3%) at second 6 and for bandpower (6%)
at second 6.5. While the lowest error rate differs from subject to subject
the differences of the classification results of each method presented in
Fig. 3 can be basically seen in all investigated subjects.

V. DISCUSSION

Recent experiments were carried out to optimize the BCI training
procedure. Although a direct comparison of experiments with delayed
vs. continuous feedback is not possible, it appears that instantaneous
feedback information improves the left–right differentiation of EEG
patterns [6], [18], [19], [21]. It was shown recently that a visual target
stimulus as used in BCI experiments is able to modify sensorimotor
rhythms already about 250 ms after target-onset [22].

The classification results show that all methods used, 1) bandpower,
2) AAR, and 3) CSP, result in low classification error rates after some
sessions. At this time, the standard method used at our lab is AAR
parameter estimation with the RLS, combined with the LDA algorithm.
AAR models have the advantage that it is not necessary to specify the
reactive frequency band, as it is for the bandpower method.

The linear discriminant analysis has the advantage that, compared to
the LVQ, a smaller amount of training trials is needed to set up a suit-
able classifier for on-line experiments. Therefore, the next experiment
can be performed immediately after a session which was used to cal-
culate the classifier.

First investigations with the CSP method reveal promising results.
However, one has to consider that this method requires a larger number
of electrodes than the other procedures and that it shows some sensi-
tivity to the electrode montage. The CSP method might be an inter-
esting approach for special applications, as e.g. to process signals from
implanted electrode arrays.

An important feature of the new Graz-BCI is, that it is equipped with
a remote control that allows controlling the system over, e.g., an In-
ternet connection. That means a patient’s BCI system can be remotely
controlled and the classifier updated if necessary. Furthermore, EEG
data recorded during the training sessions at the patient’s home can be
transmitted and monitored by the BCI developer. At this time the Graz
BCI system consisting of a two-channel amplifier and a notebook are
used by a tetraplegic patient to control the opening and closing of a
hand orthosis. Imagination of feet movement produces a control signal

to close the hand and imagination of right hand movement causes an
opening of the hand orthosis. After 62 training sessions over a period
of five months the patient can perform the task with an accuracy of
about 90–100%. The system is installed in the patient’s home and re-
mote controlled from our lab over a distance of 50 km.
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The Effects of Self-Movement, Observation, and
Imagination on Rhythms and Readiness Potentials
(RP’s): Toward a Brain–Computer Interface (BCI)

J. A. Pineda, B. Z. Allison, and A. Vankov

Abstract—Current movement-based brain–computer interfaces (BCI’s)
utilize spontaneous electroencephalogram (EEG) rhythms associated with
movement, such as the rhythm, or responses time-locked to movements
that are averaged across multiple trials, such as the readiness potential
(RP), as control signals. In one study, we report that the rhythm is not
only modulated by the expression of self-generated movement but also by
the observation and imagination of movement. In another study, we show
that simultaneous self-generated multiple limb movements exhibit proper-
ties distinct from those of single limb movements. Identification and clas-
sification of these signals with pattern recognition techniques provides the
basis for the development of a practical BCI.

Index Terms—Electroencephalogram (EEG), mirror neurons, power
spectrum.

I. INTRODUCTION

The concept of a direct interface between the human brain and a
sophisticated artificial system, such as a computer, is not a new one.
In recent years, there have been advances in a number of fields that
make the design and development of a practical brain–computer in-
terface (BCI) possible. Such a BCI would be capable of quickly and
reliably extracting meaningful information from the human electroen-
cephalogram (EEG) or other recordable electrical potentials, such as
the electromyogram (EMG), electrocardiogram (EKG), etc. Over the
past decade, several working BCI systems have been described in the
literature [2], [3], [6]–[8]. These systems use a variety of data collec-
tion mechanisms, pattern recognition approaches, and interfaces, and
require different types of cognitive activity on the part of the user.

One type of BCI that has been examined extensively derives in-
formation from a user’s movements or the imagination of movement.
Many of thesemovement-based BCI’srecognize changes in the human
� rhythm, which is an EEG oscillation recorded in the 8–13 Hz range
from the central region of the scalp overlying the sensorimotor cortices
[4]. This rhythm is large when a subject is at rest, and is known to be
blocked or attenuated by self-generated movement. Indeed, the� wave
is hypothesized to represent an “idling” rhythm of motor cortex that is
interrupted when movement occurs. The free-running EEG shows char-
acteristic changes in�-activity, which are unique for the movement of
different limbs [9]. These findings have and will continue to be useful
in the construction of BCI systems.
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The performance of a movement is also generally accompanied by a
readiness potential (RP; also called Bereitshaftspotential or BP) which
is most prevalent over cortical motor areas. A similar response can be
elicited if the movement is imagined. The RP is a time-locked response
to the movement event, or event-related potential (ERP), that is ex-
tracted from the ongoing EEG using signal averaging techniques across
a number of trials.

The primary goal of the two studies we report was to characterize�

and RP signals in simple, straightforward tasks. The recognition and
discrimination of these signals could then provide a basis for the de-
velopment of a practical BCI, one that would be useful to both normal
and disabled individuals.

II. STUDY 1

In this study, we show that the� rhythm is significantly attenuated
by self-generated movement. Furthermore, some attenuation occurs
when a subjectobservesthe movement orimaginesmaking the same,
self-generated movement. According to Rizzolatti and colleagues, the
responsiveness of the�wave to visual input may be the human electro-
physiologic analog of a population of neurons in area F5 of the monkey
premotor cortex [1], [5]. These mirror neurons respond both when the
monkey performs an action and when the monkey observes a similar
action made by another monkey or by an experimenter. Other studies
have reported that mu-like waves are blocked by thinking about moving
[10]. The blocking of the� rhythm by visual and imagery input may
have implications for understanding movement-related responses and
for the rehabilitation of movement-related neurological conditions.

III. M ETHODS

Subjects in this study were 17 healthy volunteers (ten men, seven
women, ranging in age between 19–58, with a mean of 27.7 years).
Most subjects were students or employees at the University of Cali-
fornia, San Diego (UCSD) and naive to the purposes of the experiment.
Only ten subjects were used for statistical analysis because of problems
with noise, such as movement artifact or too much blinking. All sub-
jects signed a consent form that was approved by the UCSD Human
Subjects IRB committee.

EEG signals were recorded from 6 sites on an electrode cap placed
over frontal (F3, F4), central (C3, C4), and occipital (O1, O2) areas
according to the standard 10–20 International Electrode Placement
System. Blinks and eye movements were monitored with an electrode
in the bony orbit dorsolateral to the right eye. Trials contaminated
with eye movement artifact were rejected and not included in the
averages. EEG was amplified by a Grass model 7D polygraph using
7P5B preamplifiers with bandpass of 1–35 Hz. For computerized
data collection and analysis, the ADAPT (©Vankov, 1997) scientific
software was used. EEG was digitized online for two minutes during
each condition at a sampling rate of 256 Hz. All electrode sites showed
impedance of less than 5 k
.

Subjects participated in four conditions:

1) rest: in which subjects sat in a comfortable chair inside an
acoustic chamber, but no particular task was required;

2) self-generated movement:subjects were asked to move their
opposing thumb to middle fingers of the right hand (making a
“duck” movement);

3) observation:subjects watched a confederate of the experimenter
perform the “duck” movement;
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