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Detection of Characteristic Waves of Sleep EEG by
Neural Network Analysis

Takamasa Shimada*, Tsuyoshi Shiina, Member, IEEE, and Yoichi Saito

Abstract—In psychiatry, the sleep stage is one of the most impor-
tant evidence for diagnosing mental disease. However, doctors re-
quire much labor and skill for diagnosis, so a quantitative and ob-
jective method is required for more accurate diagnosis since it de-
pends on the doctor’s experience. For this reason, an automatic di-
agnosis system must be developed. In this paper, we propose a new
type of neural network (NN) model referred to as a sleep electroen-
cephalogram (EEG) recognition neural network (SRNN) which en-
ables us to detect several kinds of important characteristic waves
in sleep EEG which are necessary for diagnosing sleep stages. Ex-
perimental results indicate that the proposed NN model was much
more capable than other conventional methods for detecting char-
acteristic waves.

Index Terms—Charachteristic wave, EEG, neural network,
sleep stage.

I. ITRODUCTION

I N PSYCHIATRY, sleep staging is one of the most important
means for diagnosis. The sleep staging of electroencephalo-

gram (EEG), however, is liable to be subjective since it depends
on the doctor’s skill and requires much labor. An automatic di-
agnosis system must, therefore, be developed to reduce doctor’s
labor and realize quantitative diagnosis of sleep EEG.

For sleep staging by EEG analysis, it is especially important
to detect the characteristic waves from EEG. Most conventional
methods of diagnosing the sleep stage, however, use long-term
spectrum analysis [5], [6]. Such analysis is unable to detect tran-
sient and isolated characteristic waves such a hump wave from
sleep EEG accurately. As a result, it is not possible to precisely
diagnose the sleep stage based on characteristic waves as doc-
tors do, though a roughly diagnosis is possible.

Moreover, some methods are based on a kind of template
matching. This makes it difficult to cope with the large varia-
tion of EEG, such as fluctuations of the frequency pattern and
the differences between individuals. The method of detecting
the characteristic waves in EEG must, therefore, be able to rec-
ognize the time transient of the frequency pattern and be robust
to variation of patterns.

Manuscript received July 3, 1998; revised September 2, 1999.Asterisk indi-
cates corresponding author.

*T. Shimada is with the Applied Superconductivity Research Laboratory,
Tokyo Denki University 2-1200 Muzai-Gakuendai, Inzai-shi, Chiba 270-1382,
Japan (e-mail: shimada@asrl.dendai.ac.jp).

T. Shiina is with the Institute of Information Sciences and Electronics, Uni-
versity of Tsukuba 1-1-1 Tennoudai, Tsukuba-City, Ibaraki 305-8573, Japan.

Y. Saito is with the Research Institute for EEG Analysis 1-9-1-101 Nakasato,
Kitaku, Tokyo 114-0015, Japan.

Publisher Item Identifier S 0018-9294(00)01774-2.

Recently, neural networks (NN’s) have been applied to var-
ious kinds of problems in many fields due to their ability to ana-
lyze complicated systems without accurate modeling in advance
[4]. In this paper, we propose a new type of NN model to detect
several kinds of important characteristic waves in sleep EEG
that are needed to diagnose sleep stages (e.g., sleep spindle,
hump, and slow wave). We also compare our proposed method
with other methods (two types of conventional NN models and
the likelihood ratio method). Consequently, we show that our
system can attain higher performance in detecting characteristic
waves than these other methods.

II. DETECTION METHOD BY NEURAL NETWORKS

A. SRNN Architecture

Some characteristic waves in sleep EEG which are clues to
diagnosis of sleep stage are short-term and appear sporadically
in the background waves. A method for detecting them must,
therefore, be able to take a large view of the EEG and recognize
whether the characteristic waves are isolated or not. However,
most conventional techniques for diagnosing the sleep stage
are based on long-term spectral analysis and consequently not
suited for detecting such transient and isolated characteristic
waves.

We propose a new type NN model called SRNN for detecting
transient characteristic waves in EEG based on the recognition
of the two-dimensional (2-D) time-frequency pattern of char-
acteristic waves. SRNN’s architecture recognizes the sporadic
properties of transient waves and performs shift-invariant pro-
cessing. In other words, it detects transient waves regardless of
where they appear within the input data window as shown in
Fig. 1.

The time-delay neural network (TDNN) proposed by Waibel
et al. [3] to detect the phoneme is a well-known NN, which has
the shift-invariant function. It was shown that TDNN could be
applicable if the position of the wavelet on the time axis could
be roughly estimated. In other words, the deviation in location
had to be small compared with the wavelet duration just like in
detection of phoneme. However, for EEG, a shift larger than the
wavelet duration must be compensated since we are unable to
predict where characteristic waves appear within the input data
window in advance.

To recognize the time-shifted pattern, SRNN has the
following structure. First, time sequences of EEG data are
transformed to a 2-D time-frequency data matrix where the
ordinate is frequency and the abscissa is time.
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Fig. 1. SRNN architecture. This architecture recognizes the sporadic
properties of transient waves and performs shift-invariant processing.

The reason why we applied the wide 2-D time-frequency
matrix for input data instead of sliding the short window is that
EEG includes some sporadic characteristic waves which are
similar to background waves in short term spectrum. Therefore
discrimination of the sporadic waves from background waves
requires comparing the duration of spectrum pattern in the
wide time window. In addition, the processing with the sliding
window of the width corresponding to the detected waves
is considerably time consuming, as a result, it is not proper
especially for sleep EEG analysis due to its large amount of
data (about 6–8 h).

Each element of the input data matrix is presented to the
corresponding cell of the input layer. All input layer cells are
covered with twenty-one unit. Each unit is composed of three
successive column vectors of input layer cell and is arrayed to
overlap the adjacent one by two column vectors (see Fig. 1).
(Each unit is connected with the column vector of the first
hidden layer. The values of the connection weights are made
equal for every unit to attain the shift-invariant detection of
transient waves.)

Five successive column vectors of the first hidden layer sim-
ilarly compose units and are connected with a column of the
second hidden layer in order to integrate the information on a
lower layer over a large time range. The pattern of the connec-
tion weight is the same for every unit. All cells of the second
hidden layer are connected with all three cells of the output

layer, though the weights of connection are restricted. In other
words, the pattern of weights connected with a neuron of output
layer is made the same for every column of the second hidden
layer.

SRNN is similar to TDNN with regard to the connection from
the input layer to the second hidden layer. In TDNN, however,
each row vector of the second hidden layer is connected with
a single cell of the output layer, while in SRNN all cells of the
two layers are connected. Another difference between SRNN
and TDNN is that SRNN has an expanded area from the input
layer to the second hidden layer in order to prevent sensitivity
to the input data from becoming less at the edge of both sides
than the center of the input layer because of lower density of
connection at the edge. Let us consider architecture without the
expanded region. If a unit is composed of columns in the
input layer, then the data at the edge column of the first unit is
transferred to the first hidden layer only once and that of second
column from the edge is transferred twice. The number of con-
nections between columns of the input layer and the upper layer
increases to Similar nonuniformity of connection density
occurs for connections between the first and the second hidden
layers. To make the connection density uniform, each layer from
the input layer to the second hidden layer is expanded along time
axis as shown in Fig. 1. For example, if the input layer and the
first hidden layer are composed of and column vectors,

columns must be added to both sides of the input
layer and the two hidden layers. Moreover, zero values are em-
bedded at expanded area of input layer where is covered by first
hidden layer units and processed as nonsignal area. Even if the
first hidden layer unit covers only expanded area of input layer,
the output value of neuron is not zero because of the threshold
value of neuron. By this method, the data at the edge column is
transferred to both expanded and nonexpanded area and it solves
the nonuniformity problem of connection density between edge
and center.

In the processing described later, as we showed in Fig. 1, the
input layer is composed of a 12-row, 23-column matrix. A unit
of the input layer consists of three columns. The first hidden
layer is composed of six rows and 21 columns, and its unit con-
sists of five columns. The second hidden layer is composed of
six rows and 17 columns. The back-propagation algorithm was
applied in the learning procedure.

B. Detection with NN

As described earlier, SRNN must recognize a 2-D time-fre-
quency pattern of characteristic waves. Input data then forms a
2-D matrix; the horizontal axis indicates time, and vertical axis,
frequency.

The training or tutorial data for the learning process is
generated as follows. First, the EEG data is sampled (at the
rate of 200 Hz) with a 0.64-s (128-point) hamming window.
Its logarithmic power spectrum coefficients are calculated
by fast Fourier transform (FFT) and 12 coefficients of lower
frequency are normalized by (1) and (2), and used for input
data. Generally, most of power spectrum of characteristic waves
detected later (spindle, hump, and alpha wave) are included in
this spectrum range (from zero to 18.2 Hz). And we applied the
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normalizing with range of which covers 90% of amplitude
of Gaussian distribution to attain the stable detection rate by
rejecting noise with large magnitude which is often included
in EEG

Hz

(1)

(2)

Where is the logarithmic power spectrum coefficient,
and and are the mean and standard deviation of all loga-
rithmic spectrum data over whole training data, respectively.

One data matrix consists of 11 logarithmic spectrum data sets
so that the time duration of one matrix corresponds to 3.84 s and
the frequency ranges from 0 Hz to 17.2 Hz. The EEG data is
processed by shifting the input data window or the input layer
by a half size of the window, i.e., 1.29 s.

As a similar work, Eberhardet al.detected the epileptic spike
detection by using raw EEG data as an input of the network [8].
The epileptic spike is characterized as much narrower waveform
than background wave and is easy to detect base on the time
structure of the wave. However, characteristic wave of sleep
EEG, especially humps, has more various waveform with longer
duration than the epileptic spike. Therefore, in order to extract
the common feature of the characteristic waves independent of
the variation, spectral parameter is more desirable than time se-
quence pattern, which is too sensitive to the detail of the wave-
form.

We used the following five types of characteristic waves;

1) spindle;
2) hump;
3) alpha wave;
4) hump train (continuous hump);
5) background wave.

Fig. 2 [mibel11] shows the 2-D time-frequency pattern of five
characteristic waves. It should be noted that the hump train does
not exist in the real EEG and was produced to make SRNN
learn the sporadic properties of humps. The short-term spec-
tral pattern of background waves resembles that of humps so
that sporadic properties of humps are used to discriminate them
from background. That is why the hump trains were generated
by combining many humps. Using these training data, all con-
nection weights are adjusted so as to decrease the error by the
back-propagation learning procedure based on the gradient de-
cent method (3) and (4) [1], [2]

(3)

(4)

where and represent the output and desired output of
the th output neuron for the input patternParameterε rep-
resents the velocity coefficient of convergence of NN learning.

The procedure performs two passes through the network. One is
the forward pass, and another is backward pass. In forward pass,
when an input pattern is applied to input layer, the output values
are calculated through the connection weights. In the backward
pass, the output values are compared with the desired output
values and its error is calculated [(3)]. This error is back propa-
gated through the network and the connection weight is changed
by gradient descent of the mean squared error as a function of
weights (between neuronand changed by

The NN is trained so that the corresponding output neuron
fires when a spindle, hump or alpha wave is applied to the input
layer; output neurons do not fire when a hump-train or back-
ground wave is inputted.

In this paper, data for three persons (A, B, and C) was ana-
lyzed. The data includes wake stage, stage 1, and stage 2. And
its total time is about 10 min. The training data was devel-
oped based on subject A’s data, and it includes ten spindles,
134 humps, 14 alpha waves, 49 hump trains, and 66 background
waves.

Training was repeated many times for all the training data
until the network weights converge so as to produce the desired
output. Fig. 3 shows the time transient curve of the squared
error during SRNN’s training. The error converged after 24 000
iterations, taking 5 h on personal computer. We should note,
however, that this amount of computation is required only
for training, not for recognition. Once the training procedure
is completed, the recognition procedure can be executed in
a few minutes for 1 h of EEG data. It is also clear that we
can implement the training procedure much faster by using a
high-performance workstation.

The examined EEG data was similarly sampled using the
window and transformed to the input data matrix. The input data
windows are shifted, and the characteristic waves corresponding
to the neuron are regarded to be detected at each position where
the fire level of an output neuron exceeds a threshold.

C. Comparison of Performances with Other Methods

The performance of SRNN in detecting characteristic waves
of EEG was evaluated by comparison with the other methods
[i.e., TDNN, the all connecting neural network (ACNN), and
the likelihood ratio method based on AR coefficient (LRM)].

TDNN and ACNN were selected as the methods using NN’s.
As mentioned above, TDNN has been developed to detect
phoneme, and its architecture is similar to SRNN. As shown
in Fig. 4, the TDNN used here consists of an input layer with
12 rows and 11 columns, the first hidden layer with 17 rows
and nine columns, the second hidden layer with three rows and
five columns and the output layer with three neurons. Three
columns of the input layer are connected with a column of the
first hidden layer, and five columns of the first hidden layer are
connected with a column of the second hidden layer. Each row
is connected with one of the output neurons.

The ACNN has the most general architecture of back-prop-
agation-based NN’s and its connection weights are not con-
strained like SRNN or TDNN as shown in Fig. 5. It has six cells
in the first hidden layer and ten cells in the second hidden layer.
The numbers of neuron cells of these NN’s are adjusted to be
approximately equal.
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Fig. 2. Waveform and input data matrix of characteristic waves used. The EEG data is sampled (at the rate of 200 Hz) with a 0.64-s (128-point) hamming window.
Its logarithmic power spectrum coefficients are calculated by FFT and 12 coefficients of lower frequency are normalized by (1) and (2).

The LRM was selected as a typical template matching
method. The template for characteristic waves was obtained by
averaging each kind of wave in the training data. The likelihood
ratio between the template signal and the examined EEG
data defined by (5) was calculated

(5)

where represents the optimum autoregressive (AR) model;
the linear prediction coefficients; and the auto correla-

tion vector of the template signal. and represent those
parameters for the examined EEG data.

is equal to zero when the examined data coincides exactly
with the template. Therefore, for a given template, the examined
data is detected as the characteristic wave corresponding to the
template when is less than a threshold value.

Three templates for the following characteristic waves were
adopted:

Fig. 3. SRNN output error versus number of learning iterations.

1) spindle;
2) hump;
3) alpha wave.

The duration of the examined EEG data is set at 3.84 s (768
points) which is equal to the case of NN’s for the comparison.
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Fig. 4. TDNN architecture that has been developed to detect phoneme.

The order for AR coefficients was chosen as eight in the exper-
iment since results with orders other than eight made no differ-
ence.

III. RESULTS

We applied SRNN, ACNN, TDNN, and the likelihood ratio
method to the examined EEG data of three subjects, A, B, and
C as described in Table I and detected three types of character-
istic waves (spindle, hump, and alpha wave). Data points for the
subjects are shown in Table II (sample rate is 200 Hz).

The averaged detection rates for open experiments and closed
experiments are shown in Fig. 6(a) and (b). An open experiment
means that the learning data does not include the examined data,
a closed experiment does. The detection rate is defined as shown
in (6) found at the bottom of the page.

Next, we tried to test the significance of the difference be-
tween these results. We applied the null hypothesis that the av-
eraged detection rates of SRNN, TDNN, ACNN, and likelihood
ratio method make no difference, and tested with a significance
level of 5%. Table III shows the results of the test. If the null
hypothesis was rejected, an × was entered in the corresponding
position. Fig. 6 and Table III indicate that the SRNN detection
rate is significantly higher than that of other methods for most
cases.

Fig. 5. ACNN architecture. This architecture is the most general of
back-propagation-based NN’s and its connection weights are not constrained
like SRNN or TDNN.

TABLE I
CONDITIONS OF SUBJECTS PROVIDING EEG

DATA USED IN EXPERIMENTS

TABLE II
DATA POINTS FOR THESUBJECTS

IV. I NTEGRATION OFMULTICHANNEL INFORMATION

Medical doctors usually use multichannel EEG sequences
measured at different portions on the scalp to improve the de-
tection rate by integrating global information on characteristic
waves. Therefore, we tried to use the integrated multichannel
information to detect characteristic waves.

Detection rate
The number of correctly detected matrices

The number of matrices which includes the objective characteristic wave
(6)
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(a)

(b)

Fig. 6. Comparison of detection rate of several methods with (a) opened and
(b) closed experiments.

Output neurons often misfire due to low amplitude of char-
acteristic waves, overlapping of large background waves, and
so on. The integration of the multichannel information should
compensate for the output of misfired channels.

In our experiment, we used eight channels (Fp1, Fp2, C3, C4,
P3, P4, O1, and O2) based on a ten-twenty electrode system.

To integrate multichannel information, we employed a simple
summation of the output signal at each channel by SRNN as de-
scribed by (7). This meansOR-like operation. Next, the summa-
tion was used to obtain the final detection

(7)

where is the output of each channel, is a sigmoid func-
tion and is the threshold. Fig. 7(a) shows the results of de-
tecting humps by integrating multichannel data compared with
single-channel processing. It can be seen that in spite of the very
simple processing or summation of output at each channel, the
result designated by "all" in Fig. 7(a) realized the maximum de-
tection rate. This apparently indicates that multichannel anal-
ysis improves the detection rate by compensating for the channel
with misfire.

In contrast, the result of multichannel processing similarly ap-
plied to LRM did not achieve the highest performance as shown
in Fig. 7(b).

We may explain the difference of performance between
SRNN and LRM by considering whether the decision process
is nonlinear or not. Table IV shows the ratio of the mean firing
level of output neurons for humps compared to that for other

TABLE III
TEST OFSIGNIFICANCE OF DIFFERENCE INDETECTION RATE

patterns. It can be seen that the SRNN firing level is much
higher than that of LRM since the nonlinear SRNN system
outputs a sufficient level for the definite existence of the target
wavelet and suppresses the output for ambiguous cases. As a
result, a channel with an ambiguous fire (fired value is near
zero) affects the integrated output less. The LRM firing level
is produced by significantly linear system. Consequently, the
output level can not be neglected for an ambiguous fire, and
influences the integrated values.

V. DISCUSSION

The above results indicate that all three NN’s attained high
detection rates for alpha waves, for humps, however, the SRNN
result was better than others. It is reasonable to believe that these
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(a)

(b)

Fig. 7. Comparison of the effect of multichannel processing on detecting
humps between (a) SRNN detection rate and (b) LRM detection rate.

TABLE IV
RATIO OF MEAN FIRING LEVEL FOR HUMPS AND THAT FOR OTHER

WAVE PATTERNS

Fig. 8. Stability of output neuron’s quantity of fire of SRNN, TDNN, and
ACNN. These results indicate that the fire level in SRNN is more stable than
that in TDNN or ACNN.

results were due to the difference in abilities to detect shorter
wavelets compared with the size of the input data window.

To detect short-duration wavelets like humps, NN’s require
two kinds of ability. One is the time-shift-invariant detection
because the location characteristic waves appear within the
input matrix is not known in advance. The other is the ability to
recognize the sporadic properties of characteristic waves since
the local spectrum properties are not enough to distinguish
the wavelets from a background wave whose local spectrum
pattern is similar.

SRNN also attained high performance for long-duration wave
such as spindles, but the detection rates of LRM are much lower.

In the following, we investigate these aspects in detail.

Fig. 9. Input patterns forXOR-like operation.

A. Shift-Invariant Function

To detect short-duration characteristic waves, an NN must
have a time-shift-invariant function, i.e., the ability to detect
wavelets uniformly regardless of their appearance location
within the input window.

For TDNN, although it has a time-delay structure similar to
that of SRNN, the number of operations at the edge of each
layer is smaller than at the center, so detection sensitivity is not
uniform.

ACNN does not have a time-delay structure like the other two
NN’s. Therefore, to learn the properties of characteristic waves
uniformly, the training data must be uniformly presented to the
input layer, but this is not easy in practice.

We next examined whether SRNN, TDNN, and ACNN can
learn EEG patterns uniformly, regardless of the location of the
characteristic waves within the input layer, by detecting the
hump while shifting it gradually (23 steps) from left to right
in the input data window. Signals other than humps within
the window were filled with the background waves observed
typically at sleep stage II. As we show in Fig. 8, the experiment
results indicate that the fire level in SRNN is more stable than
that in TDNN or ACNN. The TDNN firing level has a peak at
the center of the input data window and becomes lower at the
edge. The ACNN firing level has a large variation all over the
input data window. In contrast, the SRNN firing level is almost
constant regardless of the hump’s position, which means that
SRNN can recognize short characteristic waves uniformly, and
can, consequently, achieve their time-shift-invariant detection
within the input data window.

B. Recognition of the Isolation of Characteristic Waves

Let us consider another reason why as shown in Fig. 6 the
SRNN has a much better detection rate for hump waves than
TDNN, even though both have a time-delay structure and both
had sufficiently high detection rates for alpha waves. If we rep-
resent humps as “1” and background wave as "0," the ideal
output must be as follows: when "1" is input to at least one
unit of the input layer, the output must indicate the detection of
humps. However, when "1" is input to some of adjacent units,
the firing of output cells for humps must be suppressed because



376 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 3, MARCH 2000

(a)

(b)

(c)

Fig. 10. Output error versus number of learning iterations for (a)AND, (b)
OR, and (c)XOR operations by TDNN and SRNN. ForXOR operations, SRNN
converged after 400 iterations, but TDNN did not converge even after 1500
iterations as shown in (c).

humps are sporadic and not trained, though their spectral com-
ponents are similar to those of other types of long-duration char-
acteristic waves such as slow waves and background waves. One
may then say that these processes for detecting isolated charac-
teristic waves like humps correspond to anXOR-like operation.
This hypothesis makes it possible to understand that the two
NN’s differ in capacity forXOR-like operation, which is nec-
essary to recognize the sporadic properties or the isolation of
humps.

NN’s require three sufficiently connected layers to implement
an XOR operation [4]. However, as mentioned in Section II-C,
TDNN has a more constrained connection than SRNN between
the second hidden layer and the output layer. SRNN has an
all-connection structure with the same value along the hori-
zontal direction. In contrast, the TDNN output is connected
to a specific row of the second hidden layer. From this view-
point, SRNN may be expected to be superior to TDNN inXOR

operation.

(a)

(b)

Fig. 11. XOR decision regions implemented by (a) SRNN and (b) TDNN. It can
be seen that theXOR decision region of SRNN is correct while that of TDNN is
not.

To confirm this, we used a simple model of input data in
which a column vector is regarded as the
spectral pattern of the hump and is regarded
as the spectral pattern of the background wave in the input data
matrix. The symbol in the upper left of Fig. 9 means that
the input data matrix is filled with zeros, which correspond to
the background waves. Consequently, the output should be "0"
as shown on the right. In the second and third figures from the
top, and mean that one of the two adjacent columns
is which corresponds to the input of the hump in each po-
sition as shown in the center. The output "1" is then expected.
The bottom corresponds to the hump train described in
Section II. If theXOR-like operation is implemented correctly,
the output neuron becomes "1" only when the input pattern is

or In practice, these patterns were gradually shifted
within the input matrix from left to right.

These input patterns were input as training data to both SRNN
and TDNN to evaluate their performance forAND, OR, andXOR

operations.
Fig. 10 shows the results. The abscissa is the number of

learning iterations, and the ordinate is the squared error of
output. As shown in Fig. 10(a) and Fig. 10(b), both SRNN
and TDNN converged after 300 iterations forAND and OR

operations. ForXOR operations, SRNN converged after 400 it-
erations, but TDNN did not converge even after 1500 iterations
as shown in Fig. 10(c). Fig. 11 shows the decision regions of
XOR operations implemented by SRNN and TDNN. It can be
seen that theXOR decision region of SRNN is correct while
that of TDNN is not. This indicates that SRNN has much more
capacity forXOR-like operation.
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Fig. 12. Input, output, and firing patterns of each layer.

Finally, we examined the connection weights of SRNN in de-
tail. Fig. 12 shows the pattern of the input data matrix, and the
corresponding output and firing pattern of each layer for humps,
hump train, and background wave.

It can be seen that neurons on the second row of the first
hidden layer fire for both the hump and the hump train. This
reveals that the second row of neurons corresponds to the spec-
trum band of the hump but is insufficient for recognizing the
isolation of characteristic waves. As shown in Fig. 12(c), neu-
rons on the top row of the second hidden layer fire for both the
hump and the hump train, while neurons on the second row fire
only for the hump train. We can see from these results that neu-
rons on the top row of the second hidden layer perform anOR

operation and those on the second row perform anAND oper-
ation on the spectrum pattern of humps appearing in the first
hidden layer. Generally,XOR operation is defined as

(A XOR B (A OR B) (A AND B) (8)

According to (8), the connection weights between theOR

output of the second hidden layer and the output layer should
be positive forXOR operation and while that between theAND

output and the output layer should be negative. Practical con-
nection weights between the second hidden and the output layer
for humps are shown in Fig. 13 where area of boxes is propor-
tional to amplitude of connection weights and black boxes rep-
resent positive values and white boxes negative. These could
ensure implementation ofXOR-like operations in SRNN. Con-
sequently, the output neurons of humps fire only when humps
are input to the input layer, and SRNN could recognize these
patterns correctly. The value of the top box in Fig. 13(b) is pos-
itive and corresponds toOR, while the second box is negative
and corresponds toAND.

Fig. 13. Connection weights between second hidden layer and output layer;
Area of boxes is proportional to amplitude of connection weights. Black and
white boxes represent positive and negative values, respectively. These could
ensure implementation ofXOR-like operations in SRNN.

C. Influence of the Characteristic Wave Duration

Fig. 7 shows that the LRM detection rates are considerably
lower than those of SRNN, even for spindle and alpha waves
whose durations are longer than humps. One explanation for
these results may be that the performance of LRM for detecting
long-duration characteristic waves depends on how much the
window is occupied by a part of the characteristic wave. We
examined this point by using the spindle model (burst waves of
14 Hz having various time durations and embedded in random
signals as background waves).

Fig. 14 shows the simulation results. The abscissa indicates
the ratio, , at which the window is occupied by the spindle,
and the ordinate is the likelihood ratio. The top figure illustrates
waveform within the input window and waveform in the right
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Fig. 14. Comparison of influence of characteristic wave duration between
LRM and SRNN. These results indicate that the SRNN output is almost
independent of the ratio� and produces a constant level except for the range
of very small ratios.

side corresponds to a template of LRM. This figure shows that
as becomes lower, the difference between the template and
objective wave becomes larger; consequently, the likelihood be-
comes higher. This prevents LRM from identifying identical two
waves with differing positions in the window.

In contrast, Fig. 14(b) indicates that the SRNN output is al-
most independent of the ratio and produces a constant level ex-
cept for the range of very small ratios.

Generally, a template matching method like LRM is not
suited for detecting patterns with large variance, and in the
above case such a variance is caused by a time shift of the
wavelet in the input matrix.

VI. CONCLUSION

We proposed the SRNN for detecting the characteristic waves
of sleep EEG and evaluated its performance by experiment.

Comparison of SRNN to three other methods, ACNN,
TDNN, and LRM, revealed that a better detection rate was
attained by using SRNN to detect characteristic waves re-
gardless of the duration of wavelets. We also tried to use the
multichannel information of the SRNN output, and showed that

by integrating the output of each channel a higher detection
rate was attained than by selecting a particular channel since
the correct output compensates for the nondetected channels.

We confirmed that SRNN has a higher detection rate than
other methods and investigated the reasons. We illustrated that
SRNN could learn EEG patterns uniformly regardless of the lo-
cation in the input layer by means of a time-delay structure in
which the input layer and hidden layer are composed of many
arrayed units and governed by the same connection weights. An-
other reason SRNN could learn EEG patterns is its capability to
recognize properties of the isolation. This capability is imple-
mented by anXOR-like operation. By examining the SRNN con-
nection weights, we confirmed that the SRNN structure could
executeXOR operations and, consequently, has sufficient ca-
pacity for recognizing the sporadic characteristics.

Finally, it was shown that SRNN was less influenced than
LRM by the duration of the characteristic wave. As a result,
higher detection rate was attained by SRNN even for long-du-
ration characteristic waves.

For future study, the proper size of the NN, the input data
normalizing method and so on must be investigated. Moreover,
we are now trying to apply SRNN to classifying sleep stages
based on EEG data.
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