IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 3, MARCH 2000 369

Detection of Characteristic Waves of Sleep EEG by
Neural Network Analysis

Takamasa Shimada*, Tsuyoshi Shiindember, IEEEand Yoichi Saito

Abstract—n psychiatry, the sleep stage is one of the mostimpor-  Recently, neural networks (NN’s) have been applied to var-
tant evidence for diagnosing mental disease. However, doctors re-jous kinds of problems in many fields due to their ability to ana-

quire much labor and skill for diagnosis, so a quantitative and ob- 76 complicated systems without accurate modeling in advance
jective method is required for more accurate diagnosis since it de-

pends on the doctor’s experience. For this reason, an automatic di- [4]. In thIS. paper, We propose a new tYp? of NN mF’de' to detect
agnosis system must be deve|0ped_ In this paper, we propose a nev\ﬁeveral k|ndS Of |mp0rtant ChaI’aCterIStIC waves In S|eep EEG
type of neural network (NN) model referred to as a sleep electroen- that are needed to diagnose sleep stages (e.g., sleep spindle,
cephalogram (EEG) recognition neural network (SRNN) whichen-  hump, and slow wave). We also compare our proposed method

ables us to deteqt several kinds of impqrtant c.haracteristic waves i other methods (two types of conventional NN models and
in sleep EEG which are necessary for diagnosing sleep stages. Ex-

perimental results indicate that the proposed NN model was much the likelihood ra}tlo .method). Consequ_ently, W? show that C?Uf,
more capable than other conventional methods for detecting char- SyStem can attain higher performance in detecting characteristic
acteristic waves. waves than these other methods.

Index Terms—Charachteristic wave, EEG, neural network,

sleep stage. 1. DETECTION METHOD BY NEURAL NETWORKS

A. SRNN Architecture
. ITRODUCTION

- . Some characteristic waves in sleep EEG which are clues to
N PSYCHIA.TRY’ sl_eep staging Is one of the mostimporta iagnosis of sleep stage are short-term and appear sporadically
means for diagnosis. The sleep staging of electroenceph

the background waves. A method for detecting them must,

gram (EEG), ,howgver, IS I|ablg to be subjective since it depenﬁlﬁérefore, be able to take a large view of the EEG and recognize
on the doctor’s skill and requires much labor. An automatic %

. vhether the characteristic waves are isolated or not. However,
agnosis SySteF“ must, thergfore_, be de.veloped to reduce doct t conventional techniques for diagnosing the sleep stage
labor and reallze_quanntatlve dlagn95|§ .Of sleep .EEG_' are based on long-term spectral analysis and consequently not

For sleep staging by_ E.EG analysis, it is especially 'mpofta ited for detecting such transient and isolated characteristic
to detect the characteristic waves from EEG. Most convention

methods of diagnosing the sleep stagg, _however, use Iong—terrWe bropose a new type NN model called SRNN for detecting
spectrum gnaly5|s [51, [6]. Suph analysis is unable to detect U3fBnsient characteristic waves in EEG based on the recognition
sient and isolated characteristic waves such a hump wave fr%mhe two-dimensional (2-D) time-frequency pattern of char-
sleep EEG accurately. As a result, itis not possible to prec's%gteristic waves. SRNN'’s architecture recognizes the sporadic

diagnose the sleep stage based on characteristic waves as %(Eerties of transient waves and performs shift-invariant pro-

tors do, though a roughly diagnosis is possible. cessing. In other words, it detects transient waves regardless of

Morgover, some met_hodg are based on a kind of tem‘?' fiere they appear within the input data window as shown in
matching. This makes it difficult to cope with the large variag; 1

tion of EEG, such as fluctuations of the frequency pattern an
the differences between individuals. The method of detectigg
the characteristic waves in EEG must, therefore, be able to r
ognize the time transient of the frequency pattern and be rob
to variation of patterns.

The time-delay neural network (TDNN) proposed by Waibel
al.[3] to detect the phoneme is a well-known NN, which has

€ shift-invariant function. It was shown that TDNN could be
E{Bblicable if the position of the wavelet on the time axis could
be roughly estimated. In other words, the deviation in location
had to be small compared with the wavelet duration just like in

Manuscript received July 3, 1998; revised September 2, 188@risk indi- detection of phoneme. However, for EEG, a shift Iarger than the
cates corresponding author. wavelet duration must be compensated since we are unable to
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£ o layer, though the weights of connection are restricted. In other
g £ B . .
s B & words, the pattern of weights connected with a neuron of output
Output layer layer is made the same for every column of the second hidden
S layer.
=y SRNN is similar to TDNN with regard to the connection from
Second hidden  the jnput layer to the second hidden layer. In TDNN, however,
Sayer each row vector of the second hidden layer is connected with
A ey a single cell of the output layer, while in SRNN all cells of the
102, two layers are connected. Another difference between SRNN

First hidden  @nd TDNN is that SRNN has an expanded area from the input
layer to the second hidden layer in order to prevent sensitivity
to the input data from becoming less at the edge of both sides
iz = e than the center of the input layer because of lower density of
connection at the edge. Let us consider architecture without the
] expanded region. If a unit is composedof columns in the
Input input layer, then the data at the edge column of the first unit is
layer transferred to the first hidden layer only once and that of second
} column from the edge is transferred twice. The number of con-
- : nections between columns of the input layer and the upper layer
Bz ol scope,/ W22 increases tav;. Similar nonuniformity of connection density
Time occurs for connections between the first and the second hidden
layers. To make the connection density uniform, each layer from
‘ ‘. the input layer to the second hidden layer is expanded along time
aaweia| /7 Tnput data matrix axis as shown in Fig. 1. For example, if the input layer and the
i first hidden layer are composed of andws column vectors,
EEG w1 + we — 2 columns must be added to both sides of the input
0 e 3-84(sec) layer and the two hidden layers. Moreover, zero values are em-
bedded at expanded area of input layer where is covered by first
Fig. 1. SRNN architecture. This architecture recognizes the sporadidden layer units and processed as nonsignal area. Even if the
properties of transient waves and performs shift-invariant processing. first hidden Iayer unit covers only expanded area of input Iayer,
the output value of neuron is not zero because of the threshold
value of neuron. By this method, the data at the edge column is

The reason why we applied the wide 2-D time-frequendyansferred to both expanded and nonexpanded area and it solves
matrix for input data instead of sliding the short window is thghe nonuniformity problem of connection density between edge
EEG includes some sporadic characteristic waves which &ed center.
similar to background waves in short term spectrum. Thereforeln the processing described later, as we showed in Fig. 1, the
discrimination of the sporadic waves from background wavé¥put layer is composed of a 12-row, 23-column matrix. A unit
requires comparing the duration of spectrum pattern in t9é the input layer consists of three columns. The first hidden
wide time window. In addition, the processing with the slidindpyer is composed of six rows and 21 columns, and its unit con-
window of the width corresponding to the detected wavéssts of five columns. The second hidden layer is composed of
is considerably time consuming, as a result, it is not prop8 rows and 17 columns. The back-propagation algorithm was
especially for sleep EEG analysis due to its large amount @&pplied in the learning procedure.
data (about 6-8 h).

Each ele_ment of the in_put data matri>_< is presented to the petection with NN
corresponding cell of the input layer. All input layer cells are
covered with twenty-one unit. Each unit is composed of three As described earlier, SRNN must recognize a 2-D time-fre-
successive column vectors of input layer cell and is arrayeddaency pattern of characteristic waves. Input data then forms a
overlap the adjacent one by two column vectors (see Fig. 2}D matrix; the horizontal axis indicates time, and vertical axis,
(Each unit is connected with the column vector of the firdtequency.
hidden layer. The values of the connection weights are madeThe training or tutorial data for the learning process is
equal for every unit to attain the shift-invariant detection ajenerated as follows. First, the EEG data is sampled (at the
transient waves.) rate of 200 Hz) with a 0.64-s (128-point) hamming window.

Five successive column vectors of the first hidden layer sirtts logarithmic power spectrum coefficients are calculated
ilarly compose units and are connected with a column of thy fast Fourier transform (FFT) and 12 coefficients of lower
second hidden layer in order to integrate the information onfiequency are normalized by (1) and (2), and used for input
lower layer over a large time range. The pattern of the connetata. Generally, most of power spectrum of characteristic waves
tion weight is the same for every unit. All cells of the secondetected later (spindle, hump, and alpha wave) are included in
hidden layer are connected with all three cells of the outptitis spectrum range (from zero to 18.2 Hz). And we applied the
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]
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normalizing with range o3+ which covers 90% of amplitude The procedure performs two passes through the network. One is
of Gaussian distribution to attain the stable detection rate the forward pass, and another is backward pass. In forward pass,
rejecting noise with large magnitude which is often includedthen an input pattern is applied to input layer, the output values
in EEG are calculated through the connection weights. In the backward
200 pass, the output values are compared with the desired output
fu = kAS <k =0,1,2,---,11 Af= 198 =~ 1.56 Hz) values and its error is calculated [(3)]. This error is back propa-
1) gated through the network and the connection weight is changed
by gradient descent of the mean squared error as a function of
1 (m+ 30 < P(fi)) weights (between neurgnandq changed byAw,, ).

P'(f) = Pfr) —m (m < P(fi) <m+30). (2 The NN is trained so that the corresponding output neuron

0 30 (P(f) < m) fires when a spindle, hump or alpha wave is applied to the input
k layer; output neurons do not fire when a hump-train or back-

WhereP(f) is the logarithmic power spectrum coefficientground wave is inputted.
andm ando are the mean and standard deviation of all loga- In this paper, data for three persons (A, B, and C) was ana-
rithmic spectrum data over whole training data, respectively. lyzed. The data includes wake stage, stage 1, and stage 2. And
One data matrix consists of 11 logarithmic spectrum data ségs total time is about 10 min. The training data was devel-
so that the time duration of one matrix corresponds to 3.84 s adieed based on subject A's data, and it includes ten spindles,
the frequency ranges from 0 Hz to 17.2 Hz. The EEG data384 humps, 14 alpha waves, 49 hump trains, and 66 background
processed by shifting the input data window or the input lay@faves.
by a half size of the window, i.e., 1.29 s. Training was repeated many times for all the training data
As a similar work, Eberharet al. detected the epileptic spike until the network weights converge so as to produce the desired
detection by using raw EEG data as an input of the network [8Jutput. Fig. 3 shows the time transient curve of the squared
The epileptic spike is characterized as much narrower wavefo@iiior during SRNN's training. The error converged after 24 000
than background wave and is easy to detect base on the titggations, taking 5 h on personal computer. We should note,
structure of the wave. However, characteristic wave of sleBpwever, that this amount of computation is required only
EEG, especially humps, has more various waveform with longl@r training, not for recognition. Once the training procedure
duration than the epileptic spike. Therefore, in order to extraét completed, the recognition procedure can be executed in
the common feature of the characteristic waves independengofew minutes for 1 h of EEG data. It is also clear that we
the variation, spectral parameter is more desirable than time €an implement the training procedure much faster by using a
quence pattern, which is too sensitive to the detail of the wav@gh-performance workstation.
form. The examined EEG data was similarly sampled using the
We used the following five types of characteristic waves; Wwindow and transformed to the input data matrix. The input data
windows are shifted, and the characteristic waves corresponding
to the neuron are regarded to be detected at each position where
the fire level of an output neuron exceeds a threshold.

1) spindle;

2) hump;

3) alpha wave;

4) hump train (continuous hump);

5) background wave.
Fig. 2 [mibel11] shows the 2-D time-frequency pattern of five The performance of SRNN in detecting characteristic waves
characteristic waves. It should be noted that the hump train d6$4=EG was evaluated by comparison with the other methods
not exist in the real EEG and was produced to make SRNNe., TDNN, the all connecting neural network (ACNN), and
learn the sporadic properties of humps. The short-term spée€ likelihood ratio method based on AR coefficient (LRM)].
tral pattern of background waves resembles that of humps sd DNN and ACNN were selected as the methods using NN's.
that sporadic properties of humps are used to discriminate thég mentioned above, TDNN has been developed to detect
from background. That is why the hump trains were generatBoneme, and its architecture is similar to SRNN. As shown
by combining many humps. Using these training data, all cotit Fig. 4, the TDNN used here consists of an input layer with
nection weights are adjusted so as to decrease the error bytRdows and 11 columns, the first hidden layer with 17 rows
back-propagation learning procedure based on the gradient @d nine columns, the second hidden layer with three rows and

C. Comparison of Performances with Other Methods

cent method (3) and (4) [1], [2] five columns and the output layer with three neurons. Three
columns of the input layer are connected with a column of the

E=1 Z Z (Y = Tje)? (3) first hidden layer, and five columns of the first hidden layer are
i e connected with a column of the second hidden layer. Each row

is connected with one of the output neurons.
9E The ACNN has the most general architecture of back-prop-
Awp g = Ew(ﬁ > 0) (4) agation-based NN'’s and its connection weights are not con-
Pt strained like SRNN or TDNN as shown in Fig. 5. It has six cells
wherey; . andy, . represent the output and desired output o the first hidden layer and ten cells in the second hidden layer.
the jth output neuron for the input patteen Parametee rep- The numbers of neuron cells of these NN'’s are adjusted to be
resents the velocity coefficient of convergence of NN learningpproximately equal.
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Fig. 2. Waveform and input data matrix of characteristic waves used. The EEG data is sampled (at the rate of 200 Hz) with a 0.64-s (128-point) hdawning win

Its logarithmic power spectrum coefficients are calculated by FFT and 12 coefficients of lower frequency are normalized by (1) and (2).

The LRM was selected as a typical template matching 10.0
method. The template for characteristic waves was obtained by 5 g 0
averaging each kind of wave in the training data. The likelihood & ™
ratio D between the template signal and the examined EEG © ¢ ¢
data defined by (5) was calculated '§
4.0
<
D(P,|F)) = log(aycfay/amcfam) + log(amcgam/aycgay) g. 30
(5) v
0.0 — —_—
0 10000 20000 30000 40000

where P, represents the optimum autoregressive (AR) model;
a,, the linear prediction coefficients; anrg, the auto correla- Iterations
tion vector of the template signaf,, a,,, andc, represent those
parameters for the examined EEG data.

D is equal to zero when the examined data coincides exactly

Fig. 3. SRNN output error versus number of learning iterations.

with the template. Therefore, for a given template, the examined 1) spindle;
data is detected as the characteristic wave corresponding to the 2) hump;
template wherD is less than a threshold value. 3) alpha wave.

Three templates for the following characteristic waves wefkhe duration of the examined EEG data is set at 3.84 s (768
adopted: points) which is equal to the case of NN's for the comparison.
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Fig. 4. TDNN architecture that has been developed to detect phoneme. Fig, 5. ACNN architecture. This architecture is the most general of
back-propagation-based NN's and its connection weights are not constrained

like SRNN or TDNN.
The order for AR coefficients was chosen as eight in the exper-

iment since results with orders other than eight made no differ- TABLE |
ence CONDITIONS OF SUBJECTS PROVIDING EEG
’ DATA USED IN EXPERIMENTS
l. RESULTS Subject (;:ffs) Gender ]())g;:?;f

We applied SRNN, ACNN, TDNN, and the Ilk_ellhood ratio A 35 Female Normal
method to the examined EEG data of three subjects, A, B, and B 58 Female | Other function
C as described in Table | and detected three types of character- psychoses
istic waves (spindle, hump, and alpha wave). Data points for the Cc 21 Female Normal
subjects are shown in Table Il (sample rate is 200 Hz).

The averaged detection rates for open experiments and closed TABLE I
experiments are shown in Fig. 6(a) and (b). An open experiment DATA POINTS FOR THESUBJECTS
means that the learning data does not include the examined data, - -

. . . X Subject Data Points

aclosed experiment does. The detection rate is defined as shown A 69.632
in (6) found at the bottom of the page. B 65:408

Next, we tried to test the significance of the difference be- C 77,824

tween these results. We applied the null hypothesis that the av-
eraged detection rates of SRNN, TDNN, ACNN, and likelihood
ratio method make no difference, and tested with a significance
level of 5%. Table Il shows the results of the test. If the null Medical doctors usually use multichannel EEG sequences
hypothesis was rejected, an x was entered in the correspondimgasured at different portions on the scalp to improve the de-
position. Fig. 6 and Table Il indicate that the SRNN detectiotection rate by integrating global information on characteristic
rate is significantly higher than that of other methods for mostaves. Therefore, we tried to use the integrated multichannel
cases. information to detect characteristic waves.

IV. INTEGRATION OF MULTICHANNEL INFORMATION

The number of correctly detected matrices « 100[%] ©)
The number of matrices which includes the objective characteristic wave ’

Detection rate=
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100 TABLE Il
TEST OF SIGNIFICANCE OF DIFFERENCE INDETECTION RATE
80 @ SRNN
TDNN (a) Subject A closed
60 B ACNN Spindle Hum, a wave
B LRM P P
40 TDNN X x
20 ACNN X X
) LRM X X X
Spindle Hump  Alpha wave (b) Subject B open
(a) Spindle Hump a wave
100 TDNN X X
ACNN X X
80 El SRNN
TDONN LRM X X X
60
:Cga N (c) Subject B closed
40 Spindle Hump a wave
20 TDNN X
0 ACNN X x X
Spindle Hump  Alpha wave LRM X X X
(b) (d) Subject B open
Fig. 6. Comparison of detection rate of several methods with (a) opened and Spindle Hump a wave
(b) closed experiments. TDNN x %
L . ACNN X x
Output neurons often misfire due to low amplitude of char- » »
acteristic waves, overlapping of large background waves, and LRM .
so on. The integration of the multichannel information should (¢) Subject C closed
compensate for the output of misfired channels. Spindle Hump a wave
In our experiment, we used eight channels (Fpl, Fp2, C3, C4, » »
P3, P4, 01, and 0O2) based on a ten-twenty electrode system. TDNN
To integrate multichannel information, we employed a simple ACNN X X
summation of the output signal at each channel by SRNN as de- LRM % x X
scribed by (7). This meartR-like operation. Next, the summa- )
tion was used to obtain the final detection (f) Subject C open
s Spindle Hump awave
O, = Z O TDNN X X
k=1 ACNN X X
= [O"; )‘] ) LRM X X X

whereOy, is the output of each channdl, is a sigmoid func-

tlon_and)\ is the thresholc_;l. Fig. 7.(3) shows the results of d%a_atterns. It can be seen that the SRNN firing level is much
tecting humps by integrating multichannel data compared Wlﬁ?

single-channel processing. It can be seen that in spite of the ve{?{her than that of LRM since the nonlinear SRNN system

. : . % puts a sufficient level for the definite existence of the target
simple processing or summation of output at each channel, the )
wavelet and suppresses the output for ambiguous cases. As a

result designated by "all" in Fig. 7(a) realized the maximum de- . : ' . .
: . - . r?sult, a channel with an ambiguous fire (fired value is near
tection rate. This apparently indicates that multichannel anal- . o

L . . zeio) affects the integrated output less. The LRM firing level
ysisimproves the detection rate by compensating for the channé S .
with misfire Is"produced by significantly linear system. Co_nsequently, the
X . . - output level can not be neglected for an ambiguous fire, and
In contrast, the result of multichannel processing S'm"arlya|ﬁfluences the intearated values
plied to LRM did not achieve the highest performance as shown 9 '
in Fig. 7(b).

We may explain the difference of performance between
SRNN and LRM by considering whether the decision processThe above results indicate that all three NN’s attained high
is nonlinear or not. Table IV shows the ratio of the mean firindetection rates for alpha waves, for humps, however, the SRNN

level of output neurons for humps compared to that for othegsult was better than others. Itis reasonable to believe that these

V. DISCUSSION
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A. Shift-Invariant Function

Fig. 7. Comparison of the effect of multichannel processing on detecting

humps between (a) SRNN detection rate and (b) LRM detection rate. To detect short-duration characteristic waves, an NN must

have a time-shift-invariant function, i.e., the ability to detect
wavelets uniformly regardless of their appearance location

TABLE IV within the input window.
RATIO OF MEAN FIRING WX\EEL ;%E':&"SPS AND THAT FOR OTHER For TDNN, although it has a time-delay structure similar to
that of SRNN, the number of operations at the edge of each
SRNN LRM layer is smaller than at the center, so detection sensitivity is not
Ratio 35.07 6.72 uniform.

ACNN does not have a time-delay structure like the other two
NN'’s. Therefore, to learn the properties of characteristic waves
1.2 uniformly, the training data must be uniformly presented to the

1 input layer, but this is not easy in practice.

ig We next examined whether SRNN, TDNN, and ACNN can
%S 0.8 learn EEG patterns uniformly, regardless of the location of the
206 characteristic waves within the input layer, by detecting the

*g’ 0.4 hump while shifting it gradually (23 steps) from left to right
3 ' in the input data window. Signals other than humps within
0.2 the window were filled with the background waves observed
typically at sleep stage Il. As we show in Fig. 8, the experiment

0 2 4 6 8 1012 14 16 18 20 22 results indicate that the fire level in SRNN is more stable than
that in TDNN or ACNN. The TDNN firing level has a peak at
the center of the input data window and becomes lower at the
Fig. 8. Stability of output neuron’s quantity of fire of SRNN, TDNN, and_edge' The A_CNN firing level has a large vgrlatlon a"_ over the
ACNN. These results indicate that the fire level in SRNN is more stable thaRput data window. In contrast, the SRNN firing level is almost
that in TDNN or ACNN. constant regardless of the hump’s position, which means that
SRNN can recognize short characteristic waves uniformly, and

results were due to the difference in abilities to detect shorfed™: consequently, achieve their time-shift-invariant detection
wavelets compared with the size of the input data window. Within the input data window.
To detect short-duration wavelets like humps, NN'’s require - ] o
two kinds of ability. One is the time-shift-invariant detectiorP: R&cognition of the Isolation of Characteristic Waves
because the location characteristic waves appear within thé_et us consider another reason why as shown in Fig. 6 the
input matrix is not known in advance. The other is the ability t8RNN has a much better detection rate for hump waves than
recognize the sporadic properties of characteristic waves sifid@NN, even though both have a time-delay structure and both
the local spectrum properties are not enough to distinguibhd sufficiently high detection rates for alpha waves. If we rep-
the wavelets from a background wave whose local spectrussent humps as “1” and background wave as "0," the ideal
pattern is similar. output must be as follows: when "1" is input to at least one
SRNN also attained high performance for long-duration waumit of the input layer, the output must indicate the detection of
such as spindles, but the detection rates of LRM are much loweunmps. However, when "1" is input to some of adjacent units,
In the following, we investigate these aspects in detail.  the firing of output cells for humps must be suppressed because

Hump position
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(@
5.0 ——SRNN
4.0p - -~ TDNN
0 300
Tterations
(b) ()
4.0 - . . . .
SRNN Fig.11. xordecision regions implemented by (a) SRNN and (b) TDNN. It can
A R [ it TDNN be seen that theor decision region of SRNN is correct while that of TDNN is
e [ not.
St
B2.0f -
PE To confirm this, we used a simple model of input data in
1.0 ‘M__ __________________ which a column vectol = (1,1 --- 1)T is regarded as the
L CoT e spectral pattern of the hump aad= (0,0, - - -,0)7 is regarded
0.0 as the spectral pattern of the background wave in the input data
0 300 600 900 1200 1500 matrix. The symbo|0 0] in the upper left of Fig. 9 means that
Tterations the input data matrix is filled with zeros, which correspond to
© the background waves. Consequently, the output should be "0"

Fig. 10. Output error versus number of learning iterations forata), (b) as shown on the right. In the second and third figures from the
OR, and (c)xoR operations by TDNN and SRNN. Feor operations, SRNN  top, [0 1] and[1 0] mean that one of the two adjacent columns
_conV(_erged after 400_ iterations, but TDNN did not converge even after 15%)1’ which corresponds to the input of the hump in each po-
iterations as shown in (c). . . A

sition as shown in the center. The output "1" is then expected.

The bottom[1 1] corresponds to the hump train described in
humps are sporadic and not trained, though their spectral coBection Il. If thexor-like operation is implemented correctly,
ponents are similar to those of other types of long-duration chéine output neuron becomes "1" only when the input pattern is
acteristic waves such as slow waves and background waves. @Ih#] or [1 0]. In practice, these patterns were gradually shifted
may then say that these processes for detecting isolated chawnatiiin the input matrix from left to right.
teristic waves like humps correspond toxar-like operation.  These input patterns were input as training data to both SRNN
This hypothesis makes it possible to understand that the tand TDNN to evaluate their performance foD, OR, andxoOR
NN’s differ in capacity forxor-like operation, which is nec- operations.
essary to recognize the sporadic properties or the isolation ofig. 10 shows the results. The abscissa is the number of
humps. learning iterations, and the ordinate is the squared error of

NN'’s require three sufficiently connected layers to implememtutput. As shown in Fig. 10(a) and Fig. 10(b), both SRNN

an XOR operation [4]. However, as mentioned in Section II-Cand TDNN converged after 300 iterations fakD and OrR
TDNN has a more constrained connection than SRNN betwegperations. FOKOR operations, SRNN converged after 400 it-
the second hidden layer and the output layer. SRNN has enations, but TDNN did not converge even after 1500 iterations
all-connection structure with the same value along the hods shown in Fig. 10(c). Fig. 11 shows the decision regions of
zontal direction. In contrast, the TDNN output is connectexior operations implemented by SRNN and TDNN. It can be
to a specific row of the second hidden layer. From this vievseen that thexor decision region of SRNN is correct while
point, SRNN may be expected to be superior to TDNNXd@®R that of TDNN is not. This indicates that SRNN has much more
operation. capacity forxor-like operation.
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(2) Input pattern (b) First hidden layer (c) Second hidden layer  (d) Corresponding
output firing

Fig. 12. Input, output, and firing patterns of each layer.

Finally, we examined the connection weights of SRNN in de-

tail. Fig. 12 shows the pattern of the input data matrix, and the = I!

corresponding output and firing pattern of each layer for humps,

hump train, and background wave. - O
It can be seen that neurons on the second row of the first

hidden layer fire for both the hump and the hump train. This O

reveals that the second row of neurons corresponds to the spec-

trum band of the hump but is insufficient for recognizing the N

isolation of characteristic waves. As shown in Fig. 12(c), neu-

rons on the top row of the second hidden layer fire for both the

hump and the hump train, while neurons on the second row fire

only for the hump train. We can see from these results that neu-

rons on the top row of the second hidden layer perfornomn [ | ' -

operation and those on the second row perfornaen oper-

ation on the spectrum pattern of humps appearing in the first (a) Alpha wave  (b) Hump (c) Spindle

hidden layer. Generally)oR operation is defined as

Fig. 13. Connection weights between second hidden layer and output layer;
Area of boxes is proportional to amplitude of connection weights. Black and
white boxes represent positive and negative values, respectively. These could

(A XOR B) — (AORB)— (AAND B) ®) ensure implementation ofor-like operations in SRNN.

According to (8), the connection weights between te C. Influence of the Characteristic Wave Duration

output of the second hidden layer and the output layer shouldrig. 7 shows that the LRM detection rates are considerably
be positive forxor operation and while that between thed  lower than those of SRNN, even for spindle and alpha waves
output and the output layer should be negative. Practical camhose durations are longer than humps. One explanation for
nection weights between the second hidden and the output layerse results may be that the performance of LRM for detecting
for humps are shown in Fig. 13 where area of boxes is propéong-duration characteristic waves depends on how much the
tional to amplitude of connection weights and black boxes repindow is occupied by a part of the characteristic wave. We
resent positive values and white boxes negative. These coelmined this point by using the spindle model (burst waves of
ensure implementation ofor-like operations in SRNN. Con- 14 Hz having various time durations and embedded in random
sequently, the output neurons of humps fire only when humpggnals as background waves).

are input to the input layer, and SRNN could recognize theseFig. 14 shows the simulation results. The abscissa indicates
patterns correctly. The value of the top box in Fig. 13(b) is pothe ratio,;:, at which the window is occupied by the spindle,
itive and corresponds tor, while the second box is negativeand the ordinate is the likelihood ratio. The top figure illustrates
and corresponds tenD. waveform within the input window and waveform in the right
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M ———— B TS by integrating the output of each channel a higher detection
rate was attained than by selecting a particular channel since

10.01- v the correct output compensates for the nondetected channels.

We confirmed that SRNN has a higher detection rate than

80K N other methods and investigated the reasons. We illustrated that

SRNN could learn EEG patterns uniformly regardless of the lo-

) cation in the input layer by means of a time-delay structure in

— which the input layer and hidden layer are composed of many
arrayed units and governed by the same connection weights. An-

Likelihood ratio
.
o

2.0
\\_ other reason SRNN could learn EEG patterns is its capability to
00 0 20 20 40 0 o 0 80 9 100 recognize properties of the isolation. This capability is imple-
(4 1ate of spindle duration(%) mented by arxor-like operation. By examining the SRNN con-
nection weights, we confirmed that the SRNN structure could

executexor operations and, consequently, has sufficient ca-

(a) Likelihood ratio versus rate of spindle duration to input window size
pacity for recognizing the sporadic characteristics.

i b Finally, it was shown that SRNN was less influenced than

1.0 LRM by the duration of the characteristic wave. As a result,
. ' higher detection rate was attained by SRNN even for long-du-
5080 - e - ration characteristic waves.
s - ‘ For future study, the proper size of the NN, the input data
,;0'6 ' I normalizing method and so on must be investigated. Moreover,
S0.4)/ % S N i we are now trying to apply SRNN to classifying sleep stages
5 |/ based on EEG data.
© 0.2 /i
=
=
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