Intelligent Music Software

Robert Keller

Harvey Mudd College keller@cs.hmc.edu

IEEE Computer Society 23 February 2012

Questions that can be answered briefly are welcome during the talk.

Music can be ...

- entertaining
- pleasurable
- challenging
- therapeutic
- an object of study
 - mathematical
 - scientific

. . .

psychological

HOW WE HEAR MUSIC © THE RELATIONSHIP BETWEEN MUSIC

James Beament

CHANISM

Outline

- Describing the space
 - Music software in general
 - Intelligent music software
 - Prior art
- Intelligent Music Software Project at Harvey Mudd College
 - Impro-Visor
 - RBM-provisor: Using Deep-Belief Networks
 - Recent work

Music Software Varieties

- Consumer products
 - Music player (mp3, aiff, wav, ...)
 - Music organizer, searcher
 - Music recommender
 - Music recorder
 - Music synthesizer

Music Software Varieties

- Musician products
 - Music notation editor ("scorewriter")
 - Digital audio workstation (DAW)
 - Music transcriber (audio to score)
 - Music generator (create music)
 - Music composition assistant
 - Music score follower (educational)

Example: Audacity (FOSS*) Record and edit audio (sound) (Dominic Mazzoni, HMC '99, CMU '01)

Dominic Mazzoni and Xanda Schofield in our lab, 2012

*FOSS = "Free, Open-Source, Software"

Two Major Music Universes

Audio (mp3, wav, AIFF, au, …)

Symbolic

MIDI = "Musical Instrument Digital Interface"

Rendering MIDI to Audio

- Electronically
 - Most digital pianos
 - Software players (ARIA, Kontakt, ...) drive samples recorded from acoustic instruments
 - Synthesizers
- Mechanically
 - Modern versions of the player piano: Disklavier, Pianomation, PianoDisc

Instruments that Emit MIDI

Apple iPad

Crossing the Universes

- MIDI → Audio
 - relatively easy

- Audio \rightarrow MIDI
 - harder
 - doable for monophonic audio
 - difficult for polyphonic audio (e.g. chords, multiple instruments)

Example: Transcribe!

SeventhString Software .com

Transcription (slow-down) software

Analyzes audio spectra to suggest pitches for human transcription

Intelligent Music Software

Definition of "Intelligent" Merriam-Webster on-line

1. a: having or indicating a high or satisfactory degree of intelligence and mental capacity

b: revealing or reflecting good judgment or sound thought : skillful

 a: guided or controlled by a computer; especially: using a built-in microprocessor for automatic operation, for processing of data, or for achieving greater versatility

b: able to produce printed material from digital signals as in *an intelligent copier*

Definition of "Intelligence" Merriam-Webster on-line

- 1.a: the ability to learn or understand or to deal with new or trying situations: reason; also: the skilled use of reason
- 1.b: the ability to apply knowledge to manipulate one's environment or to think abstractly as measured by objective criteria (as tests)
- 1.c : mental acuteness : shrewdness
- 2.a : an intelligent entity; especially : angel
- 2.b : intelligent minds or mind, as in cosmic intelligence
- 3: the act of understanding : comprehension
- 4. a : information, news
- 4.b : information concerning an enemy or possible enemy or an area; also : an agency engaged in obtaining such information

5: the ability to perform computer functions

wikipedia

 Intelligence derives from the Latin verb intelligere which derives from interlegere meaning

to "pick out" or discern.

In other words,

the ability to make decisions.

Intelligence

I will adopt the convention that

Intelligent Music Software

makes decisions that aid its user.

• (plus, it's the name of our project.)

Assertion

Any behaviors of current software that seem to be intelligent are results of the (meta-) intelligence of the software's designers.

This includes learning.

Learning

- Ideally, intelligent software can also "learn", so as to *improve* its ability to make decisions.
- Also ideally, humans can learn from the software, whether or not the software learns.

Which, if any, of these famous AI programs learn?

Deep Blue, 1997 chess computer

Watson (center), 2011 Jeopardy computer

Some Intelligent Music Candidates

- SmartMusic
- Digital Ear Real-Time
- Melodyne Editor
- IntelliScore Ensemble
- Band-in-a-Box
- EMI (Experiments in Music Intelligence)
- GenJam
- Artificial Virtuoso & The Continuator

SmartMusic MakeMusic, Inc.

- Provides feedback for student practice sessions ("used by over 75,000 students worldwide")
- <u>http://www.youtube.com/watch?v=xhYXO6TPKw4</u>
- Developed by Prof. Roger Dannenberg at CMU.
- Proprietary

Digital Ear Real-Time digital-ear.com, Epinoisis Software

Converts monophonic audio to MIDI

Introducing the most accurate Audio-to-Midi Converter

" Charlie Parker sounds pretty good as piccolo player!" -- DownBeat magazine

"Nothing could be simpler"

-- Ziff-Davis Network: Editor's Pick Award

Melodyne Editor, 2000 celemony.com, Munich

Peter Neubäcker

- Polyphonic audio transcription
- Edit individual notes within chords

Intelliscore Ensemble Innovative Music Systems, Inc., 2000+

- WAV to MIDI, off-line
- Polyphonic, but editing may be needed
- Patent number 6,140,568: "System and Method for Automatically Detecting a Set of Fundamental Frequencies Simultaneously Present in an Audio Signal."

Music Plus One (formerly Music++) Prof. Chris Raphael, Indiana University, 1998+

- Virtual orchestra anticipates player's tempo, follows retakes, etc.
- http://www.music.informatics.indiana.edu/~craphael/music_plus_one/index.html

Creativity

 Ideally, intelligent music software can also "create", i.e. use its ability to make decisions to produce new results that will intrigue the user.

EMI (Experiments in Musical Intelligence) David Cope, UC Santa Cruz, 1981+

- "Emmy", then "Emily Howell", composed classical music, such as Bach chorales, string quartets, piano sonatas.
- http://www.miller-mccune.com/culture/triumph-of-the-cyborg-composer-8507/

- Constructs jazz solos, apparently by drawing licks from a database.
- Can extract an approximate style specification from a MIDI performance.

Proprietary

GenJam (Genetic Jammer) Al Biles, Rochester Inst. of Tech., 1994+

- Improvises jazz solos, based on genetic algorithm
- Trades interactively with human soloist.
 - http://www.youtube.com/watch?v=xWHU8uE043g
- Proprietary

Artificial Virtuoso & The Continuator François Pachet, Sony Labs, Paris

- Improvise with no musical knowledge, using a Sony wiimote as input controller
- Generate jazz melodies of a preprocessed audio backing track.
- <u>http://www.youtube.com/watch?v=pXXd11jmPTs</u> (especially last few seconds)
- "Learns to play in the user's style".

HMC Intelligent Music Software Project

- Oriented toward helping musicians learn to improvise
- Focus is on jazz education, but not limited to jazz

Conventional Wisdom for learning to improvise

- Choose a solo from some jazz master.
- Transcribe the solo from audio and memorize it.
- (Study chords, scales, etc.)
- Repeat, until you "know how to improvise".

problems with Conventional Wisdom for learning to improvise

- Difficult enough to be a show-stopper for many newcomers.
- The learner does not own the result.
- The learner might end up sounding like a clone of some famous player (you wish!).

Our Alternative Way for learning to improvise

- Pick a tune.
- Construct your own solo over the chord progression of the tune. (Note: You own it.)
- Try to play your solo.
 Modify as needed to make it sound good.
- (Study chord and scales.)
- Repeat, with different tunes, until you "know how to improvise".

Impro-Visor (FOSS) Keller, et al., HMC, 2005+

Short for "Improvisation Advisor".

A software "workbook" that can help in both the alternative method and the conventional method.
Impro-Visor Objectives

- Original objective: A notation tool to help jazz musicians learn to *improvise* by providing suggestions to the student in *composing* his/her own solos.
- Secondary objectives include:
 - Immediate feedback, visual and aural
 - Provide backing tracks (similar to Band-in-a-Box, but more tutorial)
 - Improvise on its own, for demonstration or companionship (not yet interactive as real-time GenJam)

Project Participants: HMC

- Prof. Belinda Thom
- Stephen Jones '07
- Aaron Wolin '07
- David Morrison '08
- Martin Hunt '08
- Sayuri Soejima '10

- Stephen Lee '10
- Greg Bickerman '10
- Emma Carlson '11
- Paul Hobbs '12
- Xanda Schofield '13
- August Toman-Yih '13

Project Participants: From Elsewhere

- Steven Gomez, Darmouth College
- Jim Herold, Cal Poly Pomona
- Brandy McMenamy, Carleton College
- John Goodman, UK
- Jon Gillick, Wesleyan University
- Kevin Tang, Cornell University
- Chad Waters, Winthrop University
- Peter Swire, Brandeis University
- Sam Bosley, Stanford University
- Lasconic (Nicolas Froment), France
- Julia Botev, Rice University
- Ryan Wieghard, Pomona College
- Zack Merritt, University of Central Florida
- Amos Byon, Troy H.S., Fullerton, CA

How Impro-Visor Works

- Most musical information is in the form of user-editable text files:
 - Vocabulary, defines
 - Scales, Chords, Cells, Idioms, Licks, Quotes
 - Styles
 - Grammars
 - Leadsheet, specifies
 - Chord progression
 - Melody, solo

Leadsheet vs. Sheet Music

1 bar of sheet music

Impro-Visor's Leadsheet View

Constructing a Solo

Intelligent Note-Entry Advice

Four color indicators as noted.

- Harmonic entry mode: clicked notes gravitate to chord and color tones.
- Harmonic transposition of a group of notes.

Ordinary (Uniform) Transposition

Harmonic Transposition

Generating Licks for Examples

- Lick = a short melodic phrase
 - sometimes idiomatic
 - sometimes original
- Prior to introducing lick generation, Impro-Visor used a database to store lick suggestions.

Lick Generation Uses a **Probabilistic Grammar**

- Grammars are a generative specification, typically for languages:
 - natural language
 - programming language
 - graphical language
 - musical language
 - melody
 - harmony
- Typical use of grammars in software is analytic.
- Impro-Visor, and other music software, use a grammar generatively.

Grammar Illustration

• We could fill a beat with a variety of rhythms:

- Let B denote one beat of music
- A grammar represents all of these possibilities:
 - $B \rightarrow X4$ 4 means quarter note
 - $B \rightarrow X8 X8$
 - $B \rightarrow X8 X16 X16$

4 means quarter note 8 means eighth note

etc.

Here X4, X8, X16 are understood "terminal" symbols, while B is a non-terminal to be expanded.

Probabilistic Grammar Illustration

- Assign a probability to the various choices
- Probabilities will then dictate a prevalent style

A grammar represents a distribution of these possibilities:

$B \rightarrow X4$	p = 0.3	common
$B \rightarrow X8 X8$	p = 0.6	frequent
$B \rightarrow X8 X16 X16$	p = 0.1	rare

Grammars Can Exhibit Hierarchy and Recurrence

Instead of		
$B \rightarrow X4$	p = 0.3	common
$B \rightarrow X8 X8$	p = 0.6	frequent
B → X8 X16 X16	p = 0.1	rare
Use		
$B \rightarrow X4$	p = 0.3	common
$B \rightarrow C C$	p = 0.7	frequent
$C \rightarrow X8$	p = 0.8	very frequent
C → X16 X16	p = 0.2	rare
Generates		
p = 0.3 p = 0.448 p = 0.112	p = 0.112	p = 0.028

Recurrence Allows a Grammar to Fill Arbitrary Number of Beats

- $\blacksquare R \rightarrow B R \qquad \qquad \text{One beat, then more}$
- $\blacksquare R \rightarrow empty \qquad No more$
- So R can produce B, BB, BBB, BBBB, etc.

Markov Chains as Grammars

- Recurrent productions allow us to embed an arbitrary Markov chain in the grammar.
- The reason for wanting this will be explained shortly.

 Production Rule
 Probability

Production Rule	Probability
$\underline{\text{Start}}(Z) \rightarrow \text{CO}(Z)$	0.23
$\underline{\text{Start}}(Z) \to C1(Z)$	0.25
$\underline{\text{Start}}(Z) \to C2(Z)$	0.52
$\underline{\mathrm{CO}}(0) \rightarrow ()$	1
$\underline{\mathrm{Cl}}(0) \rightarrow ()$	1
$C_{2}(0) \rightarrow 0$	1
$CO(Z) \rightarrow QO \ CO(Z-1)$	0.24
$CO(Z) \rightarrow QO C1(Z-1)$	0.24
$CO(Z) \rightarrow QO C2(Z-1)$	0.52
$\underline{C1}(Z) \rightarrow Q1 \ C0(Z-1)$	0.18
$\underline{\mathrm{Cl}}(\mathbf{Z}) \rightarrow \mathrm{Ql} \ \mathrm{Cl}(\mathbf{Z}\text{-}1)$	0.28
$\underline{\mathrm{C1}}(\mathbf{Z}) \rightarrow \mathrm{Q1} \ \mathrm{C2}(\mathbf{Z}\text{-}1)$	0.54
$\underline{C2}(Z) \rightarrow Q2 \ CO(Z-1)$	0.25
$\underline{C2(Z)} \rightarrow Q2 \ C1(Z-1)$	0.24
$\underline{C2}(Z) \rightarrow Q2 \ C2(Z-1)$	0.51
Q0→((Δ00 R2 R4 R8 C16/3) (Δ1 1 A16/3 L16/3)	1
$Q1 \rightarrow ((\Delta 0 \ 0 \ C8) \ (\Delta -9 \ -9 \ C8) \ (\Delta 2 \ 3 \ C8 \ G4+8 \ R4))$	1
Q2→((Δ00 C4/3) (Δ12 L4/3 A4/3) (Δ-7 -1 C4/3 G4 C8/3))	1

Grammar

Abstract Melodies Based On Note Categories ("colors")

- In Impro-Visor grammars, terminal symbols correspond to the note categories, plus note durations.
- We call the string of terminals an abstract melody.
- The actual notes are filled in based on the chord of the moment and probabilities.
- This allows a single grammar to be used for an arbitrary chord progression, rather than a specific one.

Abstract vs. Real Melodies

A Complete Grammar "My Fours" with Terminals in Bold

Grammar Construction

- Grammar construction by hand is fun and educational, but tedious.
- A better approach might be to have the software learn the grammar from examples.

Grammar Learning Feature

- Impro-Visor can learn a grammar by examining one or more transcribed solos.
- For greater coherence special construct called a *slope* is introduced, from which melodic contours can be constructed.
- Slopes can appear in the rules in the place of terminals.

(c) Abstract melody using slopes (Δ 's):

(R8 C8 (Δ -9 -9 A16) (Δ1 3 C16 <u>C16 C16 C8</u>) (Δ-12 -12 C8) (Δ1 4 C8 A8) (Δ -4 -1 L8 C8 <u>C8</u> A8 C8) (Δ12 <u>12</u> C8) (Δ-12 -2 C8 <u>C8</u>))

Grammar Learning Algorithm

enables grammar to be learned from transcriptions

Transcription of Dave Liebman's Solo on Picadilly Lilly:

Transcription in Text

🖲 🔿 📄 Aquamacs - PicadillyLillyLiebman.Is	📖 Learned Grammar
	My grammar, Brafaransas, H
* 🔯	My grannar Preferences H
f+8 d#+8 r2+4+8	Backup
	Bare
f+8 d#+8 c#+8 f+8 f+8 d#+8 c#+8	BillEvans
f#+8 d+8 c#+8 a8 b8 e+8 r8 c#+8	CharlieParker
d+8 e+8 f#+8 a+8 c#++8 e++4 d++4	CliffordBrown
	ColemanHawkins-Ballads
C++2 a+10 g+10 e+8 r+4+8	DaveLiebman
r2+4+8	DexterGordon Chorus 6
c#+8 a#8 c#+8 c+8 a8 bb8 c+8	DizzyGillespie
b8 a8 e8 a8 eb4+8 f16 e16	FreddieHubbard
	JimmyHeath
t4 g#8 t8 a#4 c+8 a8	JJJohnson
d#+4 f+8 d#+8 g#+4 a#+8 g#+8	JohnColtrane
c++16 c#++16 e++8 b+8 c#++8 a+8 a+8 g#+8 c#+8	KeithJarrrett
f#+8 g#+8 a+8 b+8 d#+16 e+4+16 d+8	LeeMorgan
	MilesDavis
t+8 a+8 e+8 d+4+8 r1+2+4+8	My
c#++8	MyFours
a#+8 g#+8	Outside
e+16 f+8+16 g#+8 d#+8 r8 d#+8 c#+8 a8	RedGarland
	TomHarrell-Waltzes
uo u+o 1#+o d+8 g#+2	TomHarrell
r4+8 e+8 f#+4 a+1	Žoo

From Transcription to Grammar

Impro-Visor's Grammar Learning Interface

• • •	Lick Generator
Grammar Options Window	
	Lick Generator Grammar Learning Solo Generator
Grammar Loarning	
Grammar Learning	
Please follow these steps to leave a r	now grammar from a corpus of colos as a folder of leadsheats
Click the rectangular buttons below t	from top to bottom.
enen une rectangunar sentens senen	
Stop 1: Load the grammar on which	you wish to build such as Pare grammar
If you do nothing. Impro-Vis	or will build on whatever grammar is current.
This step also clears any acc	umulated productions from prior use of the learning tool.
Step 2: IMPORTANT: This step will u	use Save as in the Grammar menu to save your new grammar under a new name,
in case you want to return to	the old grammar.
It will also ask you to save you	Ir leadsneet if you need it, as the leadsneet window will be used as a workspace.
Step 3: (Optional) Set the paramete	rs below:
window Size (beats) 4	Number of Representatives per Cluster
Window Slide (beats) 2	Use Markov (ordered connection of phrases) Chain length: 3
Step 4: Select a corpus of solos from	i which to learn. Each solo is a leadsheet file.
The leadsheet you selected y	vill be left in the window at the end.
The process is over when the	last chorus of that leadsheet appears.
Step 5: Click this button to create an	d save the grammar and Soloist file.
There are two other alternat	(ives at this point:
b. Return to Step 4 a	nd learn from other corpuses of solos.
You can try your grammar at general	tion immediately without further loading, on the current or any other leadsheet
however it will not appear in the mai	n window until you restart the program.
Step 6: Press this button to generate	e solos with your Learned grammar

A Blind-Evaluation Experiment (Gillick, Tang, and Keller)

- Grammars were inferred from solos of
 3 different famous trumpet players with different styles.
- Subjects were asked to listen to the original solos, plus solos generated from the grammar on a different tune, to see if they could match the styles.
- Correct matches were obtained at 95%, 90%, and 85% levels for the soloists, and 85% of subjects correctly matched all three.

Other Learning in Impro-Visor

- Impro-Visor can learn a style specification (in its own language), given two inputs:
 - A MIDI file of a **performance** in that style.
 - A leadsheet file indicating the corresponding chords (needed for understanding bass patterns).
- As with grammar learning, clustering is used.
- A research problem is to eliminate the second requirement, that chords be provided.

Style Patterns Represented Graphically

Style Spreadsheet

"Piano roll" for one column of spreadsheet

00	Piano-Roll Pattern Editor: Column 2 of african3.sty
Open Bass Bar Editor	Long vertical lines are beats. Bass, Chord, and Percussion sections are independent, not linked together.
Bass	
Chord	
Acoustic Bass Drum	
Closed Hi-Hat	
Open Hi-Hat	
Acoustic Snare	
Hi-Mid Tom	
Low Tom	
Low Floor Tom	
Mute Hi Conga	
Cowbell	
Open Hi Conga	
Maracas	
High Timbale	
Tambourine	
Crash Cymbal 1	
Cabasa	
Percussion	
Percussion	
Percussion	
Percussion	
Inter-Loop Delay	Pattern Last Disuad
Loop Percussion	From/To Style Editor
Play Saved Pattern	From Style Editor Column 2 2 2
Ghord	Visual (30-120 pixels per beat) 120 120
Percussion	To Style Editor Column 1 1 Time (1-120 tick marks per beat) 8 8

Creativity, Emotion

additional traits that we might desire intelligent software to exhibit

Emerging Academic Area: Computational Creativity

- Computers create, or help humans better create: visual art, music, stories, jokes, …
- 10 years of workshops, leading to

International Conference on Computational Creativity (ICCC):

- Lisbon, 2010
- Mexico City, 2011
- Dublin, 2012

Creativity Evaluation

- Anna Jordanous (DPhil, U. of Sussex, 2011) consulted six judges who individually evaluated creativity of
 - GenJam
 - Impro-Visor
 - George Lewis' Voyager program
 - Her own genetic system

Jordanous, 2011 summarizes:

"Impro-Visor was considered the system with highest value and again it had a good ability to create results.

Much poorer scores were recorded for Impro-Visor's ability to develop its improvisations and to express emotions and intention; this last point was prioritised by survey participants alongside more expected abilities such as domain expertise and the ability to communicate and interact with other musicians and the audience."

A Different Approach to Learning: **RBM-provisor**

- Problem: How to learn to improvise with minimal musical knowledge.
- We applied Restricted Boltzmann Machines (RBMs) in the form of *Deep Belief Networks*.
- RBMs are neural networks based on probabilities of switching, determined by learned synaptic weights.
- An RBM tries to learn a set of concepts based on a set of input samples.
- They stabilize to a probability distribution reflecting those concepts, and can generate music probabilistically.

Deep Belief Networks Geoffrey Hinton, U. of Toronto

- Hinton demonstrated how a stack of RBM's can learn higher order concepts sufficient to perform tasks such as digit recognition.
 http://www.youtube.com/watch?v=AyzOUbkUf3M
- We applied a similar idea to learning concepts that produce melodies from chord progressions.
- The idea was to build in as little musical knowledge as possible.

Restricted Boltzmann Machines vs. Deep Belief Networks

Hinton's approach to pattern learning and generation

Improvising Jazz with a Deep Belief Network

Deep

Belief

Network

Melody Out Chord Progression In window (4 beats) step random 0 initialization 0 0 0 0 1 ? bits ? ? melody bits 0 1' created, 0 1 0 then clamped, in visible nodes 0 chord bits

clamped

in visible nodes

RBM-provisor Examples

Output from Unlearned Network

Example from Training Set

Output from Trained Network

Recent Work

- Automate analysis to representing and manipulating idiomatic harmonic sequences ("chord bricks") and key centers.
- Helps musicians understand tune construction.
- Helps players recognize the importance of key centers in improvisation.

Road Maps

- Road maps are Impro-Visor's newest feature.
- Tunes are automatically analyzed into keys and "bricks".
- Bricks are idiomatic chord progressions, such as cadences and turnarounds.
- The idea of bricks is from pianist/author Conrad Cork in the U.K.
- Bricks help the beginner to intermediate player understand the tune.

Analyzing a Tune using Bricks Input Chord Progression

Future Work: Bricks as a Basis for Grammar Learning

See: http://www.cs.hmc.edu/~keller/jazz/improvisor/licks/

Name	Chord Progression			
Cadence + Dropback	IIm ⁷	V ⁷	I	VI ⁷
Sad Cadence + Dropback	IIm ⁷ b5	V ⁷	Im	VIm ⁷ b5
POT (Plain Old Turnaround)	I	VI ⁷	IIm ⁷	V ⁷
Minor POT (Minor Plain Old Turnaround)	Im	VI ⁷	IIm ⁷ b5	V ⁷
Pullback	IIm ⁷	V ⁷	IIIm ⁷	VI ⁷
Ladybird Turnaround	I	bIII ⁷	bVI	bII ⁷

Some References

- Keller, Hunt, Jones, Morrison, Wolin, and Gomez, Blues for Gary: Design Abstractions for a Jazz Improvisation Assistant, ENTCS (Electronic Notes in Theoretical Computer Science), 193 (2007) 47-60.
- Gillick, Tang, and Keller, Machine Learning of Jazz Grammars, Computer Music Journal, 34:3, pp. 56–66, Fall 2010, MIT.
- Bickerman, Bosley, Swire, and Keller, Learning to Create Jazz Melodies Using Deep Belief Nets, Proc. First International Conference on Computational Creativity, 228-237, January, 2010.

Some Links Related to This Talk

- This Talk: <u>http://www.impro-visor.com/IEEE</u> or <u>http://www.impro-visor.com/IEEE6up</u>
- http://en.wikipedia.org/wiki/Free_and_open_source_software FOSS
- <u>http://audacity.sourceforge.net/about/</u> Audacity
- http://en.wikipedia.org/wiki/Audio_file_format Audio formats
- <u>http://www.smartmusic.com/</u> Smart Music
- <u>http://www.digital-ear.com/digital-ear</u> Digital Ear
- http://www.intelliscore.net/download.html Intelliscore
- <u>http://www.celemony.com/cms/</u> Melodyne
- <u>http://www.pgmusic.com/</u> Band-in-a-Box
- http://www.ist.rit.edu/~jab/GenJam.html GenJam
- http://www.music.informatics.indiana.edu/~craphael/music_plus_one/index.html Plus One
- http://www.miller-mccune.com/culture/triumph-of-the-cyborg-composer-8507/ Emily Howell
- <u>http://artsites.ucsc.edu/faculty/cope/</u> David Cope
- http://www.csl.sony.fr/downloads/papers/2002/pachet02b.pdf Francois Pachet
- <u>http://www.youtube.com/watch?v=AyzOUbkUf3M</u> Geoffrey Hinton
- http://kcl.academia.edu/AnnaJordanous/Papers/859375/Evaluating_Computational_Creativity_A_Standardi sed_Procedure_for_Evaluating_Creative_Systems_and_its_Application Anna Jordanous
- <u>http://www.impro-visor.com</u> Impro-Visor