

January 2008

www.ivarjacobson.com

Integrating Use Cases, Storyboarding and Prototyping

By Kurt Bittner, CTO Americas

An Ivar Jacobson Consulting White Paper

January 2008

Table of Contents
Introduction ... 2
Strengths and weaknesses of the three approaches .. 2

Strengths and weaknesses of Use Cases ... 3
Strengths and weaknesses of Storyboarding and Prototyping .. 3

An analogy from the film industry .. 4
How to use Use Cases, Storyboards and Prototyping together .. 4
Working Iteratively .. 5
Conclusion ... 6
About the Author ... 6
About Ivar Jacobson Consulting ... 6

Introduction

I am often asked whether teams should use use cases, storyboarding or prototyping to capture
requirements, and my usual answer is "Yes!" These techniques each have something unique to
offer, and when used together appropriately they are highly complementary. The key here is the
word appropriately - without some guidance the techniques can get in each other's way, and at
the very least can be confusing. In this article I will share the combined approach to using these
techniques together that I have found most successful in practice. But first a little background.

Strengths and weaknesses of the three approaches

To start the discussion, it's important to remember the goal of any requirements approach: to
drive effective discussions about what the system should do, with the result that everyone - the
team, management, and stakeholders - come to a shared understanding of what is going to get
built, and to continue these discussions throughout the project so that the right trade-offs can be
made when decisions must be made. A technique is good if it encourages open and frank
discussions, and it is bad if everyone is simply going through the motions. There is no "magic"
in any approach - they are just different representation techniques - so if you are not having the
right kind of discussions with the right people, your results will fall short of expectations.
Garbage in, garbage out.

Strengths and weaknesses of Use Cases

So what are use cases good for? My opinion is that they are very good for capturing flows of
behavior - i.e. first one thing happens, then another, then another, and so on. A flow is
inherently sequential, things happen in a specific order. There can be branches in the flow, but
there is still a flow. The structure of the use case description helps to organize the branches and
alternatives, and when done well comprehensibility is improved.

So what are use cases not particularly good for, or when is a different approach more
appropriate? I usually think of two things when this question arises: state-driven behavior, and
CRUD. In a system whose behavior is state-driven, often real-time systems, events can occur in
any order. The system's response to these events depends on the events that have already
occurred, which have resulted in the system being in a particular state or condition. While it is
not impossible to represent state-driven behavior in a use case, why bother? There is already a
well-established technique for dealing with these sort of problems called a state-machine
diagram. Because a state machine has no real "flow", it is difficult to represent the behavior as a
linear sequence of steps, and the strengths of the use case approach begin to break down and I've
found it more expedient to use other techniques.

The exception to this rule of thumb is the case where the behavior is state-driven, but where the
responses to the event is really a flow unto itself, where there are a series of steps that need to be
undertaken. Then you can use a state machine diagram to organize the use case into flows that
occur when the event is detected when the system is in a particular state.

The second thing I don't find use cases very useful for is what I call CRUD, which is short for
Create, Read, Update, Delete behavior. As I mentioned before, I think the use case technique is
useful for describing things that have a flow, but when the behavior is simply entering data,
validating data, storing data and simple retrieval of data (usually for editing), the resulting use
cases are not very interesting and are probably not the best way of describing the desired
behavior. A logical data model that describes the data and associated validation rules, coupled
with prototyping tools that can let you explore the look and feel of the editing experience tend to
be far more useful for achieving good results.

Strengths and weaknesses of Storyboarding and Prototyping

Storyboarding and prototyping can be thought of as more or less the same kind of thing - they
focus on creating a visualization of the user interface that implements some set of behaviors. A
storyboard tends to be more conceptual and still retains most of the flow information, but unlike
a use case a storyboard is usually focused on just one path through the behavior of interest, while
a use case captures all possible paths. Storyboards are often used as early, informal, prototypes
that evolve into richer executable prototypes over time.

With a prototype, it's harder to see the flow information. Some prototyping tools capture some
of the flow information for simulation purposes, but this information is usually not a complete

substitute for having a use-case description. Most often I find that the use case is useful as a kind
of "script" for walking through a prototype.

Prototypes are especially useful for capturing requirements related to the look and feel of the
solution - details that will clog a use-case description with unnecessary information, rendering it
unreadable.

So each of these different forms - use cases, storyboards, and prototypes - are useful for certain
kinds of information, and are not as useful for others. Taken together they are useful techniques
to have in your skill set as you work on the requirements of a system.

An analogy from the film industry

Taking a cue from Hollywood (or Bollywood, if that suits your tastes better) we can see how
different techniques similar to the ones described above can be used together. The analogue of
the use case model on a movie set is the script - it describes all the scenes (scenarios) of the
movie, and the dialogue, and some of the set directions, but it does not discuss "implementation"
details such as lighting, camera angles, and other things left up to the film crew.

As detailed as the script is, it is usually not sufficient to work out details such as the look and feel
of the movie, as well as various aspects of set layout, camera angle, and other technical aspects.
For this they use a storyboard, rough sketches of how the scenes will look when filmed.
Storyboards are also useful for communicating among all members of the cast and crew certain
critical ideas about how the movie will work. The movie storyboard has a similar roles to the
use-case storyboard in software development - the use-case storyboard is a way to explore
various aspects of look and feel without spending a lot of time and money on developing
something. The advent of easy to use prototyping tools may seem to remove some of the need
for use-case storyboarding, but my perspective is that the prototyping tools simply make it easier
to create storyboards quickly.

On a film, crews often shoot some early footage to prove out the ideas in the storyboards.
Sometimes they find that what they thought would look right does not actually work in reality.
Prototypes on software development projects play a similar role, and they are a natural
outgrowth of the storyboarding work. But just as the early footage is not a substitute for a script
(it's been tried, usually with dismal results), prototypes are usually not a substitute for having
use-case descriptions if the details of the flow are significant or complex in their structure.

How to use Use Cases, Storyboards and Prototyping together

On a typical project, the pattern of work goes something like this:

The project kicks off with a brainstorming session to establish goals and desired outcomes for
the project. This often takes a few discussions, and also can often benefit from having a skilled
facilitator leading the discussions to keep the extended team focused.

Once desired outcomes are known, it's useful to have a use-case workshop to brainstorm what
the system is going to have to do do deliver the desired outcomes. The result of this is a use-case
model, with brief descriptions of the use cases that articulate the desired outcomes the use cases
will produce. It is also a natural result of this workshop to start early drafts of outlines of flows
of events of the use cases, as well as informal sketches of user interfaces and a start on the use-
case storyboards. If this seems like a lot of work, keep in mind that everything is really just an
early working version at this point, just enough to drive ongoing discussion.

From here the work continues to evolve in parallel. Use cases that are mostly CRUD are
prototyped, reviewed with stakeholders and further evolved, and little or no work occurs on the
actual use-case description itself. Use cases with significant flow behavior are storyboarded and
discussed with stakeholders, all the while keeping the use-case description up to date. At some
point the storyboards will evolve into working prototypes, but the use-case description should
not be ignored as it will serve as useful input into test-case creation as well as providing useful
user documentation.

At some point the prototyping effort will evolve into writing real code, at which point the use
cases will serve mostly as reference on how things were supposed to work. Throughout this
process there should be more or less continuous informal reviews and feedback sessions, but
don't worry about sign-off - do this at iteration and phase boundaries. Remember - the goal is to
get a working system, not to get "requirements signed-off".

Working Iteratively

The most effective way to work after the initial use-case workshop early in the project is to break
the work into a series of iterations, with each iteration tackling a set of scenarios. A scenario is a
subset of a use case comprised of the basic flow plus zero or more alternative flows. How to
choose scenarios for iterations is a subject covered in some depth in "Managing Iterative
Software Development Projects" (see notes below) so I won't cover it here, but the general
principle is to choose the more technically challenging scenarios early so as to force the rapid
evolution of a stable architecture.

Within an iteration, you will take the rough outline of the scenario (if one was created as an
outcome of the use-case workshop) and work out the details of the flow of events, usually
working side-by-side with a subject matter expert from the line of business. As you work out
these details, it is often useful to create sketches of the user interface in the form of a storyboard,
and walk through the scenario using these storyboards. The interaction of walking through the
scenario using the storyboards will help to hone the flow of events description as you are forced
to think about the overall user experience. As the description evolves, the storyboards will
evolve into working prototypes, and these prototypes will evolve into code. The result of the
iteration will be, hopefully, a number of completed and tested scenarios.

The general way of working should be clear: you do not write complete use cases early in the
project, then storyboard, then prototype, then code. There is a natural and reinforcing parallelism
between working on the use-case descriptions, storyboarding, and prototyping, and these
activities flow together seamlessly during an iteration.

Conclusion

Use cases, storyboarding and prototyping are all useful techniques for eliciting and documenting
requirements. Separately, each has its own weaknesses, but together they provide a powerful
combination of techniques for working with requirements. Knowing how to do this is the trick,
but working scenario-by-scenario, iteration by iteration, the application of the techniques
becomes quite easy and natural, and your end results will be much improved.

About the Author

Kurt Bittner is CTO-Americas for Ivar Jacobson Consulting. He is the author of numerous
articles on software engineering, and is the co-author with Ian Spence of "Use Case Modeling",
published by Addison-Wesley in 2002, and "Managing Iterative Software Development
Projects", published by Addison-Wesley in 2006. His industry experience spans more
than twenty-four years of successfully applied iterative approaches to delivering software
solutions in a number of industries and problem domains, and he is a past contributor to the
Rational Unified Process.

About Ivar Jacobson Consulting

Ivar Jacobson Consulting provides worldwide leadership to help organizations deliver the right
solution to your business. Our combination of great people, innovative techniques and
technology and customer success make us unique. We combine the right combination of tools,
training and mentoring to ensure a consistent, sustainable approach to software development and
therefore successful delivery of software based solutions.

For more information, visit www.ivarjacobson.com or contact us directly:

Regional Office Email Phone
Americas us-enquiry@ivarjacobson.com 978-649-2856
Australia info@ivarjacobson.com.au + 61 2 9994 8993

China info@ivarjacobson.com +86-10-62091361
Scandinavia info@ivarjacobson.com +46 (0)8 501 64 170
Singapore info@ivarjacobson.com +65 9772 3538

United Kingdom info@ivarjacobson.com +44 (0)20 7025 8070

