
408 5 End-to-End Protocols

5.3.1 Bulk Transfer (BLAST)

The first problem we are going to tackle is

how to turn an underlying network that de-

livers messages of some small size (say, 1 KB)

into a service that delivers messages of a

much larger size (say, 32 KB). While 32 KB

does not qualify as “arbitrarily large,” it is

large enough to be of practical use for many

applications, including most distributed file

systems. Ultimately, a stream-based pro-

tocol like TCP (see Section 5.2) will be

needed to support an arbitrarily large mes-

sage, since any message-oriented protocol

will necessarily have some upper limit to the

size of the message it can handle, and you

can always imagine needing to transmit a

message that is larger than this limit.

We have already examined the basic

technique that is used to transmit a large

message over a network that can accommo-

date only smaller messages—fragmentation

and reassembly. We now describe the

BLAST protocol, which uses this tech-

nique. One of the unique properties of

BLAST is how hard it tries to deliver all

the fragments of a message. Unlike the

AAL segmentation/reassembly mechanism

used with ATM (see Section 3.3) or the IP

fragmentation/reassembly mechanism (see

Section 4.1), BLAST attempts to recover

from dropped fragments by retransmitting

them. However, BLAST does not go so far

as to guarantee message delivery. The sig-

nificance of this design choice will become

clear later in this section.

What Layer Is RPC?

Once again, the “What layer is

this?” issue raises its ugly head.

To many people, especially those

who adhere to the Internet archi-

tecture, RPC is implemented on

top of a transport protocol (usu-

ally UDP) and so cannot itself (by

definition) be a transport protocol.

It is equally valid, however, to ar-

gue that the Internet should have

an RPC protocol, since it offers

a process-to-process service that is

fundamentally different from that

offered by TCP and UDP. The

usual response to such a sugges-

tion, however, is that the Internet

architecture does not prohibit net-

work designers from implementing

their own RPC protocol on top of

UDP. (In general, UDP is viewed

as the Internet architecture’s “es-

cape hatch,” since effectively it just

adds a layer of demultiplexing to

IP.) Whichever side of the issue of

whether the Internet should have

an official RPC protocol you sup-

port, the important point is that

the way you implement RPC in

the Internet architecture says noth-

ing about whether RPC should be

BLAST Algorithm

The basic idea of BLAST is for the sender to break a large message passed to it by

some high-level protocol into a set of smaller fragments, and then for it to transmit



5.3 Remote Procedure Call 409

considered a transport protocol or

not.

Interestingly, there are other

people who believe that RPC is

the most interesting protocol in the

world and that TCP/IP is just what

you do when you want to go “off

site.” This is the predominant view

of the operating systems commu-

nity, which has built countless OS

kernels for distributed systems that

contain exactly one protocol—you

guessed it, RPC—running on top of

a network device driver.

The water gets even mud-

dier when you implement RPC as

a combination of three different

microprotocols, as is the case in this

section. In such a situation, which

of the three is the “transport” pro-

tocol? Our answer to this ques-

tion is that any protocol that offers

process-to-process service, as op-

posed to node-to-node or host-to-

host service, qualifies as a transport

protocol. Thus, RPC is a transport

protocol and, in fact, can be im-

plemented from a combination of

microprotocols that are themselves

valid transport protocols.

these fragments back-to-back over the

network. Hence the name BLAST—the pro-

tocol does not wait for any of the frag-

ments to be acknowledged before send-

ing the next. The receiver then sends

a selective retransmission request (SRR)

back to the sender, indicating which frag-

ments arrived and which did not. (The

SRR message is sometimes called a par-

tial or selective acknowledgment.) Finally,

the sender retransmits the missing frag-

ments. In the case in which all the frag-

ments have arrived, the SRR serves to fully

acknowledge the message. Figure 5.13 gives

a representative timeline for the BLAST

protocol.

We now consider the send and re-

ceive sides of BLAST in more detail. On

the sending side, after fragmenting the mes-

sage and transmitting each of the fragments,

the sender sets a timer called DONE. When-

ever an SRR arrives, the sender retransmits

the requested fragments and resets timer

DONE. Should the SRR indicate that all

the fragments have arrived, the sender frees

its copy of the message and cancels timer

DONE. If timer DONE ever expires, the

sender frees its copy of the message; that

is, it gives up.

On the receiving side, whenever the

first fragment of a message arrives, the re-

ceiver initializes a data structure to hold the

individual fragments as they arrive and sets

a timer LAST FRAG. This timer counts the

time that has elapsed since the last fragment

arrived. Each time a fragment for that message arrives, the receiver adds it to this data

structure, and should all the fragments then be present, it reassembles them into a

complete message and passes this message up to the higher-level protocol. There are

four exceptional conditions, however, that the receiver watches for:



410 5 End-to-End Protocols

Sender Receiver

Fragment 1
Fragment 2Fragment 3

Fragment 5

Fragment 4

Fragment 6

Fragment 3
Fragment 5

SRR

SRR

Figure 5.13 Representative timeline for BLAST.

! If the last fragment arrives (the last fragment is specially marked) but

the message is not complete, then the receiver determines which fragments

are missing and sends an SRR to the sender. It also sets a timer called

RETRY.

! If timer LAST FRAG expires, then the receiver determines which fragments

are missing and sends an SRR to the sender. It also sets timer RETRY.

! If timer RETRY expires for the first or second time, then the receiver deter-

mines which fragments are still missing and retransmits an SRR message.

! If timer RETRY expires for the third time, then the receiver frees the fragments

that have arrived and cancels timer LAST FRAG; that is, it gives up.

There are three aspects of BLAST worth noting. First, two different events trigger

the initial transmission of an SRR: the arrival of the last fragment and the firing of the

LAST FRAG timer. In the case of the former, because the network may reorder packets,



5.3 Remote Procedure Call 411

the arrival of the last fragment does not necessarily imply that an earlier fragment is

missing (it may just be late in arriving), but since this is the most likely explanation,

BLAST aggressively sends an SRR message. In the latter case, we deduce that the last

fragment was either lost or seriously delayed.

Second, the performance of BLAST does not critically depend on how carefully

the timers are set. Timer DONE is used only to decide that it is time to give up

and delete the message that is currently being worked on. This timer can be set to a

fairly large value since its only purpose is to reclaim storage. Timer RETRY is only

used to retransmit an SRR message. Any time the situation is so bad that a protocol

is reexecuting a failure recovery process, performance is the last thing on its mind.

Finally, timer LAST FRAG has the potential to influence performance—it sometimes

triggers the sending by the receiver of an SRR message—but this is an unlikely event:

It only happens when the last fragment of the message happens to get dropped in the

network.

Third, while BLAST is persistent in asking for and retransmitting missing frag-

ments, it does not guarantee that the complete message will be delivered. To understand

this, suppose that a message consists of only one or two fragments and that these frag-

ments are lost. The receiver will never send an SRR, and the sender’s DONE timer

will eventually expire, causing the sender to release the message. To guarantee deliv-

ery, BLAST would need for the sender to time out if it does not receive an SRR and

then retransmit the last set of fragments it had transmitted. While BLAST certainly

could have been designed to do this, we chose not to because the purpose of BLAST is

to deliver large messages, not to guarantee message delivery. Other protocols can be

configured on top of BLAST to guarantee message delivery. You might wonder why

we put any retransmission capability at all into BLAST if we need to put a guaran-

teed delivery mechanism above it anyway. The reason is that we’d prefer to retransmit

only those fragments that were lost rather than having to retransmit the entire larger

message whenever one fragment is lost. So we get the guarantees from the higher-level

protocol but some improved efficiency by retransmitting fragments in BLAST.

BLAST Message Format

The BLAST header has to convey several pieces of information. First, it must contain

some sort of message identifier so that all the fragments that belong to the same

message can be identified. Second, there must be a way to identify where in the original

message the individual fragments fit, and likewise, an SRR must be able to indicate

which fragments have arrived and which are missing. Third, there must be a way to

distinguish the last fragment, so that the receiver knows when it is time to check to

see if all the fragments have arrived. Finally, it must be possible to distinguish a data



412 5 End-to-End Protocols

Data

ProtNum

MID

Length

NumFrags Type

FragMask

0 16 31

Figure 5.14 Format for BLAST message header.

message from an SRR message. Some of these items are encoded in a header field in an

obvious way, but others can be done in a variety of different ways. Figure 5.14 gives

the header format used by BLAST. The following discussion explains the various fields

and considers alternative designs.

The MID field uniquely identifies this message. All fragments that belong to the

same message have the same value in their MID field. The only question is how many

bits are needed for this field. This is similar to the question of how many bits are needed

in the SequenceNum field for TCP. The central issue in deciding how many bits to use

in the MID field has to do with how long it will take before this field wraps around

and the protocol starts using message ids over again. If this happens too soon—that

is, the MID field is only a few bits long—then it is possible for the protocol to become

confused by a message that was delayed in the network, so that an old incarnation of

some message id is mistaken for a new incarnation of that same id. So, how many bits

are enough to ensure that the amount of time it takes for the MID field to wrap around

is longer than the amount of time a message can potentially be delayed in the network?

In the worst-case scenario, each BLAST message contains a single fragment that is

1 byte long, which means that BLAST might need to generate a new MID for every byte

it sends. On a 10-Mbps Ethernet, this would mean generating a new MID roughly once

every microsecond, while on a 1.2-Gbps STS-24 link, a new MID would be required

once every 7 nanoseconds. Of course, this is a ridiculously conservative calculation—

the overhead involved in preparing a message is going to be more than a microsecond.

Thus, suppose a new MID is potentially needed once every microsecond, and a mes-

sage may be delayed in the network for up to 60 seconds (our standard worst-case



5.3 Remote Procedure Call 413

assumption for the Internet); then we need to ensure that there are more than 60

million MID values. While a 26-bit field would be sufficient (226 = 67,108,864), it is

easier to deal with header fields that are even multiples of a byte, so we will settle on

a 32-bit MID field.

! This conservative (you could say paranoid) analysis of the MID field illustrates an

important point. When designing a transport protocol, it is tempting to take shortcuts,

since not all networks suffer from all the problems listed in the problem statement at

the beginning of this chapter. For example, messages do not get stuck in an Ethernet

for 60 seconds, and similarly, it is physically impossible to reorder messages on an

Ethernet segment. The problem with this way of thinking, however, is that if you want

the transport protocol to work over any kind of network, then you have to design for

the worst case. This is because the real danger is that as soon as you assume that an

Ethernet does not reorder packets, someone will come along and put a bridge or a

router in the middle of it.

Let’s move on to the other fields in the BLAST header. The Type field indicates

whether this is a DATA message or an SRR message. Notice that while we certainly don’t

need 16 bits to represent these two types, as a general rule we like to keep the header

fields aligned on 32-bit (word) boundaries, so as to improve processing efficiency.

The ProtNum field identifies the high-level protocol that is configured on top of BLAST;

incoming messages are demultiplexed to this protocol. The Length field indicates how

many bytes of data are in this fragment; it has nothing to do with the length of the

entire message. The NumFrags field indicates how many fragments are in this message.

This field is used to determine when the last fragment has been received. An alternative

is to include a flag that is only set for the last fragment.

Finally, the FragMask field is used to distinguish among fragments. It is a 32-bit

field that is used as a bit mask. For messages of Type = DATA, the ith bit is 1 (all

others are 0) to indicate that this message carries the ith fragment. For messages of

Type = SRR, the ith bit is set to 1 to indicate that the ith fragment has arrived, and it

is set to 0 to indicate that the ith fragment is missing. Note that there are several ways

to identify fragments. For example, the header could have contained a simple “frag-

ment ID” field, with this field set to i to denote the ith fragment. The tricky part with

this approach, as opposed to a bit-vector, is how the SRR specifies which fragments

have arrived and which have not. If it takes an n-bit number to identify each missing

fragment—as opposed to a single bit in a fixed-size bit-vector—then the SRR message

will be of variable length, depending on how many fragments are missing. Variable-

length headers are allowed, but they are a little trickier to process. On the other hand,

one limitation of the BLAST header given above is that the length of the bit-vector

limits each message to only 32 fragments. If the underlying network has an MTU of

1 KB, then this is sufficient to send up to 32-KB messages.


