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Abstract

We present the Internet Key Service (IKS), a distributed
architecture for authenticated distribution of public keys,
layered on Secure DNS (DNSSEC). Clients use DNSSEC to
securely discover the identities of the relevant IKS servers,
and send key lookup or management requests directly to
these servers using a special-purpose protocol. Clients au-
thenticate keys retrieved from IKS servers using key commit-
ments published in DNSSEC. IKS derives its authentication
authority from the authority DNS domains have over Inter-
net names. The IKS architecture is loosely coupled with
DNS to minimize overhead on DNS servers. We also present
RIKS, a prototype IKS implementation.

1. Introduction

Digital communication has become pervasive, but there
are few guarantees that such communications are secure and
private. Indeed, security and privacy threats, long seen as
hypothetical, are already real; in 2004, for the first time
ever, an arrest was publicly acknowledged as having re-
sulted from passive email monitoring [2].

Though cryptographic techniques exist that can address
these concerns, no infrastructure is available to facilitate
their use by a variety of applications, and across the In-
ternet. Cryptography has been most successfully deployed
in protocols where a clear client-server relationship ex-
ists, such as Secure Socket Layer/Transport Layer Security
(SSL/TLS) [22, 13], and Secure Shell (SSH) [50]. While
proposals exist for securing less hierarchical applications,
such as the Privacy Enhanced Mail (PEM) [32], and Se-
cure Multimedia Internet Mail Extensions (S/MIME) [29]
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specifications for securing email, they have not been widely
adopted.

1.1. The Internet Key Service

We focus on a capability crucial to pervasive adop-
tion of cryptography: simple, scalable, authenticated pub-
lic key distribution. We present the Internet Key Service
(IKS), a practical and deployable architecture for providing
application-independent public key distribution layered on
top of Secure DNS (DNSSEC). Our approach is flexible and
extensible, and can store and serve a variety of key types in
support of a variety of applications.

The Internet Key Service bases its key-authentication au-
thority on DNS’s authority to manage Internet names. This
is a significant feature, since all global names encountered
on the Internet, regardless of their syntax or structure, ulti-
mately represent resources or entities that are only address-
ible over the network as a part of the DNS namespace. A
DNS domain has naming authority over the objects that be-
long to it so, in this sense at least, all names are ultimately
DNS names.

The DNS namespace is the Internet-wide standard for
defining who has control over which names. IKS is loosely
coupled to DNS, so that it can provide specialized key dis-
tribution protocols without requiring changes to or impos-
ing significant overhead on DNS.

The remainder of this document is organized as follows:
Section 2 provides necessary background. Section 3 briefly
surveys related work. Section 4 gives a high-level view of
our proposed solution. Section 5 delves deeper into the pro-
tocol design. Section 6 presents the Riverside Internet Key
Server (RIKS) our proof-of-concept implementation of the
IKS. Finally, Section 7 summarizes our findings, and points
out avenues for future exploration.



2. Background

We assume familiarity with asymmetric (public key)
cryptography, digital signatures and one-way hash func-
tions. Readers unfamiliar with these topics are encouraged
to consult a cryptography text, such as [42].

2.1. Key Authentication

Key authentication is the process of validating the bind-
ing of a cryptographic key to a named entity. Public key
cryptosystems simplify, but do not solve, the problem of
key distribution, since public keys must be authenticated to
prevent impersonation and man-in-the-middle attacks. The
most widely used approaches for solving the key authenti-
cation problem are the certifying authority model, exempli-
fied by SSL/TLS, and the web-of-trust model, exemplified
by Pretty Good Privacy (PGP).

Certifying Authorities. The certifying authority (CA)
model assumes a small number of highly trusted individuals
or organizations. Each key-identity binding must be certi-
fied by one of these trusted entities. Certificate verification
requires the certifier’s public key to first be authenticated.
In practice, a small set of root certificates, which are public
keys for various recognized certifying authorities, are typi-
cally preloaded into the cryptographic application.

Webs Of Trust. The web-of-trust model, relies on peers to
vouch for the validity and trustworthiness of other peers. An
unfamiliar key is accompanied by affirmations (digital sig-
natures) from a set of community members who assert that
the provided key is associated with the claimed identity. A
recipient accepts the key only upon receiving enough veri-
fiable affirmations from individuals that they trust.

IKS follows the certifying authority model; the IKS server
for a domain acts as a CA for that domain and its public key
can be authenticated by its key commitment published via
DNSSEC.

2.2. The Domain Name System (DNS)

The Domain Name System (DNS) [36] is the most effec-
tive and widely-used mechanism for name registration and
resolution on the Internet, and is a critical component of the
Internet infrastructure. DNS names are assigned from a hi-
erarchical namespace, and organizations are granted control
over a sub-tree rooted at the domain they have registered.
The DNS top-level domains (e.g. .com, .org, .edu, .us, .uk)
are administered by ICANN. Domain administrators man-
age DNS servers to provide authoratitive answers to queries
regarding the domain and to participate in resolving DNS
queries for clients belonging to the domain.

Security was not a primary consideration during the de-
sign and implementation of DNS. Its security shortcomings
were first discussed in [7, 47]. The Internet Engineering
Task Force (IETF) launched the DNSSEC effort in 1993 to
secure DNS. Presently, the DNSSEC working group pro-
posal is nearing operational readiness, bringing with it the
promise of a trustworthy name service.

2.3. DNSSEC Overview

DNSSEC is a collection of proposals for securing the
data stored in DNS. Using cryptographic techniques, re-
sponses can be strongly authenticated, greatly reducing the
potential for abuse present in the current DNS. An IETF
draft [5] enumerates the threats DNSSEC is intended to
guard against. We focus here on the portions of DNSSEC
relevant to our work. A detailed overview appears in [3].

Zone Signing. A DNSSEC-enabled DNS server responsi-
ble for a given domain (called a zone) signs the resource
records comprising the zone with a public/private key pair
bound to that zone, and delivers those signatures to querying
clients. These Resource Record SIGnatures are stored in a
new DNS record type, RRSIG, which contains a signature
that authenticates a specific named set of resource records
(RRSet). Each named resource in a secured DNS zone will
have at least one associated RRSIG record.

DNSSEC responds to a query from a DNSSEC-enabled
client with the DNS record for the name specified, along
with the associated RRSIG record. The client obtains the
public key associated with the zone and verifies the pro-
vided signature. If the signature is valid, the client can trust
that the response was provided by the authoritative source.

Key Distribution in DNSSEC. To verify signatures, the
client must be either statically configured with the public
key for the queried zone (the zone key), or be able to obtain
and authenticate it. To facilitate distribution of zone keys,
DNSSEC defines a DNSKEY resource record type.

A DNS client queries for a zone key in the same way it
queries for any other DNS record type. To authenticate the
retrieved key, the DNSKEY record must be signed by a key
which the client has previously authenticated, typically the
key of the parent domain. By recursively requesting keys
and moving up the DNS hierarchy, the client will either find
a trusted key, or exhaust the name space without doing so,
causing the key authentication attempt to fail. (This descrip-
tion is conceptually sufficient, but not technically precise.
Full details are in [27].)

DNSSEC Implementation Status. DNSSEC has recently
matured into an implementable system. An IETF draft ex-
ists that updates RFC 2535 and details the DNS protocol
changes required to support DNSSEC [4]. A DNSSEC de-
ployment working group has been formed with support of



NIST and ICANN. Consensus is growing that DNSSEC is
largely ready for deployment, and that 2006 may see the
beginnings of wide-spread adoption.

2.4. Barriers to Distributing Keys in DNS

Unfortunately, DNSSEC does not generally solve au-
thenticated key distribution. The KEY record was originally
intended to store various key types, including application
keys [14]. This decision was explicitly reversed due to scal-
ability concerns, query interface limitations, and adminis-
trative authority mismatches [33].

Scalability. Proposals to house per-user information in
DNS did not anticipate that the growth in Internet user pop-
ulation would far surpass the growth in DNS-registered host
systems. Estimates for 2004 suggest about 945 million
users [11], compared with 230 million hosts [30].

Adding DNSSEC signature records to a zone increases
the size of the zone data by a factor of 8 or 9 [24],
and adding per-user keys and their signatures would fur-
ther increase the size of the zone data. Finally, DNS
has been designed and optimized for very small (∼300 B)
query/response exchanges. Returning key data and associ-
ated signatures (∼1.2 KB) in DNS responses would signifi-
cantly increase network load.

Query Interface. The DNS query interface does not
match the requirements of an application seeking authenti-
cated key distribution. Different types of keys stored in KEY
records were to be differentiated by subtype, so that a single
named entity may have multiple key records, each storing a
different type of key. Unfortunately, the DNS resolver in-
terface does not support query by subtype, so the client was
forced to retrieve all key records present for the named en-
tity before sifting through the results for the “right one.”
Since DNSSEC internally requires keys retrieved from for-
eign servers, this affected not only applications but the effi-
ciency of the name service itself.

Administrative Authority. DNS data tends to change
slowly and is under the control of a domain administrator.
Allowing users some level of direct control over their keys
would violate the existing administrative model. Support-
ing dynamic DNS update in the context of DNSSEC is dif-
ficult in general; RFC 3007 discusses it in detail and several
researchers have contributed solutions [20, 48].

3. Related Work

Here we briefly survey previous approaches to key dis-
tribution, from application-specific to general approaches.

3.1. In-Band Key Transmission

A common approach to key distribution is to relegate it to
the communication protocol. The SSH and SSL/TLS proto-
cols both transmit the necessary keying information during
connection setup, but use different authentication methods.

Secure Shell (SSH). SSH performs initial key authentica-
tion by asking the user to certify the key-host association. A
hash of the public key (a key fingerprint) is then stored lo-
cally. Subsequent connections use this stored fingerprint to
authenticate known hosts without further user intervention.

This approach assumes that the end-user will know the
appropriate key fingerprint during initial connection setup.
While it limits the window for a successful attack to the
initial connection, it does not eliminate the threat. This is
generally an acceptable level of risk mitigation when trust
relationships are fairly static (users tend to repeatedly con-
nect to the same small set of hosts). However, this sort of
manual, out-of-band, process is not viable when the trust
relationships are more dynamic (i.e. end-user to end-user
communication).

Secure Socket Layer (SSL/TLS). SSL/TLS uses the cer-
tifying authority model; the connecting client is provided
with the server’s certificate, signed by one or more CAs.
Clients (such as web browsers) are preconfigured with a
number of “root certificates,” which are public keys of
trusted CAs. If the certificate provided by the server has
been signed by a statically known certifying authority, the
connection is established without user intervention.

3.2. Dedicated Key Distribution Services

Another approach to key distribution is to deploy a dedi-
cated distributed service to handle the registration and query
of public keys. Several proposals have been made, mainly
differing on how keys are named and bound to individuals,
how clients verify responses, and how servers distribute the
responsibility of key distribution.

PGP/GPG. The MIT Pretty Good Privacy (PGP) key
server is perhaps the best known dedicated key distribution
service. PGP and Gnu Privacy Guard (GPG) [25] support
locating and publishing keys via the PGP key-server.

SDSI/SPKI. The Simple Distributed Security Infrastruc-
ture (SDSI) [38] was intended as an integrated solution
to authentication and authorization based on capabilities.
This proposal has subsequently been incorporated into the
IETF’s Simple Public Key Infrastructure (SPKI) working
group’s proposal [19]. In SPKI certificates bind specific au-
thorizations to keys. Names in SPKI can be assigned to
keys and can exist in a local namespace or rooted in a global
namespace such as DNS.



SPKI effectively switches from a model that separates
authentication from authorization to a model that performs
these functions jointly. This pushes the burden of key dis-
tribution onto applications making authorization choices
about the resources they control. These requirements have
significantly hindered the further development and deploy-
ment of SPKI.

Scalable Key Distribution Hierarchy. McDaniel and
Jamin [34] describe a scheme for a hierarchical set of certifi-
cate servers similar in capabilities to the certification author-
ity requirements outlined in the Privacy Enhanced Email
(PEM) specification [32]. The authors describe their de-
sign, which is based on a well-meshed trust graph and is
not directly related to the DNS namespace, and examine
its behavior under hypothesized load. They do not discuss
operational issues such as off-line signing keys and hetero-
geneous keys.

3.3. Distribution by Directory Service

Many proposals have chosen to incorporate key distribu-
tion into existing directory services.

X.500, LDAP. ISO and CCITT maintain recommendations
for distributed replicable directory services under the name
X.500 [31]. Clients typically access these directories us-
ing the LDAP protocol defined in RFC 1487. Configuration
and maintenance of X.500/LDAP directories is perceived as
difficult and complex. Standard schemas exist for various
object types, including X.509 certificates [9], but are not
always used and LDAP is often forbidden across network
boundaries, creating disconnected islands of information.

Most damagingly, X.500 complexity is exposed be-
yond implementor and administrator. Users searching an
X.500/LDAP directory must specify values for unfamiliar
terms such as “Search Base” and “Search Scope.” Correct
values are required to obtain useful search results, and most
tools provide little guidance. X.500/LDAP has not emerged
as a practical Internet-wide key distribution tool.

DNS. Efforts have been made to standardize storing keys of
various types [15, 18, 16, 17, 41] and X.509 certificates [18]
within DNS. Yahoo! has submitted an IETF draft [12] that
describes using DNS to distribute public keys for authenti-
cating email delivery.

The FreeS/WAN Project [21], an open source IPSec im-
plementation, supports “opportunistic encryption;” by auto-
matically retrieving host keys from DNS, end-to-end IPSec
encryption can be setup without user intervention. While
the FreeS/WAN solution made retrieving keys from DNS
invisible, it did not address key publication.

In [23], Galvin presented an overview of DNSSEC and
briefly discussed the potential for using DNSSEC to dis-
tribute end-user public keys. In a subsequent RFC [6] the

author describes a DNS key exchange record type with se-
mantics similar to DNS mail exchange records. Though fo-
cus was on IPSec, the author briefly describes the potential
for this mechanism to delegate authority to a more general
key distribution center.

3.4. Identity Based Encryption (IBE)

Identity-based cryptography addresses the key distribu-
tion problem by allowing a sender to directly derive a public
key from a recipient’s name. Each recipient obtains its se-
cret key from a trusted key generator, which generates this
private key from the receiver’s name, public system param-
eters, and a system secret. Since the key generator knows
all private keys, this system implies key escrow. The work
in [44] describes a domain-level key-distribution scheme
using the identity based encryption scheme of Boneh and
Franklin [10]. Requiring key escrow is not generally ac-
ceptable and even careful implementations carry significant
risks [1].

4. The Internet Key Service

Instead of placing cryptographic keys directly in DNS,
as previously proposed, we use DNSSEC for authenticated
delegation. This approach imposes minimal overhead on
DNS. As we argued in Section 1.1, DNS’s role in naming is
a fundamental aspect of the Internet, so any mechanism to
bind keys to named entities on the Internet must derive its
authority from DNS. All names addressible over the Inter-
net are ultimately reducible to DNS names, and all authority
to bind names to objects must ultimately derive from the au-
thority DNS has over names. This basic observation drives
our design of IKS.

Previous proposals for authenticated key distribution in
the Internet have failed either because they were unable to
root their authentication mechanisms in DNS, or because
they used DNS directly to manage keys, leading to the prob-
lems discussed in Section 2.4.

The Internet Key Service addresses these problems by
using DNSSEC to securely delegate a part of DNS’s author-
ity over name resolution to a specialized service designed to
meet the requirements of authenticated key distribution. No
natural secure delegation mechanism existed for the Internet
prior to DNSSEC. The imminent deployment of DNSSEC
has made the key distribution problem tractable.

4.1. IKS Overview

IKS allows public keys to be registered to any entity that
can be assigned a DNS name, such as a host, user, or service
port. These keys are stored in and managed by IKS servers,
which may be discovered securely through DNSSEC. In
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Figure 1. IKS Architecture: Naming and au-
thentication authority is placed in DNS and
IKS, which clients use to resolve names se-
curely.

turn, IKS servers handle key registration and lookup re-
quests for names belonging to a specific DNS domain in
an authenticated manner.

A client wishing to register or retrieve a public key for a
DNS named entity first uses DNSSEC to discover and ver-
ify the identity of an IKS server responsible for that domain.
The client then sends the key-registration or lookup request
to this server using the IKS protocol, and authenticates the
server’s responses using key commitments placed in DNS.
One can now guarantee that the requests have been pro-
cessed by a server to which key management authority for
the domain was properly delegated. These keys may now
be used for establishing secure communications channels
or validating digital signatures with confidence. Figure 1
shows high-level information flows in the Internet Key Ser-
vice architecture.

Since each domain administers its own IKS server (or
delegates this task to a trusted organization) there are
no communications between IKS servers for different do-
mains. IKS operation is thus structured differently from
that of DNS. With authenticated delegation, we avoid the
bottlenecks that can arise in DNS-like hierarchies.

4.2. Design Requirements/Constraints

We have designed IKS to meet the following require-
ments, which we feel are essential for a succesful secure
key distribution service for the Internet.

Authority: The service’s authority to bind DNS names to
keys must derive from DNS’s naming authority.

Scalability: The service must not result in a substantial in-
crease in load on DNS.

Compatibility: Changes to DNS must be avoided. The
service must not create new resource record types.

Flexibility: Domain- and application- specific mechanisms
for authenticating users during key registration must be
supported.

Efficiency: The number of required messages must be
small for performance and reliability reasons.

Generality: Service mechanisms must be application-
independent. The key service must honor the end-to-
end principle, providing service to any application.

Security: To protect the private signing keys, key registra-
tion and query servers should have limited contact with
the system’s key-signing keys.

Consistency: The key-authentication guarantees expected
by an end-user (the “user-model”) must be consistent
with the guarantees actually provided by the system
(the “system model”).

4.3. IKS Architecture

Our use of DNSSEC for authenticated delegation pro-
vides both a secure hand-off between DNS and IKS servers,
and a mechanism for authenticating server responses. Each
participating DNS domain delegates to one or more IKS
servers the responsibility for handling IKS requests. This
delegation is accomplished by adding resource records to
the DNS zone, and is under the domain administrator’s di-
rect control. There is no implicit delegation in IKS; a do-
main that does not explicitly publish delegation records is
choosing not to participate in IKS.

To allow clients to validate responses, IKS servers sign
all keys returned with a named key-signing key (KSK), the
public half of which is committed in DNSSEC. This com-
mitment can be securely retrieved and used in verification.

Registration acknowledgments and query failure re-
sponses are signed on-line with a response-signing key
(RSK), the public half of which can be retrieved from the
IKS. Using the KSK for this purpose would require on-line
use of its secret half, placing the KSK itself at risk.

Our scheme is conceptually independent of DNSSEC,
relying only on the presence of some trustworthy name ser-
vice; the impact of changes to DNSSEC standards on our
proposal is likely to be minimal. Unlike previous attempts
to distribute keys via DNS(SEC), our proposal avoids the
three pitfalls enumerated in Section 2.4: poor scalability,
poor query interface, and mismatch of administrative au-
thority.

Scalability. By layering IKS over DNS, we decentral-
ize key distribution without impeding scalability. The ad-
ditional data placed in DNS (delegation records and KSK
commitments) is negligible, and does not increase with the
number of keys active in the system. The DNS overhead for



discovering delegations and retrieving KSK commitments
is comparable to that for resolving other services (say, the IP
address of a website). IKS permits domain administrators
wide latitude in distributing key management workloads,
say, using a simple weighted load balancing across a group
of IKS servers. Our design thus supports system scalability.

Query Interface. IKS uses a specialized query and reg-
istration protocol which provides the appropriate level of
expressiveness for key registration and distribution. Clients
can perform narrow searches, based on attributes such as
key length, cryptographic algorithm, and key-container for-
mat, to discover keys suitable for their purposes.

Administrative Authority. Unlike proposals to distribute
keys in DNS, IKS places minimal burden on DNS admin-
istrators, and does not cause rapid changes to DNS zone
data. The delegation records for a given domain are static,
and publication and revocation of key-signing keys are in-
frequent events, not driven by end-user behavior.

5. Protocol Overview

We introduce IKS by showing how to fetch and register
keys. We briefly discuss key revocation in IKS.

5.1. Key Lookup

A name N = (E,D) consists of two components: the
entity part E that designates the user, host, or communica-
tion endpoint, and the domain part D, which is a DNS do-
main name. A query specifies a name N and a set of key
selection criteria C, and is processed as follows.

1. Query DNSSEC for the IKS server for domain D.

2. Send a key-query message to the IKS server for N.

3. IKS responds with metadata for all public keys regis-
tered for N, signed with a key-signing key (KSK).

4. Validate the IKS response as follows:

(a) Fetch the KSK from the IKS server.
(b) Request DNS for the commitment for this KSK.

Validate the response using DNSSEC zone sig-
natures.

(c) Validate the KSK using this commitment.
(d) Verify the IKS signature on the metadata for N’s

keys using the KSK.

5. At the client end, the key metadata are processed, and
keys matching the criteria C are identified. These keys
are fetched from IKS and verified.

If N has no keys published in IKS the query server gener-
ates a negative response signed with a response-signing key
(RSK) registered in IKS.

Trust Guarantees for IKS Responses. In accordance with
the consistency constraint (Section 4.2) we explicitly state
the guarantee made by IKS. A valid signature on a query
response indicates that

1. The IKS server for domain D asserts that the key pro-
vided is bound to name N in domain D.

2. The administrators of domain D have verified, to the
extent they see fit, that the key in question was regis-
tered in the IKS for domain D by the user or agent in
control of name N.

IKS offers no guarantees about how verification was per-
formed during key registration. IKS is decoupled from any
standards or protocols for identity verification within do-
mains. Clients receiving validated query responses from
domain D decide for themselves what trust to place in D.
IKS insulates the end-user from the complexities of key dis-
tribution, but does not pretend to make guarantees about the
trustworthiness of domains. In all contexts, including IKS,
one must not confuse authentication with trustworthiness.

5.2. Key Registration

Given a target name N = (E,D) and a public key K,
registration proceeds as follows:

1. Query DNSSEC for the IKS server for domain D.

2. Send a key-registration message to the IKS server
specifying entity N, the key K, relevant metadata (per-
mitted uses, expiration date, and so on), and authenti-
cation information.

3. If authentication succeeds, and the registration is au-
thorized, the server returns a success message signed
by a named response-signing key (RSK). The client
can authenticate this RSK and the response as it does
for other key lookups.

If authentication fails, the registration server generates a
signed response indicating acceptable methods of authenti-
cation to guide the client in completing this transaction. As
with negative query responses these authentication failure
responses are signed with a response-signing key (RSK).

Authentication During Registration. The flexibility con-
straint (Section 4.2) grants the registration servers latitude
in performing authentication when keys are registered.

To ensure correct operation in domains using different
authentication standards, we have recognized three different
authentication mechanisms as appropriate for IKS. Each do-
main supports a subset of these mechanisms, as determined
by its local security policies.

Username/Password: A registrant may authenticate to an
IKS server using a shared secret, such as a username



and password. An RSA encryption key is published
in IKS, which registrants may use to securely send the
secret to the server.

User Key Management: A client acting on behalf of a
registrant U may authenticate its request by signing it
with a special purpose key, which has been registered
to U using IKS.

Third-Party Authentication: IKS supports other, possi-
bly domain-specific, authentication methods by allow-
ing the authentication of requests based on signatures
using other certifying keys, again published via IKS.
The private half of these keys can be distributed to
a number of third-party authentication servers, which
can implement arbitrary authentication protocols and
use signatures with these keys to validate their authen-
tication with the IKS server. These external authenti-
cation protocols are outside of the scope of IKS.

In practice, it is likely that the Username/Password and
User Key Management authentication methods will be suf-
ficient for the majority of IKS installations.

5.3. Key Revocation

When a key is registered in IKS an optional expiration
time may be provided to allow for the graceful expiration
of old keys. IKS also supports a simple key revocation
mechanism for the exceptional case where a compromised
key must be revoked before its expiration time. In such an
event, the key’s holder must detect the key compromise and
submit an authenticated key revocation request to the IKS
server. We note that mechanisms for detecting key compro-
mises and timely revocation are application specific, and a
generally open problem outside the scope of IKS. Once a
key revocation request is authenticated and accepted by the
IKS server, the key’s IKS entry is updated and a signed key
revocation response is published in IKS.

To reduce the dangers presented by compromised keys,
IKS implementations must seek to minimize the delay be-
tween the acceptance of a key revocation request and the
publication of the signed key revocation. Caching of IKS
responses by clients reduces reduce IKS server loads, but
complictes the challenge of key revocation, since clients are
guaranteed to refresh their caches only upon key certificate
expiration. IKS implementations may choose short key cer-
tificate lifetimes to mitigate this problem.

5.4. Locating an IKS Server

A fundamental issue is how a client identifies the IKS
servers responsible for a domain. We use the existing SRV
record type, intended for service location [28]. DNS SRV

records are intended to allow clients to perform service dis-
covery using DNS. As defined in RFC 1700, a client locates
a server for service S running a protocol P in domain D,
through a DNS query for S. P.D. The response includes
a list of (host, port) pairs, along with a priority for
each matching record and a weight used to distribute load
across servers of the same priority. To locate a server using
DNS SRV records, a client must first know the service and
protocol names. Since key lookups may be handled by a dif-
ferent set of servers than registration requests, we use two
distinct service names; ikqs, for “Internet Key-Query Ser-
vice”, and ikrs, for “Internet Key-Registration Service,”.
These IKS services both utilize the TCP protocol.

The IKS for a domain need not actually be hosted in or
by the owner of the domain. The domain administrator may
delegate this function by adding the required SRV records.
We see the potential for organizations, possibly existing cer-
tifying authorities who already have a good understanding
of the operational security issues involved in key manage-
ment, to offer IKS services to domain administrators.

5.5. Message Marshalling and Transport

We have chosen XML as the format for IKS messages
to ensure compatibility with the dominant message format
protocol and the dominant class of applications on the Inter-
net. It is relatively straightforward for a client to parse and
to generate the simple XML messages used in IKS.

Marshalling. The World Wide Web Consortium (W3C)
has published a multi-part recommendation called SOAP
(Simple Object Access Protocol) specifying an interop-
erable means of using XML to exchange structured and
typed information in a distributed environment or applica-
tion [26]. SOAP specifies message formatting, including
the overall structure of the message as an XML document.
A more complete overview of SOAP, with supporting ex-
amples, can be found in [35].

Transport. With the increasing popularity of the Web
Services model of remote service invocation, HTTP is fast
becoming the de facto standard transport protocols for re-
mote procedure call. One of the primary reasons for this
adoption is that HTTP is typically permitted through fire-
walls and across different administrative domains within an
organization. This is reinforced by the relative simplicity of
the protocol, as well as the availability of implementations.

Query Optimization. Due to the relative simplicity of
query operations, and the need to optimize this common op-
eration, we provide an optimized interface to lookup. Query
requests are mapped, by the IKS client, into HTTP requests
for static XML documents using a URL-safe encoding [39]
of the queried object’s name. The response XML format is
similar to the SOAP formats used by the registration server



sans the SOAP envelope.

5.6. Authenticating Key-Signing Keys

As mentioned in Section 4.3, query response messages
are signed by one of the domain’s key-signing keys (KSK).
To verify this signature, the client must fetch the KSK from
IKS as well as its commitment from DNSSEC.

A named KSK K for domain D must be a DSA key pub-
lished in IKS. The hash of the key is stored in a DNS text
record with the name sha1 K.D. This record contains a
hexadecimal representation of the SHA-1 hash. (Recent
cryptanalytic results against SHA-1 mandate re-evaluating
the use of SHA-1 as a secure hash function [8, 49].)

To verify the results of a query, the client first obtains
the KSK by requesting the key named in the query response
Subsequently, the client retrieves the commitment of that
KSK from DNSSEC and confirms that the retrieved key
matches the commitment. Finally, the KSK is used to verify
the query results.

6. The Riverside Internet Key Server

We have built a prototype implementation of IKS, the
Riverside Internet Key Server (RIKS). In this section, we
will describe the issues, the design choices, and our prelim-
inary experience with this system.

The RIKS server is composed of three components, one
to handle query requests, one to handle registration and re-
vocation requests, and a separate update process to generate
the KSK-signed query responses. The components of the
server communicate through a relational database.

We have identified three distinct signature generation
strategies, which differ in the time at which the KSK is
needed and which processes have access to it.

On-line: The key-registration handler signs keys with the
KSK immediately upon their acceptance by the sys-
tem.

On-demand: The key-lookup handler checks the database
for a response object. If it exists and is signed, it is
returned. Otherwise, it is immediately signed and re-
turned to the requesting client.

Off-line: All signatures are generated by an off-line pro-
cess that runs periodically. This method has the advan-
tag that the key-signing key can be kept offline during
operation.

RIKS currently supports only the off-line method of sig-
nature generation. However, it would be very easy to add
the other signature methods, and for RIKS deployments to
select one as a configuration option. RIKS is designed to

make key lookups efficient; all valid keys are stored in a
database as pre-signed XML responses. A lookup is sim-
ply a retrieval from the database. The update process peri-
odically ensures that these responses are current. Figure 2
shows the current RIKS Architecture.
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Figure 2. RIKS Architecture using off-line sig-
nature generation.

RIKS is implemented in Python, using the Zolera SOAP
Infrastructure (ZSI) [40], and mod python [46] to allow
the Apache web server to host the server processes. The
M2Crypto [43] wrapper provides Python access to the
cryptographic functionality in the OpenSSL library. The
server uses SQLite [45], an embeddable SQL’92 compliant
RDBMS engine, and pysqlite [37], a Python interface layer,
for underlying data storage.

6.1. Registration Handler

Key-registration and key-revocation requests are sent to
the Registration handler. These requests must be authen-
ticated and authorized before execution. The server’s re-
sponse is signed by a response-signing key (RSK), as con-
firmation to the client that its request was received.

6.2. Update Process

Before the effects of registration and revocation opera-
tions performed by the registration handler are made visible
to querying clients, the corresponding signed key-query re-
sponse messages must be generated by the update process,
which is granted access to one of the domain’s KSKs. Ad-
ditionally, as query response messages expire, replacement
signatures must be generated.

6.3. Query Handler

When a request for keys registered under a given name
arrives, the query handler simply looks in the database for a
pre-signed message, with this information already placed
there by the update process. If no such object is found
the query handler returns a failure response signed with the
RSK.



6.4. Performance

Our current, proof-of-concept, RIKS implementation is
not yet properly optimized, but we ran a series of tests to
measure the registration, update, and query performance of
our RIKS prototype. These tests were run on a single CPU
(1.5 GHz Pentium 4M) laptop machine with 512 MB of
RAM. The tests were run with a moderate-sized (∼300 MB)
database, containing about 50,000 entries (10 keys regis-
tered to each user). Table 1 summarizes RIKS performance.

Operation Registration Query Update
Transactions/sec 6.1 295 68

Table 1. RIKS Performance Summary

Our query handler handled 295 lookup requests/second.
Key lookup performance will likely be similar to that of
serving static web content, since IKS simply returns pre-
generated query responses. Our design also allows RIKS to
be parallelized to improve performance.

The registration handler was able to complete 6.1 regis-
tration requests per second. The bulk of its time was spent
parsing incoming requests, serializing responses and send-
ing them to the client. Approximately 12% of the registra-
tion handler’s time was spent authenticating requests, stor-
ing the new keys in the database, and signing responses.

The update activity identifies keys that must be regis-
tered, re-signed, expired, or purged, and then process them.
The update process took 70 seconds to identify entries re-
quiring processing, with the database on disk. Once the
database was loaded into memory this same operation took
2.5 seconds. After constructing this worklist, the update
process completed generating and signing query responses
at a rate of 68 per second.

A successful registration of a 1024-bit DSA key requires
about 4 KB of SOAP messages to be sent between the client
and server. XML query responses were about 1.8 KB each.

6.5. RIKS Client Library

Currently, the only complete client library available for
RIKS is a Python module. While this client library is func-
tional, it is not appropriate for inclusion in most client appli-
cations. We are re-implementing our client library in ANSI
C, and expect this effort to be completed shortly.

We have taken measures to limit the complexity of the
client library so that we can reasonably expect any crypto-
graphically aware application to include it in order to pub-
lish and lookup keys in IKS. Aside from the cryptographic
operations provided by the OpenSSL toolkit most IKS op-
erations are handled by libraries included with languages
such as Python, Java, C, and C++.

7. Conclusions & Future Work

Powerful cryptographic tools exist to address security
and privacy concerns, but have not been widely used since
no convenient infrastructure is available for authenticated
key distribution. IKS is intended to accelerate the adoption
of cryptographically-enabled applications. IKS is a simple,
scalable public key distribution service, and its protocols
have been designed specifically to meet the requirements of
this domain, conforming to current industry best practices
and standards for remote service location and invocation.

We rely on DNSSEC to provide authenticated delega-
tion, while keeping the functional overhead of key distri-
bution outside the critical DNS infrastructure. This strategy
allows us to use the name service infrastructure to guarantee
authenticity, while avoiding the scalability, efficiency, and
administrative pitfalls of earlier DNS-based mechanisms.
Furthermore, we use DNS names directly, and not a names-
pace orthogonal to it, facilitating its integration into the ex-
isting Internet infrastructure.

We have presented RIKS, the Riverside Internet Key
Server, a prototype implementation of IKS. RIKS consists
of approximately 4000 lines of Python code, and demon-
strates performance adequate to justify confidence in our
approach. The RIKS client library API provides a simple
interface to IKS, making it easier to incorporate key authen-
tication into existing collaborative tools.

Future Work. We hope to develop an IKS standard speci-
fication, to incorporate input from the community, and mo-
tivate deployment in tandem with DNSSEC. We will con-
tinue to improve RIKS performance, security, and manage-
ability, and make it suitable for use in large ISPs.

To verify the ease with which existing applications can
be extended to use IKS, we are planning the deployment of
a secure application. While distributed applications, such
as email and VoIP, will benefit most from IKS in the longer
term, it should be straightforward to deploy IKS within a
single domain, even with the current deployment status of
DNSSEC. Centralized applications, including certain In-
stant Messaging applications, could easily be secured using
IKS today.

As DNSSEC gains adoption and penetration, we believe
IKS will facilitate authenticated public key distribution, im-
proving the security of existing network applications and
protocols, and enabling new developments.

In the future, when Alice must locate Bob’s key, she can
turn to IKS.
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