
Extending Garbage Collection to Complex Data Structures

Laura Effinger-Dean
Williams College

Williamstown, MA 01267

laura.effinger-
dean@williams.edu

Chris Erickson
Harvey Mudd College
Claremont, CA 91711

cerickso@cs.hmc.edu

Melissa O’Neill
Harvey Mudd College
Claremont, CA 91711

oneill@acm.org

Beware lest you lose the substance by grasping
at the shadow.

—Aesop

ABSTRACT
Objects that are pointer reachable through a complex data
structure may be inaccessible to the external program, de-
pending on the semantics of the structure. Failure to recog-
nize the unusual behavior of complex data structures causes
memory leaks in any collector that relies on pointer reacha-
bility to locate garbage. We extend the definition of reach-
ability to distinguish between objects that are reachable to
the program at large and objects that are within the interior
of structures. Our general mechanism allows any structure
to run arbitrarily complex collection algorithms during nor-
mal garbage collection.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; D.3.4 [Programming Lan-
guages]: Processors—Memory management

1. INTRODUCTION
If a running program is never going to use a particular

object again, the object is garbage: it may safely be dis-
carded and its memory reclaimed.† As the average garbage
collector cannot foresee a program’s actions, it is conven-
tional to settle for pointer reachability, wherein the collector
traces or counts the pointers to an object. Though pointer
reachability is an intuitive and logical way to distinguish live
objects from garbage, it falters when combined with complex
data structures that use data abstraction. One example of
a structure that is difficult to garbage collect is a hash map
that stores key/value pairs, using pointer equality to distin-
guish keys. For a given pair, the key is an object A and the

†The term “object” refers to an allocated piece of memory,
and has nothing to do with object-oriented programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE2006 Charleston, South Carolina, USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

value an object B (Figure 1(a)). If A is not reachable from
outside the map, B is inaccessible. A traditional tracing col-
lector ignores this layer of abstraction and preserves both A
and B.

In order to properly collect complex data structures, lines
of communication must be established between the program
and the garbage collector. Several garbage-collected lan-
guages, including Java, offer support for weak pointers. Weak
pointers maintain a reference to an object but are ignored
by the collector. In the key/value problem, making the key
a weak pointer means that the collector preserves object A
only if a non-weak pointer to A exists (Figure 1(b)). More
intricate arrangements of pointers require, in turn, more so-
phisticated methods for identifying garbage. In some cases,
it may be impossible to tell that an object is garbage without
first interpreting the data it contains.

Persistent data structures [1, 6, 5, 7, 2, 3, 14, 13] are par-
ticularly hard to garbage collect. These structures simulate
familiar data structures such as arrays or linked lists, using
a complex web of nodes and pointers to maintain informa-
tion about older versions of the structure. Ideally, when a
collector determines that a version is inaccessible, it should
be able to safely remove that version from the persistent
structure, but traditional tracing collectors do not do so for
these data structures. Specialized collection algorithms ex-
ist for some of these structures, including persistent arrays
[9].

Properly collecting a persistent structure requires both a
detailed understanding of its semantics (rather than merely
its topology) as well as knowledge (likely from the collec-
tor) about which versions are reachable. We could hack the
garbage collector to recognize these structures, but that ap-
proach gets ugly quickly if we want to use more complex
structures or different garbage collectors. A better solu-
tion would be to allow programs to communicate with the
garbage collector and specify collection algorithms for arbi-
trarily complex data structures.

Another advantage to this customized collection scheme
is a matter of ideology. Languages such as Smalltalk, ML,
and Java allow programmers to harness the power of data
abstraction; it seems appropriate that their garbage collec-
tors should be able to respect abstraction where necessary
and harness its power when doing so is useful. Dan In-
galls, one of the original designers of Smalltalk, criticized
languages that encourage programmers to violate abstrac-
tion, describing such abuse as “plundering data structures”
[11], yet garbage collectors typically disregard all boundaries
around data structures and plunder away. This shortsight-

A B

root set valuekey

(a) A simple key/value pair.

A B

root set valuekey

(b) A key/value pair using a
weak pointer for the key.

A

root set valuekey

(c) A case where using a weak
pointer fails.

A B

root set valuekey

(d) The dashed box is an
ephemeron.

1: Garbage collecting a key/value pair.

edness leads to memory leaks in every basic tracing collector.
In this paper we develop a framework for collecting com-

plex data structures with customized collection algorithms.
Our contributions are as follows:

1. We discuss how key/value pairs or ephemerons [10, 12]
may be extended to more complex structures (Section
2).

2. Within these structures, pointer reachability no longer
implies that an object is accessible to the outside pro-
gram. In Section 3 we redefine reachability in terms of
the exterior and interior of each structure.

3. We present a method for implementing customized col-
lection algorithms within a tracing garbage collector
(Section 4). Our implementation takes advantage of
the distinction between exterior and interior objects
by performing customized collection before most of the
objects on the interior of the structure have been iden-
tified.

The idea of tailoring collection to specific structures is
unfamiliar and may seem bizarre, but we believe that it is
an important part of data abstraction that has too long been
overlooked. We hope that our ideas will encourage designers
of data structures to consider exactly how their structures
interact with the garbage collector.

2. KEY/VALUE PAIRS
It is helpful to start with the example we mentioned in

the introduction. A key/value pair is an (admittedly sim-
ple) data structure that requires special treatment from the
garbage collector. Consider the pair shown in Figure 1(a).
If we use pointer equality to distinguish keys, then neither
A nor B is accessible, because no outside pointer to A exists.
Garbage collection using weak pointers, as in Figure 1(b),
properly collects object A, but the program must manually
purge object B. Also, weak pointers fail when a path to ob-
ject A exists through the value, as in Figure 1(c).

2.1 Ephemerons
Hayes [10] described a structure, invented by Bosworth,

called an ephemeron that solves the key/value collection
problem. (Peyton Jones and colleagues [12] independently
came up with a similar construct called a key/value weak
pointer.) Figure 1(d) shows the use of an ephemeron. Each
ephemeron contains pointers to key and value objects; the
value (object B) is reachable if both the ephemeron and the
key (object A) are reachable. The collector traces in three
phases:

Phase I: Trace through memory, but do not trace ephem-
erons. Place ephemerons on a list for tracing in
Phase II.

Phase II: Process the list of ephemerons as follows:

(a) Partition the list of ephemerons into a key-
reachable list and a key-unreachable list.

(b) Trace the values of the ephemerons on the
key-reachable list.

(c) If the key-reachable list is non-empty, re-
peat from step IIa using the key-unreachable
list.

(d) Notify any ephemerons on the key-unreachable
list.†

Phase III: Trace the ephemerons on the key-unreachable
list normally.

Note that the collector repeatedly traverses the list of
ephemerons during Phase II. This repetition is necessary
because some ephemerons may contain nested pointers —
value pointers that, when traced, lead to the keys of other
ephemerons.

2.2 Extending Ephemerons
We shall extend ephemerons to more complex data struc-

tures. We call a data structure that requests customized
collection a blob. Blobs may contain any number of objects,
and may request reachability information for any number of
keys. Allowing multiple keys complicates the issue of nested
pointers. Say that we’ve determined that a certain subset
of a blob’s keys are reachable. We then trace the logically
reachable “value” pointers and discover that one or more
of the keys we’d previously classed as unreachable can be
reached through the blob itself. The difficulty of identifying
nested pointers means that we must gradually build up a
set of reachable keys for each blob.

Collecting blobs is not as simple as deciding whether to
traverse one object given reachability information about an-
other. Rather, each blob must be able to specify an arbitrar-
ily complex collection algorithm. We call these algorithms
cleanup functions.

3. REDEFINING REACHABILITY
Within blobs, pointer reachability does not imply actual

reachability. In other words, an object on the “interior” of a
blob may be inaccessible to the program, even if there exists
a path of pointers to that object. But a tracing collector does
not understand the complexity of the blob, and preserves
all objects—interior or exterior—that are pointer reachable.
Hence it is essential not to trace pointers within the blob
until after the blob has been given a chance to eliminate
logically unreachable objects.

Before we get into the details of implementing specialized
collection, we’ll take a step back and formally define the
concept of “actual reachability”—or, as we’ll call it, exterior
reachability.

An interior object is an object that is part of a particular
blob. An exterior object is an object that is not interior to
any blob.

An object A is exterior reachable if one or more of the
following conditions holds:

1. It is a member of the root set.

2. An exterior object that is exterior reachable contains
a pointer to A.

3. A is logically reachable (defined below) through an
exterior-reachable blob.

†Hayes:97:ephemerons:oopsla does not explain what this no-
tification accomplishes. It seems logical that the ephemerons
should be deleted, but if they are part of a larger structure
(e.g., a table of key/value pairs), deletion may be nontriv-
ial. If we nullify the ephemerons’ pointers, then Phase III is
unnecessary. Our general mechanism shall provide a more
flexible method for processing reachability information.

A blob is exterior reachable if and only if any of its interior
objects are exterior reachable.

An object is interior reachable if it is an interior object
and there is a pointer to it from another interior object from
the same blob that is either exterior or interior reachable.

Intuitively, exterior reachable means that the program has
access to the object, whereas interior reachable means that
the object should be preserved for the blob’s use.

Logically reachable objects are objects that could be ac-
cessed by the program through a blob. We can’t know which
objects are logically reachable without knowing the exact se-
mantics of the blob. In practice, the collector must query
the blob for a list of logically reachable objects. Logically
reachable objects are, by definition, exterior reachable.

Any object whose reachability status affects the collec-
tion process for a blob is a key object. The collector should
inform blobs of any exterior-reachable key objects. We ig-
nore interior-reachable keys, because interior-reachable ob-
jects are not accessible to the program at large. This distinc-
tion turns out to be very helpful: we can’t determine which
objects are interior reachable without tracing into blobs, but
we musn’t trace into blobs “too early”—that is, before blobs
have had a chance to perform cleanup with full reachabil-
ity information. But considering only exterior reachability
for keys oversimplifies matters a bit. There may be some
cases where interior-reachable objects act as keys. A blob
might “revive” an interior-reachable object by passing it to
the program. In each of these cases, the blob containing the
interior-reachable objects in question should declare them
to be logically reachable.

4. IMPLEMENTING BLOBS
Given the detailed specification of blobs in Section 3, we

can design an implementation without too much difficulty.
The design presented herein is not the only way of imple-
menting blobs, but rather the one that we believe naturally
follows from the specification.

4.1 Control Nodes
Each blob has a control node containing a list of key ob-

jects (the objects whose reachability information affects col-
lection) and the cleanup functions (the customized collec-
tion algorithms), further discussed in Sections 4.3 and 4.4,
respectively. The control node also has a flag that is set if
its blob is exterior reachable (that is, if any of the blob’s
interior objects are exterior reachable). Many familiar data
structures already contain objects that act as control nodes.
For example, the root of a tree is a control node, as is the ob-
ject containing the head and tail indexes for an array-based
circular queue. Each blob’s control node is interior to that
blob. Figure 2 shows a blob and its control node.

4.2 Interior Objects
We assume that it is possible to distinguish between inte-

rior and exterior objects by using a flag in the object header.
Each interior object should belong to exactly one blob, in
order to preserve strict boundaries between blobs. We can
enforce this rule by storing a pointer to the control node in
every interior object. The control node contains a pointer
to itself.

We stated in Section 3 that only interior objects may be
interior reachable. Though this limitation may seem obvi-
ous at first glance, consider the case in which an interior-

Control
Node

2: A blob, including a control node, interior objects, and weak
pointers. Solid arrows are strong pointers and dashed arrows are
weak pointers.

reachable object points to an exterior object that is not ex-
terior reachable. By our definition, the exterior object is
not reachable, even though a pointer to it exists in a reach-
able object! The idea behind this unintuitive definition is
that we cannot locate logically reachable objects without the
blob’s assistance, but we do not want the blob to hide any of
these logically reachable objects. Thus pointers to a blob’s
exterior are ignored unless the blob has explicitly declared
its contents to be logically reachable. Pointers from interior
objects to objects outside the blob (either exterior or within
the interior of another blob) must be implicitly weak. Weak
pointers, as explained in Section 1, do not protect their ref-
erents from garbage collection.

In Figure 2, all of the objects on the interior of the blob
contain pointers to the control node, including the control
node itself. Note that all pointers extending outside the blob
are weak.

4.3 Key Queues
Any object whose reachability status might affect a blob’s

collection process is a key object. These key objects may be
interior or exterior, and a single object may be a key for
multiple blobs. We require blobs to explicitly identify their
keys in order to place a reasonable bound on collection time;
if we didn’t know which objects were keys, we would have to
reprocess every blob if even a single new object were found
during a trace.

A collection of key objects associated with a blob is called
a key queue. A key queue consists of a number of key tags,
each of which contains a pointer to a key object.

During garbage collection, the key tags are organized into
three doubly linked lists as follows:

Newly reachable Key tags whose keys were discovered
during the most recent trace in this garbage-collection
cycle.

Old reachable Key tags whose keys were discovered dur-
ing an older trace in this garbage-collection cycle.

Unreachable Key tags whose keys have not yet been dis-
covered in this garbage-collection cycle.

We need to separate the reachable keys into two lists be-
cause we will frequently have to trace newly located, logi-

newly reachable

unreachable

old reachable

3: A key queue. Shaded circles are key objects and unshaded
squares are key tags. The old reachable list happens to be empty.

cally reachable objects. The newly reachable lists track the
keys that are found during each of these traces.

After every trace, we merge the (now out-of-date) newly
reachable list with the old reachable list. We then check
every key tag on the unreachable list, moving any tags with
reachable keys to the newly reachable list. Repeatedly travers-
ing the unreachable lists of every key queue can be very time-
consuming in the worst case. In Section 4.6 we’ll present
several improvements to key queues, including a way of no-
tifying key queues in order to reduce those costly traversals;
for now, we’ll complete our implementation of blobs using
these näıve key queues.

Key queues (see Figure 3) are very similar to Dybvig-
et-al:93:grdns-gengc:pldi [8] or Java’s reference queues [15].
Those structures inform the program when an object is unreachable;
key queues inform a blob when an object is reachable.

4.4 Cleanup Functions
Each blob provides two cleanup functions:

getLogicallyReachable Return a list of logically reachable
objects that the collector should trace. This function
may be called multiple times if the collector locates
previously unreachable keys.

doCleanup All exterior-reachable objects have been identi-
fied. Perform any final cleanup (e.g., redirecting point-
ers around unreachable objects).

getLogicallyReachable locates nested pointers, whereas do-
Cleanup performs the blob’s specialized collection algorithm.
Note that doCleanup does not explicitly trace or deallocate
objects; rather, the blob rearranges itself so that the collec-
tor may safely trace the interior.

Running user-supplied code during garbage collection is
a quick route to data corruption, and thorough precautions
must be taken. We address the design of safe cleanup func-
tions in Section 4.7.

4.5 The Collection Algorithm
Garbage collection proceeds in four phases:

Phase I: Trace through memory, but do not trace interior
objects. When an interior object is found,

(a) Place the object on a list for tracing in
Phase IV.

(b) If the object’s blob has not yet been flagged
exterior reachable in the control node, set
the flag and add the control node to a list
for processing in Phases II and III.

Phase II: Locate logically reachable objects as follows:

(a) For each control node on the list,

i. Check through the key queue for reach-
able keys.

ii. If the key queue’s newly reachable list
contains any keys, or if this blob was
just reached and we haven’t yet called
getLogicallyReachable on it, call getLogically-
Reachable on the blob.

iii. Trace any logically reachable objects
found, processing interior objects as we
did in Phase I.

(b) Repeat step IIa until it is no longer nec-
essary to call getLogicallyReachable on any
blobs in step II(a)ii.

At the end of Phase II, all exterior-reachable
objects have been identified.

Phase III: Call doCleanup for each blob.

Phase IV: Identify interior-reachable objects by tracing the
interior objects on the list accumulated during
Phases I and II. Nullify any dangling weak
pointers.

Objects traced by the collector during Phases I and II are
exterior reachable; those traced during Phase IV are interior
reachable. All others are garbage.

4.6 Improving Key Queues
In Section 4.3 we presented a näıve implementation of

key queues that uses three doubly linked lists of key tags.
The problem with this implementation is that traversing
through each key queue’s unreachable list may be very time-
consuming in the worst case. If n is the total number of
key tags over all key queues, we may have to perform up
to n traces of logically reachable objects during Phase II,
with each of these traces requiring retraversal of all of the
unreachable lists. Thus our simple implementation of key
queues has a worst-case time of O(n2).

We could avoid traversing the unreachable lists by putting
a pointer to each key’s key tag in the key object for each key
tag and having the collector alert the appropriate key queue
when the object is reached. Unfortunately, this apparently
simple improvement turns out to be rather complex. First,
the key object may be of any type, so we can’t store a pointer
to the key tag without adding an extra word to every object
header. Second, an object may be the key object for an
arbitrary number of key tags, so a single pointer would not
suffice.

One possibility is to store information about an object’s
key queue in a separate structure. For example, we could
use a hash table to associate the address of every key object
with a pointer to its key tag. The garbage collector needs
to distinguish between keys and nonkeys, perhaps using a
flag in the object header. During tracing, if we reach a key

newly reachable

old reachable

unreachable

key key key key key key

value value value value value value

4: An array of extended key tags within a blob.

object, we search through the table and move each associ-
ated key tag to its key queue’s newly reachable list. If we
also keep track of all blobs whose keys we found, we won’t
have to check every key queue for updates in step IIa of the
collection algorithm.

Using a hash table to store key information means that
we do constant expected work for every key tag, yielding
O(n) expected processing time for n key tags. Implementors
averse to expected time performance can use an ordered
structure and still process key queues in O(n log n) time.

Our design for key queues is still not as flexible as it should
be. Imagine trying to implement a hash table as a blob using
key queues and key tags. There is a one-to-one correspon-
dence between entries in the table and key tags; if a key tag’s
key is exterior reachable, the corresponding value for that
entry is logically reachable. Whenever an entry is added,
removed, or changed, we’ll have to update the key queue ac-
cordingly. Each update takes constant time, but requiring
programmers to perform these updates manually is inconve-
nient and error-prone. In addition, the getLogicallyReachable
function would be unnecessarily complicated—given a reach-
able key, we must search through the entire table just to find
the corresponding value.

We can solve both of these problems by integrating the key
tags themselves into the blob’s structure. In our example of
a hash table, we eliminate the old table entry and use the key
tag in its place, adding an extra “value” pointer to each key
tag. In languages that support inheritance, adding an extra
field is easy: we simply extend the key-tag type! This change
is invisible to the key queue, which carries on maintaining
the reachability lists behind the scenes. We will still need
to notify the key queue when removing key tags from the
table, but adding a key tag or changing the key pointer will
be automatic. These extended key tags are quite flexible
and ease the process of implementing complex structures as
blobs.

Figure 4 shows a blob that is using an array of extended
key tags to map keys to values. Every element of the array is
part of the blob’s key queue. Inverse pointers for the doubly
linked lists are omitted.

4.7 Ensuring Safe Cleanup Functions
As we’ll be running user code during garbage collection,

precautions must be taken to ensure that no data is cor-
rupted or lost. We shall harness the tools of concurrent
garbage collection to determine exactly what these precau-
tions should be. We are not saying that blobs require the
use of a concurrent collector, but rather that an apprecia-
tion of the key concepts is helpful in understanding how to
run safe cleanup functions.

Concurrent garbage collection occurs while the program,
or mutator, is running. Tricolor marking [16] measures the
progress of the garbage-collection cycle. Each object in the
system has one of three colors, depending on where the ob-
ject is in the collection cycle:

Black objects have been reached and all of their pointers
traced.

Grey objects have been reached, but not all of their point-
ers have been traced.

White objects have not been reached.

In our algorithm, we call user code at very specific points
in the collection cycle—when a trace of exterior-reachable
objects has completed. At these critical points, the three
colors correspond exactly to our division of exterior- and
interior-reachable objects:

• Exterior-reachable exterior objects are “black”.

• Exterior-reachable interior objects are “grey”.

• Interior-reachable objects, logically reachable objects
that have not yet been identified, and garbage objects
are “white”.

A concurrent collector may accidentally collect nongarbage
if the mutator disturbs the grey “fringe” between black and
white objects. If the only path to a white object is through
a black object, the collector never reaches the white object
and it is discarded erroneously. However, in order to trig-
ger this issue, the mutator must install a pointer to a white
object in a black object. Translating this condition into
our blob terminology, the collector could miss an object if a
cleanup function installs a pointer into an exterior-reachable
exterior object. Therefore, we can prevent data corruption
by disallowing changes to exterior objects.

This precaution—preventing changes to exterior objects—
is not unreasonable. Specialized collection applies only to
the blob itself, and any changes to the layout of memory
should ideally be contained to the blob’s interior.

5. RELATED WORK
The difficulty of garbage collecting complex structures has

seen little discussion in the literature. Detlefs and Kalsow
[4] discuss the failure of garbage collectors to recognize data
abstraction, and present profilers for Modula-3 designed to
catch memory leaks. We believe that ours is the first at-
tempt to design a means by which structures can provide
their own specialized collection algorithms.

Java’s reference queues [15] and Dybvig’s Dybvig-et-al:93:grdns-
gengc:pldi [8] allow programmers to process objects that are
“almost dead.” Our key queues similarly track the reach-
ability of certain objects, but the introduction of logically
reachable objects makes it much more difficult to determine
that an object is almost dead.

Ephemerons and their Haskell counterpart, key/value weak
pointers, are an elegant solution to the key/value collec-
tion problem [10, 12] and were the inspiration for many of
our design decisions. Interestingly, both ephemerons and
key/value weak pointers suffer from the same O(n2) worst-
case bound as our näıve key queues from Section 4.3; the

improvements to key queues in Section 4.6 should apply to
key/value collection as well.

Finalizers, especially in combination with weak pointers,
are sometimes suggested as way to make garbage collection
handle difficult data structures, because arbitrary code can
be executed when a particular object is collected, but they
do not not solve the problems addressed by ephemerons, nor
the generalization of ephemerons we have presented here.

6. CONCLUSION
We have redefined reachability to distinguish between the

interior and exterior of complex data structures. Taking
advantage of our definition of exterior-reachability, we have
shown how to construct structures as blobs with customized
cleanup functions, and designed a collection algorithm that
locates all exterior- and interior-reachable objects while safely
running each cleanup function.

We hope that our work, in addition to presenting a vi-
able extension to any tracing garbage collector, will alert
programmers to the difficulties incurred by combining data
abstraction with garbage collection. As we have seen, it is
easy to create a data structure that conceals subtle memory
leaks. Persistent data structures, for example, may auto-
matically preserve all changes to a structure, even if some
versions are inaccessible to the running program. The result-
ing increase in memory usage is unacceptable in long-lived
server applications.

We designed blobs with a single goal in mind: to allow
any data structure to specify its own arbitrarily complex
collection algorithm. Perhaps our approach seems odd: why
a “one size fits all” solution, instead of a set of smaller tools?
After all, we have no guarantee that every structure will fit
perfectly into our design of blobs. The answer is that we
have not dismissed the idea of small tools entirely; on the
contrary, it is straightforward to combine the blobs with,
say, ephemerons. We believe, however, that user-supplied
code is a powerful and relatively easy to understand tool for
collecting structures. Blobs are the simplest method we have
for implementing these customized collection algorithms.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under grant CNS-0451293 to Harvey Mudd Col-
lege.

8. ADDITIONAL AUTHORS
Additional authors: Darren Strash (CSU Pomona, Pomona,

CA 91768), email: djstrash@csupomona.edu)

9. REFERENCES
[1] A. Aasa, S. Holmström, and C. Nilsson. An efficiency

comparison of some representations of purely
functional arrays. BIT, 28(3):490–503, 1988.

[2] T. Chuang. Fully persistent arrays for efficient
incremental updates and voluminous reads. In
B. Krieg-Brückner, editor, ESOP ’92: 4th European
Symposium on Programming, volume 582 of Lecture
Notes in Computer Science, pages 110–129, Rennes,
France, 26–28 Feb. 1992. Springer Verlag.

[3] T.-R. Chuang. A randomized implementation of
multiple functional arrays. In LFP ’94: Proceedings of

the 1994 ACM conference on LISP and Functional
Programming, pages 173–184, New York, NY, USA,
1994. ACM Press.

[4] D. L. Detlefs and B. Kalsow. Debugging storage
management problems in garbage-collected
environments. In USENIX Conference on
Object-Oriented Technologies. USENIX Association,
1995.

[5] P. F. Dietz. Fully persistent arrays (extended
abstract). In F. Dehne, J.-R. Sack, and N. Santoro,
editors, Proceedings of the Workshop on Algorithms
and Data Structures: WADS ’89, volume 382 of
Lecture Notes in Computer Science, pages 67–74,
Berlin, Aug. 1989. Springer Verlag.

[6] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences, 38:86–124, 1989.

[7] J. R. Driscoll, D. D. K. Sleator, and R. E. Tarjan.
Fully persistent lists with catenation. Journal of the
ACM, 41(5):943–959, Sept. 1994.

[8] R. K. Dybvig, C. Bruggeman, and D. Eby. Guardians
in a generation-based garbage collector. In PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and
Implementation, pages 207–216, New York, NY, USA,
1993. ACM Press.

[9] L. Effinger-Dean, C. Erickson, M. O’Neill, and
D. Strash. Garbage collection for trailer arrays. In
SPACE 2006, Charleston, South Carolina, USA, 14
Jan. 2006.

[10] B. Hayes. Ephemerons: A new finalization mechanism.
In OOPSLA ’97: Proceedings of the 12th ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 176–183, New York, NY, USA, 1997. ACM
Press.

[11] D. H. H. Ingalls. Design principles behind smalltalk.
BYTE Magazine, Aug. 1981.

[12] S. L. P. Jones, S. Marlow, and C. Elliott. Stretching
the storage manager: Weak pointers and stable names
in haskell. In IFL ’99: Selected Papers from the 11th
International Workshop on Implementation of
Functional Languages, pages 37–58, London, UK,
2000. Springer-Verlag.

[13] H. Kaplan, C. Okasaki, and R. E. Tarjan. Simple
confluently persistent catenable lists. SIAM Journal
on Computing, 30(3):965–977, June 2001.

[14] M. E. O’Neill and F. W. Burton. A new method for
functional arrays. Journal of Functional Programming,
7(5):487–514, Sept. 1997.

[15] Sun Microsystems. Java 2 Platform, Standard Edition,
v 1.4.2: API Specification, 2003.

[16] P. R. Wilson. Uniprocessor garbage collection
techniques. In IWMM ’92: Proceedings of the
International Workshop on Memory Management,
pages 1–42, London, UK, 1992. Springer-Verlag.

