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Abstract. Prior program representations for genetic programming that incorporated features of modern
programming languages solved harder problems than earlier representations, but required more complex
genetic operators. We develop the idea of using combinator expressions as a program representation
for genetic programming. This representation makes it possible to evolve programs with a variety of
programming language constructs using simple genetic operators. We investigate the effort required to
evolve combinator-expression solutions to several problems: linear regression, even parity on N inputs,
and implementation of the stack and queue data structures. Genetic programming with combinator
expressions compares favorably to prior approaches, namely the works of Yu [37], Kirshenbaum [18],
Agapitos and Lucas [1], Wong and Leung [35], Koza [20], Langdon [21], and Katayama [17].

1 Introduction

Genetic programming is the use of genetic algorithms to write programs through evolution. It is a powerful
technique with many applications in artificial intelligence, such as controlling robotic soccer players [23]. For
more about these subjects, see De Jong [10], Goldberg [12], Koza [20] and Langdon [22].

A central issue in genetic programming is how to represent programs. fun sum list =
case list of
nil => 0

| h :: t => h + (sum t)

Fig. 1. Code to sum a list.

A representation must be powerful enough to naturally express solutions
to the problems that we wish to solve, and it must also support a sufficient
collection of genetic operators (typically random program creation, mutation,
and crossover) [27].1

Prior program representations for genetic programming that incorporated
features of modern programming languages solved harder problems than ear-
lier representations, but required more complex genetic operators (see Section 9, Related Works).

A statically typed functional program representation provides expressive power and valuable constraints
on how programs can evolve. Consider the Standard ML [25] code in Figure 1, which sums a list of integers.
In this example, type constraints disallow a mutation of h + (sum t) to h + t because addition requires two
numbers, but t is a list, not a number.

Programs in functional programming languages can be simplified to λ-expressions [16], which are equivalent
to combinator expressions [8, 16, 30]. Combinator expressions consist of only built-in values (functions and
constants), and function applications (see Section 3, Combinator Expressions). Because they are simple in
structure, but can represent arbitrary functional programs, combinator expressions are an ideal representation
for functional genetic programming.

fun sum list =
let fun sum2 list2 =

case list2 of
nil => 0

| h2 :: t2 => h2 + (sum2 t2)
in case list of

nil => 0
| h :: t => h + (sum2 t) end

Fig. 2. Unrolling the loop from Figure 1.

The code in Figure 1 can be written in combinator form as

Y (B (C (C case 0)) (C (B B plus)))

The functions Y, B, and C are combinators. One possible muta-
tion of the above combinator expression is

B (C (C case 0)) (C (B B plus))
(Y (B (C (C case 0)) (C (B B plus))))

This mutation duplicates the underlined portion of the original
expression. Figure 2 shows the SML code equivalent to this mu-
tated combinator expression—the mutation unrolled the loop one iteration. In the combinator representation,
the mutation involves only code duplication, but viewed in the higher-level SML representation, it defines a
1 It is not strictly necessary to have mutation or crossover, but some kind of genetic operators are necessary.



new local function. Thus, a mutation that is simple at the combinator level corresponds to a more complex
mutation in higher-level code.

The major contribution of this paper is to show that combinator expressions are a useful program repre-
sentation for genetic programming. In particular,

– We observe that combinator expressions can represent programs that introduce local variables, but the
genetic operators to manipulate combinator expressions do not require special cases for variables;

– We give genetic operators to evolve statically typed combinator expressions;
– We show that evolving combinator expressions is efficient compared to the works of Yu [37], Kirshenbaum

[18], Agapitos and Lucas [1], Wong and Leung [35], Koza [20], Langdon [21], and Katayama [17] on several
problems: linear regression, even parity on N inputs, and devising representations and implementations
for stacks and queues.

2 The Problem With Variables

Most programming languages that people use have variables. In functional pro- fun foo x =
let val y = 3
in x + y end

(a) First Parent

fun bar x =
x * 7 + 1

(b) Second Parent

fun foobar x =
x + y + 1

(c) Child

Fig. 3. Bad crossover.

gramming languages, there are at least three common ways to introduce local
variables: let-expressions, λ-abstractions, and case expressions.2 Earlier pro-
gram representations required special cases in their genetic operators to deal
with λ-abstractions and let-expressions (see Section 9, Related Works).

Figure 3 shows one example of the difficulties that variables cause for genetic
operators. A näıve crossover operator could produce the code in Figure 3(c) by
replacing the subexpression x * 7 from Figure 3(b) with the subexpression
x + y from Figure 3(a). This result is not valid because the variable y is not
defined in foobar.

One approach to this problem is to use complex genetic operators that at-
tempt to address all the problems that variables give rise to [19], but an alter-
native is to avoid the problems of variables by avoiding variables themselves.
Because every function with variables has an equivalent combinator expression
without variables, a combinator-based approach offers expressive power without complex genetic operators.

3 Combinator Expressions

As we saw in the introduction, functional programs can be written in a form I x = x
K c x = c
S f g x = f x (g x)
B f g x = f (g x)
C f g x = f x g
S’ c f g x = c (f x) (g x)
B* c f g x = c (f (g x))
C’ c f g x = c (f x) g

Fig. 4. The definitions of
several useful combinators.

that is free of variables using simple combinator functions [8, 16, 30]. Figure 4
lists the definitions of a set of combinators that are useful for implementing
functional programming languages [16].3

A combinator expression is either a built-in value (which can be a combina-
tor function, another built-in function such as addition, or a constant) or the
application of one combinator expression to another.

For example, S add I is equivalent to fn x => add x x.4 The expression
S add I does not contain any variables, but it represents a function that intro-
duces a local variable named x.

3.1 Running Combinator Expressions

Genetic programming systems need to run the programs they generate. Combinator reduction [33, 16] is
a simple and efficient technique for executing combinator expressions. Although this technique has been
described at length elsewhere, we can cover its essence here.
2 The code on the first page shows that case expressions that perform pattern matching on lists introduce local

variables. To evolve combinator expressions that represent programs with case statements, it is only necessary to
make an appropriate case function available.

3 Strictly speaking, we can encode every functional program using only S and K (for example S K K ≡ I), but, in
practice, the larger set shown in Figure 4 allows programs to be expressed more compactly.

4 Parentheses are implicitly left-associative, so S add I is the same as ((S add) I).



The rules given in Figure 4 provide the basis for implement- S add I 7
⇒ add 7 (I 7) — rule for S
⇒ add 7 7 — rule for I
⇒ 14 — rule for add

Fig. 5. Running a combinator expression.

ing the necessary reduction machine. If a built-in function does
not yet have all its arguments, it cannot yet be reduced. But
once the function has been applied to the all the arguments it
needs, we can perform a reduction. Thus, K and K 7 cannot yet
be reduced, but K 7 3 can be reduced to 7, using to the rule for
K given in Figure 4. To run a combinator expression, repeatedly consider the outermost function application
and attempt to reduce it. Figure 5 shows an example of running S add I 7.

3.2 Type System

Many of the expressions that we could form by applying built-in functions to each other are not meaningful;
for example, the expression add I I is meaningless, because the add function adds numbers, not identity
functions. By not constructing such meaningless expressions, we can greatly narrow the search space of our
genetic algorithm. A type system can impose constraints that prevent these kinds of obvious errors.

The most natural type system for a functional language, even a simple one based on combinator expressions,
is the Hindley-Milner type system [14, 24, 9], which forms the basis for the type systems of most modern
functional languages, such as Standard ML [25] and Haskell [15]. The key ideas behind this type system are
parametric types and type inference via unification.

Table 1. Types of S, I, add and 7

Value Type

S (α → β → γ) → (α → β) → α → γ
I δ → δ
add Int→ Int→ Int
7 Int

Every type in the Hindley-Milner system has zero or more
types as parameters. Types such as Int and Bool are types with
zero parameters, whereas types such List take a single parameter
indicating the kinds of objects stored in the list; thus we would
write List(Bool) to denote a list of booleans. For brevity, we
write the type of the function from X to Y as X → Y, which is
short for Function(X,Y).

Types can include type variables. For example, the type of the
length function is List(α) → Int. Here α is a type variable.5

Type variables are implicitly universally quantified (i.e., List(α) → Int is short for ∀α, List(α) → Int).
The Hindley-Milner system infers the type of an expression using unification [5, 16, 28]. Two types unify

if there is a way in which all of their type variables can be assigned such that after substituting the assigned
values for the type variables, the two types are equal. For example, List(α) unifies with List(Int) if α = Int.
List(α) does not unify with Bool, because there is no way to assign α that makes the types equal.

The details of type inference are beyond the scope of this paper, but an example is useful. Let us infer the
type of S add I, given the types in Table 1. The only consistent way to assign type variables for S applied to
add is to set α = β = γ = Int, inferring the type of S add as (Int→ Int) → Int→ Int. Similarly, from the
types of S add and I, the type of S add I results in δ = Int and an inferred type for S add I of Int→ Int.

4 Genetic Operators

In order to evolve combinator expressions, it is necessary to generate random expressions, and to have genetic
operators that are analogous to mutation and crossover. This section discusses an implementation of genetic
operators for combinator expressions.

4.1 Random Creation

Genetic programming systems require an algorithm to generate random expressions. Let generate(τ, L) be the
algorithm to generate a well-typed expression of type τ using a library L, where a library consists of phrases (a
phrase is either a simple built-in value, or a larger prebuilt expression) and their associated types. We define
generate(τ, L) as follows:
5 Greek letters denote type variables.



1. Find a value in L with a type that matches our desired type, τ , or a function in L that can return such a
value if given suitable arguments.

2. Recursively use the generate algorithm to find values for any necessary arguments. If no suitable arguments
can be found, repeat Step 1 to find a different starting point.

For example, if we wanted a function of type Int → Int, using Table 1 as our library, one possibility is for
generate to choose I, as I has a type that matches (α → α matches if α = Int).

There are more possible ways to make an Int → Int function, however. In functional programming,
multiargument functions are usually curried [8] and can be partially applied. Thus, add can be seen as both a
function of two arguments and as a function with one argument that returns an Int → Int function. Hence
generate should consider all possible partial applications of the functions in its library. Including such partial
applications, observe that we can not only use add to make an Int→ Int function (provided we can come up
with an Int to pass to add), but that we can also use S, provided that we can come up with two arguments
for S of type Int → β → Int and an Int → β. Using add as the first argument defines β = Int, leaving us
seeking an Int → Int value for the second argument; I is an acceptable choice. Thus, S add I is another
possible result.

In essence, the generate algorithm is a backtracking search algorithm, and is, in fact, similar to a simple
theorem prover [2]. In practice, we limit the amount of time the algorithm may spend by limiting the number of
pieces it may assemble to form an expression. We define two parameters, max-expression-size and max-phrases
to control this limit.

4.2 Generalized Genetic Operator

Genetic algorithms typically require genetic operators for mutation, crossover, and random creation. The
generate algorithm can serve as the basis of all three. When we wish to mutate an expression or combine
expressions, we can do so by constructing a library for generate that includes subexpressions from the parent
expressions. In other words, we

1. Make a phrase for every subexpression in each parent;
2. Construct a list of phrases consisting of the phrases from all of the parent subexpressions and phrases for

built-in values;
3. Use the list of phrases with generate to produce a new expression of the required type.

This algorithm can make any new expression that the standard point mutation or crossover algorithms
[20] can make, but it can also produce other results. For example, given the expression (x (y z)) as a parent
and the built in values {x, y, z, w}, it could produce the new expression (w (x (y z)). Thus, whereas point
mutation can only replace a subtree in the input expression, the result in this example embeds the parent tree
as a subtree of a new root.

5 Experimental Setup

In Section 6, we discuss the results of several experiments that measure the effort required to evolve combinator
expressions to solve various problems. This section describes the details of our experimental setup.

5.1 Genetic Algorithm

The basic idea behind a genetic algorithm is to simulate a population of evolving organisms that represent
possible solutions to a problem. In this case, the organisms are combinator expressions. There are many variants
of genetic algorithms. Like Langdon [22], our genetic algorithm uses tournament selection and steady-state
replacement.

Our genetic algorithm draws inspiration from Langdon [22] and Yu [37] by attempting never to evaluate
the same expression twice. Whenever a genetic operator produces a new expression, if the expression is not
different from every other expression so far, the algorithm tries again as many as tries-to-be-unique times



to get a unique expression. If it takes more than tries-to-be-unique attempts to get a unique expression, the
algorithm accepts the next new expression, regardless of whether it is unique.

The parameters of the genetic algorithm are population-size, tournament-size, and num-iterations. The
genetic algorithm works in the following way:

1. Generate and evaluate the fitness of population-size unique expressions.6 If any of these expressions is a
correct solution, stop immediately.

2. Choose the best amongst tournament-size randomly selected expressions in the population as a parent.
Choose a second parent in the same way.

3. Apply the genetic operator to these parents to produce a new expression. Evaluate the fitness of new
expression. If it is a correct solution, stop immediately.

4. If the new expression has a better fitness than the most unfit expression in the population, randomly choose
one of the expressions in the population tied for most unfit, and replace it with the new expression.7

5. If the algorithm has iterated less than num-iterations times, go back to step 2. Otherwise, stop.

Our preliminary experiments showed that randomly choosing one of the expressions that is tied for worst
to replace helps to prevent the population from stagnating. The problems in Section 6 have fitness functions
with few distinct values. Thus, the behavior of the population when all expressions have the same fitness is
important.

5.2 Brute Force

Sometimes brute-force enumeration of every correctly typed expression in order of size is more efficient than
evolution [17]. We implemented a brute-force algorithm for combinator expressions and compared the effort
required to find combinator expressions with evolution and with brute force.

5.3 Comparing Effort

A standard measure of effort for genetic programming is the minimum number of evaluations necessary to
achieve a 99% likelihood of finding a correct solution [20]. Each time the genetic algorithm runs, there is some
chance that it will find a correct solution. This probability is approximately S/C, where S is the number of
trials that succeed out of C, the total number of trials. Let Psuc(n) be the approximate probability of succeeding
after evaluating n expressions. The number of times that the genetic algorithm must run to achieve a 99%
likelihood of finding a correct solution is R(Psuc(n)) = dln (1− 0.99)/ ln (1− Psuc(n))e [20]. If the algorithm
stops at n evaluations, the number of evaluations necessary to have a 99% likelihood of finding a correct
solution is E(n) = R(Psuc(n))× n. There is some value for n that minimizes E(n). We refer to this minimum
effort as E.8

Different authors used fitness functions with different numbers of test cases for some of the problems in
Section 6. Therefore, it is meaningful to compare effort in terms of the number of test cases that must be
evaluated to have a 99% chance of finding a correct solution. This number is E × T , where T is the number
of test cases per evaluation.

Minimum effort, E, is an appropriate way to measure effort for a genetic algorithm, but we also need
comparable measure for brute force. We could use the number of expressions that brute force tries before
finding a correct solution. However, the order in which brute force examines expressions of the same size
differs, depending on the order in which it stores built-in values. In the worst case, the correct solution is the
last expression that it tries of a particular size. Therefore, we think that the number of expressions with size
less than or equal to the size of the smallest correct expression is a fair measure of effort for brute force.

The brute-force algorithm has a run time that is exponential in the size of the expressions it searches.
As the algorithm looks for progressively larger expressions, it takes longer to find each expression. If it takes
6 In the context of a genetic algorithm, evaluate means “find the fitness of.”
7 Lower fitness scores are better. A fitness of 0 corresponds to a correct solution.
8 Authors who use a generational genetic algorithm call this minimum effort I(M, z), but as we use a steady-state

genetic algorithm, this notation does not apply.



fun fitness f =

let fun sqr x = x * x

in sqr((f 0) - 6) +

sqr((f 1) - 12) +

sqr((f 2) - 18) +

sqr((f 3) - 24) +

sqr((f 4) - 30)

end

Fig. 6. The fitness
function for the linear-
regression problem.

Table 2. The parameters and built-in values for the linear-regression
problem.

(a) Parameters

Parameter Value

max-expression-size 20
max-phrases 7
population-size 5000
num-iterations 50,000
num-trials 60
tries-to-be-unique 50

(b) Built-in Values

Value Type

0 Int

1 Int

add Int→ Int→ Int

times Int→ Int→ Int

inc Int→ Int

more than 10 minutes for brute force to produce a new expression, we stop and declare that brute force is
infeasible.9

5.4 Problem Specification

Like Katayama [17], to specify a problem, we parse the built-in values and the fitness function, and infer their
types from code in a programming language, rather than coding them directly into the system. We specify
the built-in values and fitness function in a subset of SML that we call Mini-ML.

Several kinds of errors can occur when evaluating a combinator expression, such as taking the head of
an empty list, dividing by 0, and causing integer overflow. If an expression causes a run-time error, we stop
evaluating it immediately and give it the worst possible fitness score (∞). Expressions that make more than
1000 recursive functional calls are deemed nonterminating, which we count as a run-time error.

In addition to any problem-specific built-in values, we include all the combinators from Figure 4 (except K)
in the set of built-in values for all problems. Without K, combinator expressions cannot represent λ-expressions
that introduce unused variables.

6 Experiments

In this section, we investigate the effort required to evolve combinator-expression solutions to several problems:
linear regression, even parity on N inputs, and implementation of the stack and queue data structures. We
also contrast those results with prior techniques.

6.1 Linear Regression

Let us first look at a simple problem that requires little effort for evolution, but for which brute force is
infeasible: regression of the function g(x) = 6x + 6. Genetic programming finds g by minimizing the sum-
squared error between a possible solution and g over the inputs 0, 1, 2, 3, and 4. Tables 2(a) and 2(b) list
the parameters and built-in values for the linear-regression problem. Figure 6.1 lists the Mini-ML code for the
fitness function.

One of the evolved solutions is B (times (C (C (C times)) (inc (inc 1)) (inc 1))) inc, which is
essentially equivalent to the SML expression fn x => times (times 2 3) (inc x).

If the genetic algorithm stops at 2141 evaluations, 60 out of 60 trials find a correct solution, so Psuc(2141) ≈
60/60 = 1.0 and 1 run is necessary for a 99% probability of success. The minimum effort is 1 × 2141 = 2141
evaluations for a 99% probability of success. Brute force is infeasible for this problem.
9 We ran our experiments on an Apple MacBook with dual 2.0 GHz processors and 1 GB DDR2 SDRAM, running

Mac OS X 10.4.6. Power saving options were disabled.



Table 3. The parameters, built-in values, and results for the even-parity problem.

(a) Parameters

Parameter Value

max-expression-size 11
max-phrases 9
population-size 500
num-iterations 50,000
num-trials 60
tries-to-be-unique 50

(b) Built-in Values

Value Type

true Bool

false Bool

and Bool→ Bool→ Bool

or Bool→ Bool→ Bool

nor Bool→ Bool→ Bool

nand Bool→ Bool→ Bool

head List(α)→ α
tail List(α)→ List(α)
foldl (α→ β → β)→ β → List(α)→ β

(c) Results Comparison

Representation Evals Fitness Cases

Brute Force 13,006 156,072
PolyGP 14,000 168,000
Combinators 58,994 707,928
Kirshenbaum 60,000 6,000,000
Generic GP 220,000 1,760,000
OOGP 680,000 8,160,000
GP with ADFs 1,440,000 184,320,000

6.2 Even Parity

Koza [20] established the even-parity problem as a benchmark for genetic programming. The problem is: given
a list of boolean values, return true if there are an even number of true values in the list, and false otherwise.
The type of the evenParity function on N inputs is List(Bool)→ Bool. Like Yu [37], we use 12 test cases,
which comprise every list of 2 or 3 boolean values. The fitness of a potential solution to this problem is the
number of test cases that it fails.10 For the purpose of comparison, we use the same built-in values (except
combinators), population-size, and num-trials as Yu [37]. Tables 3(a) and 3(b) list the parameters and built-in
values for the even-parity problem.

One of the evolved solutions is foldl (C’ I (C (S (C’ (C S’) (C’ I nand) and) or))) true, which
is equivalent to the SML expression foldl (fn x => fn y => and (nand y x) (or x y)) true.

If the genetic algorithm stops at 2269 evaluations, 10 out of 60 trials find a correct solution, so Psuc(2, 269) ≈
10/60 = 0.16 and 26 runs are necessary for a 99% probability of success. The minimum effort is 26× 2269 =
58, 994 evaluations for a 99% probability of success. Brute force finds a solution of size 7. There are 13,006
total expressions of size ≤ 7. Thus, the effort required for brute force to find a solution is 13,006 evaluations.

Table 3(c) lists the effort required to find a solution to the even-parity problem using combinator expressions
with brute force and evolution (“Brute Force” and “Combinators” in Table 3(c)), PolyGP [37], Kirshenbaum’s
GP with iteration [18], Generic Genetic Programming [35], Object Oriented Genetic Programming [1], and
Genetic Programming with automatically defined functions [20] (“GP with ADFs” in Table 3(c)).11 In Ta-
ble 3(c), “Evals” is the minimum effort to solve the problem (E) and “Fitness Cases” is E × T , where T
is the number of test cases per evaluation (see Section 5.3, Comparing Effort). Smaller numbers are better.
Table 3(c) appears to be divided into two groups of approaches; those with implicit recursion require less
effort, and other approaches require more effort.

6.3 Stack Data Structure

Langdon [21, 22] showed that genetic programming can evolve implementations of the stack and queue
data structures. Genetic programming with combinator expressions finds implementations of the stack and
queue with less computational effort than Langdon.

The interface for a stack includes five members: push, pop, top, emptyStack, and isEmpty. To implement
a stack, we need to find expressions for each of these functions and values (emptyStack is not necessarily
a function). Langdon [21] evolved each of these expressions separately (see Section 9, Related Work). With
generate, no special cases in the genetic operators are necessary to evolve each part of the solution; since
generate can create an expression of an arbitrary type, rather than making five separate expressions (like
Langdon [21]), we request a product containing five elements, each of the appropriate type.

To enable generate to make such a product, we provide it with a function that takes each of the product’s
elements as arguments and returns the product. For example, product3 1 false true is an expression with
type Product(Int, Bool, Bool). Similarly, product5 makes a product with five elements.
10 If a solution fails 0 test cases, it is correct.
11 Koza solved many different incarnations of the even-parity problem. The effort listing for Koza [20] is the same one

that Yu [37] listed.



Table 4. The parameters, built-in values, and results for the stack problem.

(a) Parameters

Parameter Value

max-expression-size 30
max-phrases 9
population-size 500
num-iterations 20,000
num-trials 60
tries-to-be-unique 50

(b) Built-in Values

Value Type

product5 α→ β → γ → δ → ε→
Product(α, β, γ, δ ε)

0 Int

1 Int

true Bool

false Bool

cons α→ List(α)→ List(α)
head List(α)→ α
tail List(α)→ List(α)
isEmpty List(α)→ Bool

foldl (α→ β → β)→ β → List(α)→ β

(c) Results Comparison

Representation Evals Fitness Cases

Brute Force 6 24
Combinators 15 60
Langdon 938,000 150,080,000

Figure 7 lists the fitness function for the stack problem, which takes the form of a brief unit test in Mini-
ML. The fitness function starts with an empty stack, pushes an Int onto it, then pops that Int off of the
stack. At the beginning of the fitness function is the definition of the function test, which returns its input
Int incremented by one if its input Bool is false, and its input unchanged otherwise. The fitness of a stack
implementation is er, the number of tests that it fails. For the purpose of calculating effort, each call to test
is a test case within an evaluation. There are four test cases in this fitness function. Table 4(a) and Table 4(b)
list the parameters and built-in values for the stack problem.

The type system infers that the types of fun fitness (push, pop, emptyStack, isEmpty, top) =
let fun test er b = if b then er else er + 1

val er = 0
val s1 = emptyStack
val er = test er (isEmpty s1)
val s2 = push s1 3
val er = test er (not (isEmpty s2))
val v1 = pop s2
val er = test er (isEmpty v1)
val v2 = top s2
val er = test er (v2 = 3)

in er end

Fig. 7. The fitness function for stack.

push, pop, emptyStack, isEmpty, and top are
α → Int→ α, α → α, α, α → Bool, and α →
Int, respectively. Here, α means the type that
internally represents a stack. For example, the
push function takes a stack and an Int, and
returns a new stack with the Int added to it.
The way in which the fitness function uses
push and top dictate that the stack holds
Ints. Through evolution and type constraints,
the system arrives at a representation for the
queue that is based on a List(Int). The fit-
ness function does not specify how to repre-
sent the stack. Type inference determines that
there is an unknown type, α that will repre-
sent the stack. Evolution must find an appropriate assignment of the type variable α (i.e., find an internal
representation stacks). It does so, discovering that List(Int) is appropriate.

One of the evolved solutions is product5 (C cons) tail nil isempty head, which is equivalent to the
SML expression (fn x => fn y => cons y x, tail, nil, isempty, head). The fitness function specifies
that the first element of the quintuple should be the implementation of push, that the second element should
be pop, and so on. Thus, push is fn x => fn y => cons y x and pop is tail. An interesting part of the
solution is that it could not just use cons for push because the arguments are in the wrong order. To flip them
around, the genetic algorithm constructs the expression C cons.

If the genetic algorithm stops at 15 evaluations, 60 out of 60 trials find a correct solution, so Psuc(15) ≈
60/60 = 1.0 and 1 run is necessary for a 99% chance of success. The minimum effort for genetic programming
is 1× 15 = 15 evaluations for a 99% chance of success. Brute force finds a solution of size 8. There are 6 total
expressions of size ≤ 8, so the effort required for brute force to find a solution is 6 evaluations.

Table 4(c) lists the effort required to find a stack implementation by brute force, by evolving combinator
expressions and by evolution using Langdon’s approach [21]. Why do brute force and evolution with combinator
expressions require so much less effort, than Langdon? Brute force shows us that there are few correctly typed



expressions of the minimum size necessary to represent a solution. Evolution with combinators produces a
result by random creation within 15 attempts (no genetic recombination occurs because the genetic algorithm
finds a solution while initializing its population). Type constraints make this problem trivial for either brute
force or random guessing with combinator expressions. Langdon’s system had no such type constraints and
relied on indexed memory to represent the stack rather than functional lists [21].

6.4 Queue Data Structure

Evolving an implementation of the queue data structure poses a greater challenge than evolving a stack,
because type constrains do not mostly dictate the solution. The parameters and built-in values for the queue
experiment are exactly the same as they are in the stack experiment. The only difference between the two
experiments is the fitness function.

Like the stack, the fitness function for the queue is a short unit test, written in Mini-ML. It pushes three
Ints onto the queue, then pops them back off. Interspersed between pushes and pops, it tests eight cases. The
fitness of a queue implementation is the number of assertions it fails. The argument to the fitness function is
a quintuple of the form (enQ, emptyQ, QIsEmpty, deQ, front).

The evolved solution is

product5 (B (B (foldl cons nil)) (C (C’ (C cons) (foldl cons nil)))) nil isempty tail head

which is equivalent to the SML expression

(fn x => fn y => foldl cons nil (cons y (foldl cons nil x)), nil, isempty, tail, head)

The function foldl cons nil reverses the list to which it is applied, so this solution’s enQ function could be
written as fn x => fn y => reverse(cons y (reverse x)).

Table 5. A comparison of effort for the
queue problem between combinators and
Langdon [21].

Comparison to Other Approaches

Representation Evals Fitness Cases

Combinators 2,762,650 22,101,200
Langdon 3,360,000 1,075,200,000
Brute Force Infeasible Infeasible

If the genetic algorithm stops at 10, 046 evaluations, 1 out
of 60 trials finds a correct solution, so Psuc(10, 046) ≈ 1/60 ≈
0.01667 and 275 runs are neccessary for a 99% chance of success.
The minimum effort for genetic programming is 275×10, 046 =
2, 762, 650 evaluations for a 99% chance of success. Brute force
is infeasible.

Table 5 lists the effort required to find a solution by evolving
combinator expressions and by Langdon [21].

Evolving combinator expressions requires fewer evaluations
to find a solution than Langdon’s approach. This is a significant
result, because this problem is neither trivial nor feasible for
brute force.

Although the number of evaluations are fairly close, our experimental setup required many fewer fitness
cases because we used eight test cases per evaluation, whereas Langdon used 320 fitness cases per evaluation.
Langdon also reported an effort of 86, 000, 000 evaluations to implement the queue if a particular function
that is somewhat problem specific is not in the function set, and must be evolved as an automatically defined
function. We could have made this problem nearly as easy as the stack problem by including reverse in the
built-in values, but we did not because we wanted it to evolve.

7 Conclusion

Combinator expressions are a powerful program representation for genetic programming. Genetic programming
with combinator expressions finds solutions to a linear-regression problem, the even-parity problem on N
inputs, and implementations of a stack and queue. The amount of effort that evolving combinator expressions
required to solve these problems compares favorably with brute-force search and with prior approaches.

Clack and Yu [5] and Kirshenbaum [19] devised ways to evolve programs that introduce local variables.
However, their genetic operators had variable-specific special cases. Combinator expressions can represent
programs that introduce local variables, but the genetic operators to manipulate combinator expressions do
not require special cases to deal with variables.



8 Future Work

There are many ideas, questions, and issues related to genetic programming with combinator expressions that
might be fruitful areas for future research.

The impact of the set of combinators that are in the built-in values on the evolution of combinator
expressions remains unexplored. We used the I, S, B, C, S’, B*, and C’ combinators because Jones [16] listed
these as an appropriate basis for the implementation of an efficient, lazy interpreter. However, Katayama [17]
used S, B, C, and a “list only” K.

An important distinction between the genetic operators in Section 4 and prior genetic operators is that
they produce expressions that are functions, rather than expressions that are the bodies of functions. These
operators can evolve any type of expression, not just functions. Haynes et al. [13] evolved expressions that
represented sets of cliques in a graph with a strongly typed genetic-programming system. Perhaps genetic
programming with combinator expressions can solve other problems with answers that are type-constrained
data structures.12

With a compiler from an expressive functional programming language (such as Mini-ML) into combinator
expressions, it would be possible to evolve populations of combinator expressions that include code written
by humans. There may be applications of this idea to optimizing compilers [31, 7].

It seems that code bloat [34], introns, and neutrality [11, 38, 6] play important roles in the dynamics of
evolving populations of combinator expressions. Combinator expressions may provide useful ways to investigate
these phenomena. Partial evaluation on combinator expressions can remove some, but not all introns.13

9 Related Work

Church and Turing developed the idea that a Turing machine or λ-expression can compute any function that
is computable [32, 3, 4]. Schönfinkel [29] developed the S and K combinators to eliminate the need for variables
in logic. Curry and Feys [8] further developed the field, adding the B and C combinators. Curry and Feys
[8], Turner [33], Jones [16], and Sørensen and Urzyczyn [30] give algorithms to convert a λ-expression to a
combinator expression. The existence of these algorithms constitutes a proof of the equivalence of the two
representations. Both Turner and Jones discussed implementations of functional programming languages that
compile λ-expressions into combinator expressions and run them by combinator reduction.

In Koza’s original genetic programming system [20], expressions satisfy the property of “closure.”14 For
an expression to satisfy the closure property, all functions (non terminals) it contains must take arguments
and return values of the same type, and all constants (terminals) must be of that type. Koza offered con-
strained syntactic structures as a way to evolve expressions that did not satisfy the closure property. When
using constrained syntactic structures, only certain terminals and non terminals can go together. The user of
the system specifies which terminals and non terminals can go together. Problem-specific genetic operators
maintain these syntactic constraints.

In Montana’s Strongly Typed Genetic Programming (STGP) [26], one supplies syntactic constraints implic-
itly through a static type system. Users specify the type of each function and constant that can be incorporated
into an evolved program. STGP’s genetic operators always produce correctly typed expressions. STGP’s type
system supports generic functions in the function set, but they are instantiated to a monomorphic type that
does not change during evolution. STGP can evolve parametrically polymorphic functions through the use
of type variables. STGP maintains type correctness with a type-possibilities table that makes higher-order
function types difficult to implement in a fully general way.

Clack and Yu [5] introduced a new program representation called PolyGP, which Yu has since refined [36,
37]. PolyGP combines Montana’s static typing with functional programming concepts such as λ-abstractions,
12 Genetic algorithms solve problems with answers that are data structures, but the programmer usually needs to

implement genetic operators that are specific to the solution representation. Our idea is that combinator expressions
can represent a wide variety of data structures. If a combinator expression can represent the solution to a problem,
then there is no need for problem-specific genetic operators.

13 An intron is a piece of code that has no effect on the behavior of the program in which it resides.
14 The property of closure in genetic programming should not to be confused with the functional programming languages

concept of closures.



higher-order functions and partial application. In order to support higher-order functions, Yu replaced Mon-
tana’s type-possibilities table with a unification algorithm. PolyGP does not support closures, so the body
of a λ-abstraction can refer only to the variables that the λ-abstraction introduces. PolyGP can only per-
form crossover between λ-abstractions that represent the same argument of the same higher-order function.
These limitations arise in PolyGP because it is difficult to apply genetic operators to expressions that intro-
duce named variables. The genetic operators in Section 4 avoid these restrictions on crossover. Combinator
expressions can represent λ-expressions that would require closures.

Kirshenbaum [19] provided several new genetic operators that enable genetic programming to evolve ex-
pressions that introduce statically scoped local variables through let expressions. In contrast, evolving com-
binator expressions does not require specialized genetic operators that deal only with variables. Speaking of
closures, Kirshenbaum writes that they “may be worth investigating but will necessitate changes in the way
local variables are implemented.”

Yu [37] and Kirshenbaum [19] used their GP systems to address several problems that depend on iteration
or recursion, including the even-parity problem on N inputs. Yu showed that PolyGP could evolve polymorphic
recursive functions, such as map and length.

Katayama [17] presented a system for automatic program discovery by brute-force enumeration of all
correctly typed expressions in order of size. Brute force requires less effort than PolyGP to find many of the
same functions (including map and length). Our experiments show that some problems are easier to solve with
brute force, whereas others are easier to solve with evolution. Although derived independently, our generate
algorithm has much in common with Katayama’s enumeration algorithm.

Langdon [21, 22] used genetic programming with indexed memory to evolve the stack and queue data
structures. In Langdon’s representation, each of the functions in the implementation of a data structure is a
separate expression tree. Crossover could only take place between corresponding trees. In contrast, we evolve
a single expression that contains all parts of a data structure.
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