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Abstract

Using a strongly typed functional programming language for genetic programming has

many advantages, but evolving functional programs with variables requires complex ge-

netic operators with special cases to avoid creating ill-formed programs. We introduce

combinator expressions as an alternative program representation for genetic program-

ming, providing the same expressive power as strongly typed functional programs, but

in a simpler format that avoids variables and other syntactic clutter. We outline a

complete genetic-programming system based on combinator expressions, including a

novel generalized genetic operator, and also show how it is possible to exhaustively

enumerate all well-typed combinator expressions up to a given size. Our experimental

evidence shows that combinator expressions compare favorably with prior representa-

tions for functional genetic programming and also offers insight into situations where

exhaustive enumeration outperforms genetic programming and vice versa.

1 Introduction

Genetic programming is a powerful technique for evolving programs, with many applications

in artificial intelligence [9, 17, 19], from controlling robotic soccer players [20] to modeling

biological processes [29]. At its heart, a genetic-programming system is a genetic algorithm,

where programs form the genome of the organisms in the evolutionary system. Because our
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choice of program representation influences both the overall design of the evolutionary system

and the scope of the programs that can be evolved, choosing a good program representation

is important for successful genetic programming.

[Figure 1 about here.]

Typed, functional program representations are well suited for genetic programming and

other methods of program search [24, 39, 14, 25]. A strong type system can eliminate a very

large number of ill-formed programs from the search space, and the expressiveness of func-

tional programming languages makes it possible to represent complex programs concisely.

But a high-level language intended for human programmers also presents some challenges to

a genetic-programming system.

Most programming languages, including functional languages, provide variables, but vari-

ables add complexities to a genetic programming system. Figure 1 shows one example of

the difficulties that variables cause for genetic operators. A näıve crossover operator could

produce the code in Figure 1(c) by replacing the subexpression x * 7 from Figure 1(b) with

the subexpression x / y from Figure 1(a). This result is invalid because foobar does not

define y.

In functional programming languages there are at least three common ways to introduce

local variables: let-expressions (which define local variables), function definitions (where

variables represent function parameters), and case expressions (which decompose structured

types into their constituent parts). If we build a genetic-programming system using these

syntactic forms, its genetic operators must correctly handle each kind of variable. Doing so

complicates the genetic operators, requiring strategies for introducing (and possibly elimi-

nating) variables (and named functions), as well as strategies to handle or avoid ill-formed

programs such as our example [16]. An alternative to this approach is to avoid the problems

of variables by avoiding variables themselves.

In this paper, we show that combinator expressions are a useful program representation

for genetic programming, because they provide the expressive power of high-level strongly-

typed functional programming languages while avoiding the problems of variables by elimi-

nating them. Specifically,
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• We observe that combinator expressions can represent programs that introduce lo-

cal variables, but the genetic operators to manipulate combinator expressions do not

require special cases for variables;

• We give genetic operators that can evolve statically typed combinator expressions;

• We show that generating combinator expressions is efficient compared to the works of

Yu [39], Kirshenbaum [15], Agapitos and Lucas [1], Wong and Leung [37], Koza [17],

Langdon [18], and Katayama [14] on several problems: even parity on N inputs, and

devising representations and implementations for stacks and queues;

• We compare the effort required by genetic programming and exhaustive program enu-

meration to solve six problems using the combinator-expression program representa-

tion.

Combinator expressions are not new—their origins date back to the early history of

computer science. Our contribution is recognizing that they are well suited for genetic

programming and developing a framework in which they may be used for that purpose.

2 Background: Combinator Expressions

Programs in functional languages such as Standard ML [23] and Haskell [27] can be simplified

to λ-expressions [26], which, in turn, correspond to combinator expressions [7, 26, 31]. For

example, the functions foo and bar from Figure 1(a) and (b) can be written in combinator

form as

foo ≡ S’ (S plus) div (C plus 3)

bar ≡ C’ plus (C times 7) 1

In this representation, crossover between expressions avoids the complexities of variables; for

example, the expressions S’ (S plus) plus (C times 7) and S’ (S plus) (C times)

(C’ plus (C times 7) 1) are two possible ways we might combine foo and bar.

In this section, we provide the background to explain how the above combinator ex-

pressions can actually be equivalent to the functions from Figure 1(a) and (b), and lay
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the groundwork for understanding how genetic programming on this representation can be

implemented.

2.1 λ-Expressions

λ-Expressions are recursively defined as expressions that match one of the following forms,

where x, y, and z are arbitrary variables and M , N , and O are arbitrary λ-expressions:

• λx.M — A λ-abstraction (i.e., an unnamed function, which introduces the variable x);

• x — A variable (used in λ-abstraction bodies to represent arguments);

• M N — The function M applied to N .

In practice, the pure λ-calculus above is usually augmented with constants (e.g., integer

constants) and built-in functions (e.g., math primitives).

[Figure 2 about here.]

Programs written in a human-readable language such as Standard ML can be translated

to their more baroque λ-calculus equivalent by following transformation rules.1 For example,

the program shown in Figure 2 has a λ-calculus equivalent: Given a built-in plus function

to perform addition, we can define an anonymous function that doubles its input with the

λ-expression λx.plus x x. Additionally, we can replace the let expression in Figure 2 with

a λ-abstraction, allowing us to write our entire program as (λd.d (d 2)) (λx.plus x x).

We can also eliminate if and case statements. For case statements on lists, we translate

case statements to calls to a listcase built-in function as follows:

case L of

nil => E1

| v1 :: v2 => E2

→ listcase L E1 (λv1.λv2.E2)

1We present this transformation to show the correspondence between the λ-calculus forms and their more
human-readable equivalent forms. In our genetic-programming system, we form combinator expressions
directly, and thus do not require this transformation. We do, however, use this transformation in ancillary
parts of our system, such as transforming a user-specified fitness function into combinator form for execution.
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The listcase built-in takes three (curried) arguments: the list to match, the value to

compute if the list is empty, and a function to call (passing in the head and tail of the list)

if the list is nonempty. We can use a similar transformation to turn if statements into calls

to a built-in cond function.

[Figure 3 about here.]

[Figure 4 about here.]

Finally, in the λ-calculus there is no explicit recursion, but all recursive programs can be

written nonrecursively by calling a helper function, the Y combinator. Figure 4 adapts the

code from Figure 3 to use the Y combinator—notice that sum nr is a nonrecursive function

(it does not call itself, it calls sum rec, which is its first argument). Figure 5 defines the

behavior of the Y combinator. The Y combinator itself can actually be defined in the pure

λ-calculus as λf.(λx.f(x x))(λx.f(x x)).2

Applying all of the preceding rules, our sum function can be written as an anonymous

function in the λ-calculus as

Y (λs.λl.listcase l 0 (λh.λt.plus h (s t)))

If we were to use λ-expressions as our program representation, the regular form of λ-

expressions would make all aspects of the system implementation simpler as compared to

using a more typical functional-programming language. In particular, there would be only

one mechanism by which variables are introduced. But we can simplify our format for

expressions further yet.

2.2 Eliminating Variables

All λ-expressions that represent evaluatable expressions can be translated to combinator

expressions. Combinator expressions represent programs entirely by function application

alone; they contain no λ-abstractions and no variables. The job of variables, namely directing

function arguments to their intended destinations, and storing values that are to be used in

2Or alternatively, slightly more briefly as λf.(λx.x x)(λx.f(xx)).
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multiple places, is instead performed by a small set of built-in functions, such as the ones

shown in Figure 5 (only S and K are strictly necessary, but the other combinators allow a

more compact translation). An arbitrary λ-expression can be translated into combinator

form using the mechanical translation rules given in Figure 6.

[Figure 5 about here.]

[Figure 6 about here.]

Continuing our sum example, applying the Trans transformation to the λ-expression

from the previous section yields

Y (B (C (C listcase 0)) (C (B B plus)))

Because all λ-expressions can be translated to combinator expressions, and programs

written in functional languages such as Standard ML can be translated to λ-expressions,

combinator expressions can represent arbitrary functional programs.

One downside of using combinator expressions is that the meaning of an expression, such

as C B (S plus I), may not be as clear to a human reader as the function λf.λx.f (plus x x)

in the λ-calculus. However, it is possible to transform combinator expressions into λ-

expressions by an algorithm that is analogous to the one in Figure 6, but in reverse.3

2.3 Running Combinator Expressions

Genetic-programming systems need to run the programs they generate. Combinator reduc-

tion [35, 26] is an efficient technique for executing combinator expressions. Although this

technique has been described at length elsewhere, we can cover its essence here.

[Figure 7 about here.]

The rules given in Figure 5 provide the basis for implementing the necessary reduction

machine. If a built-in function does not yet have all its arguments, it cannot yet be reduced.

But once the function has been applied to all of the arguments it needs, we can perform a

3We used such an algorithm to find the human-readable equivalents of evolved combinator expressions.
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reduction. Thus, K and K 7 cannot yet be reduced, but K 7 3 can be reduced to 7, using

the rule for K given in Figure 5. To run a combinator expression, we repeatedly consider

the outermost function application and attempt to reduce it. Figure 7 shows an example of

running S add I 7.

It is worth noting that combinator reduction is a lazy-evaluation strategy. Function

arguments are only evaluated when they are needed. Lazy evaluation is an advantageous

technique in genetic programming because more programs terminate under lazy evaluation

than under strict evaluation.

2.4 Type System

Many of the expressions that we could form by applying built-in functions to each other are

not meaningful; for example, the expression add I I is meaningless, because the add function

adds numbers, not identity functions. By not constructing such meaningless expressions, we

can greatly narrow the search space of our genetic algorithm. A type system can impose

constraints that prevent these kinds of obvious errors.

The most natural type system for a functional language, even a simple one based on

combinator expressions, is the Hindley–Milner type system [13, 22, 8], which forms the basis

for the type systems of most modern functional languages, such as Standard ML [23] and

Haskell [27]. The key ideas behind this type system are parametric types and type inference

via unification.

Every type in the Hindley–Milner system has zero or more types as parameters. Types

such as Int and Bool are types with zero parameters, whereas types such as List take

a single parameter indicating the kinds of objects stored in the list; thus we would write

List(Bool) to denote a list of booleans. For brevity, we write the type of the function from

X to Y as X → Y, which is short for Function(X,Y).

Types can include type variables (which we will denote with greek letters). For example,

the type of the length function is List(α) → Int. Here α is a type variable.Type variables

are implicitly universally quantified (i.e., List(α) → Int is short for ∀α, List(α) → Int).

The Hindley–Milner system infers the type of an expression using unification [4, 26, 28].

Two types unify if there is a way in which all of their type variables can be assigned such

that after substituting the assigned values for the type variables, the two types are equal.
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For example, List(α) unifies with List(Int) if α = Int. List(α) cannot unify with Bool,

because there is no way to assign α that makes the types equal.

[Table 1 about here.]

The details of type inference are beyond the scope of this paper, but an example is useful.

Let us infer the type of S add I, given the types in Table 1. The only consistent way to

assign type variables for S applied to add is to set α = β = γ = Int, inferring the type of

S add as (Int → Int) → Int → Int. Similarly, from the types of S add and I, the type of

S add I results in δ = Int and an inferred type for S add I of Int → Int.

3 Genetic Operators

In order to evolve combinator expressions, it is necessary to generate random expressions, and

to have genetic operators that recombine parent expressions to make similar children (usually

mutation and crossover). This section discusses an implementation of genetic operators for

combinator expressions.

3.1 Generating Combinator Expressions

Whether we are creating a new combinator expression from scratch (random creation), or

a new expression based on existing expressions (mutation and crossover), our needs are

similar—to assemble expression fragments into a single well-typed expression. We use a

single function, generate, to provide this facility, where generate(τ, L) assembles a well-typed

expression of type τ using function application to connect phrases taken from the library

L. A phrase is a value of a known type, either a simple built-in value, or a larger prebuilt

expression.

The problem addressed by the generate algorithm is strongly analogous to theorem prov-

ing in the intuitionistic propositional calculus [31]. The correspondence between computer

programs and mathematical proofs, known as the Curry–Howard isomorphism, can be de-

scribed as follows for our problem: Suppose we have the functions f : α → β and g : β → γ.

If we interpret the types of f and g, α → β and β → γ, as given theorems, we can prove the

theorem α → γ. Suppose α is true; by rule f , β is true; by rule g, β implies that γ is true;
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and, therefore, α → γ. Analogously for combinator expressions, given a value x of type α,

f x yields a value of type β, and g (f x) yields a value of type γ.

The needs of the generate function differ from those of a conventional theorem prover in

two significant ways. Whereas short proofs are desirable, short expressions need not be. It is

generate’s task to return a randomly chosen expression from those that are possible, rather

than a single “best” expression.4 In addition, in theorem proving we usually desire a proof

if one exists and will wait for it, but in genetic programming, we may be willing to trade

completeness for performance. If generate does not generate some very complex expressions

for performance reasons, the chances are that no harm will be done, because complex expres-

sions can usually be evolved over subsequent generations rather than produced by generate

in a single step.

Our relatively simple implementation of generate(τ, L) operates as follows:

1. Find a value in L with a type that matches our desired type, τ , or a function in L that

can return such a value if given suitable arguments.

2. Recursively use the generate algorithm to find values for any necessary arguments. If

no suitable arguments can be found, repeat Step 1 to find a different starting point.

For example, if we wanted a function of type Int → Int, using Table 1 as our library, one

possibility is for generate to choose I, as I has a type that matches (α → α matches if

α = Int).

There are more possible ways to make an Int → Int function, however. In functional

programming, multiargument functions are usually curried [7] and can be partially applied.

Thus, add can be seen as both a function of two arguments and as a function with one

argument that returns an Int → Int function. Hence generate should consider all possible

partial applications of the functions in its library. Including such partial applications, observe

that we can not only use add to make an Int → Int function (provided we can come up

with an Int to pass to add), but that we can also use S, provided that we can come up

with two arguments for S of type Int → β → Int and an Int → β. Using add as the first

argument defines β = Int, leaving us seeking an Int → Int value for the second argument; I

4Or, in the case of exhaustive enumeration, all possible expressions.
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is an acceptable choice. Thus, S add I, which corresponds to λx.addx x, is another possible

result.

In practice, we limit the amount of time the algorithm may spend by limiting the number

of pieces it may assemble to form an expression. We define two parameters, max-expression-

size and max-phrases to control this limit.

3.2 Generalized Genetic Operator

Genetic algorithms typically require genetic operators for mutation, crossover, and random

creation. The generate algorithm can serve as the basis of all three. When we wish to mutate

an expression or combine expressions, we can do so by constructing a library for generate

that includes subexpressions from the parent expressions. In other words, we

1. Make a phrase for every subexpression in each parent;5

2. Construct a list of phrases consisting of the phrases from all of the parent subexpres-

sions and phrases for built-in values;

3. Use the list of phrases with generate to produce a new expression of the required type.

This algorithm can make any new expression that the point-mutation or crossover opera-

tors [17] can, as well as some expressions that those operators would be very unlikely to make.

Many genetic-programming systems have distinct mutation and crossover operators, which

are associated with free parameters that determine how often they occur. Using only the

generalized genetic operator eliminates these parameters (but adds a new parameter, max-

phrases). There is still some probability that the output of the generalized operator will be

an expression that crossover and/or point mutation could make, but these probabilities are

implicit in the behavior of the algorithm, rather than explicit parameters.

Suppose we apply the generalized genetic operator to the parent expressions add (mult 2 3) 4

and sub 7 9, with the set of built-in values {add, sub, mult, 2, 3, 4, 7, 9}.
5For an expression with n nodes, there are exactly 2n − 1 subexpressions. For a linearly structured

expression, the average subexpression length is O(n), but more typical expressions have a tree structure
resulting in an average subexpression length of O(log n). Regardless, through sharing, storing these expres-
sions actually requires only O(n) space. In our system, n is always less than max-expression-size, which is
20 in our experiments.
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First, we make a phrase for every subexpression in each parent. The nine phrases pro-

duced by the first parent are 2, 3, 4, mult, mult 2, mult 2 3, add, add (mult 2 3) and

add (mult 2 3) 4. The five phrases produced by the second parent are 7, 9, sub, sub 7

and sub 7 9. To make a new child, we call generate with the union of both parent’s phrase

lists and the built-in values.

In this example, we seek to generate an Int. The first step in generate is to randomly pick

a phrase that is an Int or that returns an Int when applied to one or more arguments. Sup-

pose we choose add, which returns an Int when given two Int arguments. To provide those

arguments, we recursively call generate. For the first argument, we may choose mult 2 3,

because it is an Int. For the second argument, we may choose sub 7, which requires an

integer argument, which we randomly generate as 4. This process gives a complete expres-

sion, add (mult 2 3) (sub 7 4). In this outcome, the generalized operator reproduces the

effect of crossover, applying sub 7 from the second parent to the subtree rooted at 4 in the

first parent. But it could also have generated add (mult 2 3) (mult 2 2), which would

be equivalent to a point mutation at 4.

The generalized operator can also make children that the point operators would be very

unlikely to make. Suppose that we choose sub applied to two arguments as the root ex-

pression. For the first argument, let us choose the phrase add (mult 2 3) 4, and for the

second, let us choose 3 (because these are whole phrases, there isn’t any further recursion

in generate). Now we have the expression sub (add (mult 2 3) 4) 3. Point mutation and

crossover would not be likely to make this expression, because it embeds the first parent as

a subtree of a new root.6

4 Exhaustive Enumeration

Genetic programming is not always the best way to automatically generate programs—

sometimes, particularly in the case of small programs, an exhaustive enumeration of every

correctly typed expression is more efficient than evolution [14]. Although, in principle,

exhaustive enumeration of all valid programs can be applied to any program representation,

6A point mutation might affect a node near the root of a tree, but only by randomly generating the
mutated subtree. Our approach differs in that the mutated subtree can be replaced by a phrase that consists
of a multinode subtree from a parent.
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the simple structure of combinator expressions makes them well suited for this task, and

the algorithms we have developed for genetic programming can be easily adapted for this

purpose.

Our depth-first enumeration algorithm for combinator expressions uses the same generate

function as our generalized genetic operator. Normally, generate is asked to produce a single,

randomly chosen, expression of a given type. In the case of exhaustive search, we instead

enumerate all available expressions matching a given type and size constraint.7

Even with type constraints, the number of possible expressions usually grows exponen-

tially with the size of the expression, thus exhaustive enumeration is usually only practical

for relatively small expressions. By using essentially the same generate function for both

exhaustive enumeration and our genetic algorithm, we can explore the trade-offs between

evolutionary programming and exhaustive search in the context of automatically generating

programs.

5 Experimental Setup

Before we can provide experimental data to substantiate our claim that combinator expres-

sions are a useful program representation for genetic programming and exhaustive search, we

must complete our description of our genetic-programming system by detailing our genetic

algorithm and other aspects of our experimental setup. Our genetic algorithm is not intended

to be novel—we provide the details only to give a complete account of our experiments.

5.1 Genetic Algorithm

The basic idea behind a genetic algorithm is to simulate a population of evolving organisms

that represent possible solutions to a problem. In this case, the organisms are combinator

expressions. There are many variants of genetic algorithms. Like Langdon [19], our genetic

algorithm uses tournament selection and steady-state replacement [33].

Our genetic algorithm draws inspiration from Langdon [19] and Yu [39] by attempting

never to evaluate the same expression twice. Whenever a genetic operator produces a new

7The difference in generate for exhaustive enumeration is that after Step 2, it always starts over until
there are no further possibilities.
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expression, if the expression is not different from every other expression so far, the algorithm

tries again as many as tries-to-be-unique times to get a unique expression. If it takes more

than tries-to-be-unique attempts to get a unique expression, the algorithm accepts the next

new expression, regardless of whether it is unique.

The parameters of the genetic algorithm are population-size, tournament-size, and num-

iterations . The genetic algorithm works in the following way:

1. Generate and evaluate the fitness of population-size unique expressions.8 If any of

these expressions is a correct solution, stop immediately.

2. Choose the best amongst tournament-size randomly selected expressions in the popu-

lation as a parent. Choose a second parent in the same way.

3. Apply the genetic operator to these parents to produce a new expression. Evaluate the

fitness of the new expression. If the expression is a correct solution, stop immediately.

4. If the new expression has a better fitness than the most unfit expression in the popu-

lation, randomly choose one of the expressions in the population tied for most unfit,

and replace it with the new expression.9

5. If the algorithm has iterated less than num-iterations times, go back to Step 2. Oth-

erwise, stop.

We used the same parameters for the genetic algorithm in all experiments. Those pa-

rameters are listed in Table 2.

[Table 2 about here.]

5.2 Problem Specification

Like Katayama [14], to specify a problem, we parse the built-in values and the fitness func-

tion, and infer their types from code in a programming language, rather than coding them

directly into the system. We specify the built-in values and fitness function in a subset of

Standard ML that we call Mini-ML.

8In the context of a genetic algorithm, evaluate means “find the fitness of”.
9Lower fitness scores are better. A fitness of 0 corresponds to a correct solution.
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5.3 Combinator Library

In addition to any problem-specific built-in values, we provide generate with a library con-

taining all the combinators from Figure 5, except for Y and K. For our experiments, Y is

unnecessary—in some cases the evolved functions iterate using a provided function such as

foldl, and in one case we derive Y from scratch. The K combinator is rendered largely

redundant by the B and C combinators. The uses of the K combinator not subsumed by B

and C effectively introduce an unused local variable—if ignoring a value is really required, it

is usually possible for an evolved program to contrive a way, such as multiplying by zero or

ingeniously using foldl.10 By avoiding K we simply make it less easy to create expressions

that contain ignored values.

Finally, we also eliminate from our library the option to create fully applied variants of

each of our combinators. Doing so eliminates the generation of redundant forms such as I e

and I (I e), where e is some arbitrary expression, which can be expressed more simply as

e (because I is the identity function). Similarly, there is little point in generating C e1 e2

e3 when we will can more directly generate the shorter equivalent expression e1 e3 e2, and

likewise for B.

5.4 Runtime Errors

Several kinds of errors can occur when evaluating a combinator expression, such as taking the

head of an empty list, dividing by zero, and causing integer overflow. If an expression causes

a run-time error, we stop evaluating it immediately and give it the worst possible fitness

score (∞). Expressions that make more than 1000 recursive functional calls are deemed

nonterminating, which we count as a run-time error.

5.5 Comparing Effort

A standard measure of effort for genetic programming is the minimum number of evaluations

necessary to achieve a 99% likelihood of finding a correct solution [17]. Each time the genetic

algorithm runs, there is some chance that it will find a correct solution. This probability

is approximately S/C, where S is the number of trials that succeed out of C, the total

10Specifically, C’ C (C’ foldl (C C)) nil ≡ K.
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number of trials. Let Psuc(n) be the approximate probability of succeeding after evaluating

n expressions. The number of times that the genetic algorithm must run to achieve a 99%

likelihood of finding a correct solution is R(Psuc(n)) = �ln (1 − 0.99)/ ln (1 − Psuc(n))� [17].

If the algorithm stops at n evaluations, the number of evaluations necessary to have a 99%

likelihood of finding a correct solution is E(n) = R(Psuc(n)) × n. There is some value for n

that minimizes E(n). We refer to this minimum effort as E.11

Different authors use fitness functions with different numbers of test cases for some of the

problems in Section 6. Therefore, it is meaningful to compare effort in terms of the number

of test cases that must be evaluated to have a 99% chance of finding a correct solution. This

number is E × T , where T is the number of test cases per evaluation.

5.5.1 Effort for Exhaustive Enumeration

We need a measure of effort for exhaustive enumeration that is comparable to E, as defined

in the preceding section. We could use the number of expressions that our depth-first–search

algorithm tries before finding a correct solution, but doing so risks a result that is overly

specific to details of our implementation (such as the order in which it stores built-in values)

rather than to exhaustive enumeration in general. Not only can different implementations

enumerate expressions in different orders (while being otherwise equivalent), but a single

randomized algorithm might cover the search space in different orders from run to run.

Thus we use a metric that depends on the results of exhaustive enumeration (up to a given

expression size), but not on their particular order.

First, let us define effort for non–size-first exhaustive enumeration in which all expressions

up to some maximum size are listed in arbitrary order. If we find one solution in a search

yielding all n expressions of size ≤ k, we define the expected number of evaluations for a

99% likelihood of finding the correct solution in that search as n × 0.99. But if those n

expressions contain s solutions, the expected number of evaluations required to have a 99%

chance of finding a solution is n(1 − s
√

1 − 0.99).

In size-first enumeration, we list all expressions of a given size before listing any expres-

sions of the next largest size. Thus if the first solution is of size k, we must have iterated

11Authors who use a generational genetic algorithm call this minimum effort I(M, z), but as we use a
steady-state genetic algorithm, this notation does not apply.
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through all m expressions of size < k before we stand any chance of finding that solution. If

there are s solutions and n expressions of size k, the expected effort is m+n(1− s
√

1 − 0.99)

If our exhaustive enumeration algorithm did not find a solution after twelve hours, we

stopped and declared the problem infeasible for exhaustive enumeration. (In contrast, our

evolutionary algorithm completed all sixty trials well within this time limit for all problems.)

6 Experiments

In this section, we examine how well our genetic-programming system works in practice by

presenting results from six experiments. Three of the experiments (the even-parity, stack,

and queue experiments) are benchmark problems used by several authors to test genetic

programming systems [1, 15, 18, 17, 37, 39]. The other three experiments (linear regression,

the constrained-list problem, and the Y-combinator problem) are included to provide a better

sense of the range of our system.

6.1 Linear Regression

Let us begin with a simple problem: linear regression from the data points (0, 6), (1, 12),

(2, 18), (3, 24), (4, 30). The fitness of a candidate solution is its sum-squared error on the

data set. The line y = 6x + 6 goes directly through these data points, and thus the goal in

this problem is to discover a function corresponding to this line, given these points. Table 3

lists the built-in values for this problem.

[Table 3 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

Figures 8 and 9 show three of the evolved solutions, in combinator and human-readable

form (where f is the desired function), respectively. The first solution is the shortest one

found by genetic programming, the other two are arbitrarily chosen and more representative.

These results are revealing in several ways. First, output from genetic programming can be
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as short as human-written code, although it is more likely to contain some redundant code.

Second, the latter two evolved solutions correspond to human-written code that defines local

variables: the second evolved solution shown defines a value and uses it twice; and the

third solution also defines and reuses a local function. Thus, although evolved combinator

expressions contain no variables themselves, they correspond to expressions that use variables

in meaningful ways.

If the genetic algorithm stops at 2866 evaluations, 60 out of 60 trials find a correct

solution, so Psuc(2866) ≈ 60/60 = 1.0 and 1 run is necessary for a 99% probability of

success. The minimum effort is 1×2866 = 2866 evaluations for a 99% probability of success.

Exhaustive enumeration finds 21 solutions from a total of 856,668 expressions of size 9

and no solutions in 143,188 expressions of size < 9. Thus the expected number of evaluations

required for size-first enumeration to find a solution with 99% certainty is 143,188 + 0.20 ×
856,668 = 311,879 (because (1 − 0.20)21 ≈ 1 − 0.99).

6.2 Even Parity

Koza [17] established the even-parity problem as a benchmark for genetic programming. The

problem is: Given a list of boolean values, return true if there are an even number of true

values in the list, and false otherwise. The type of the evenParity function on N inputs is

List(Bool) → Bool. Like Yu [39], we use twelve test cases, which comprise every list of two

or three boolean values. The fitness of a potential solution to this problem is the number

of test cases that it fails.12 Table 4 lists the built-in values for the even-parity problem.

These values include the foldl function (sometimes also called reduce), which provides a

mechanism to iterate over lists. An implementation of foldl is shown in Figure 10.

[Table 4 about here.]

[Figure 10 about here.]

One of the evolved solutions is

B* (foldl (S’ (S’ and) or nand) true) I I

12If a solution fails 0 test cases, it is correct.

17



which is equivalent to the Standard ML expression

foldl (fn x => fn y => and (or x y) (nand x y)) true

Our genetic algorithm found 23 solutions within the 20,000 iteration limit imposed by

num-iterations. From our experimental data, we find that if the genetic algorithm stops at

431 evaluations, 2 out of 60 trials find a correct solution, so Psuc(431) ≈ 2/60 = 0.033 and 136

runs are necessary for a 99% probability of success. The minimum effort is 136×431 = 58,616

evaluations for a 99% probability of success.

Exhaustive enumeration finds 4 solutions from a total of 11,114 expressions of size 7

and no solutions in 1878 expressions of size < 7. Thus the expected number of evaluations

required for size-first enumeration to find a solution with 99% certainty is 1878 + 0.68 ×
11,114 = 9478 (because (1 − 0.68)4 ≈ 1 − 0.99).

[Table 5 about here.]

Table 5 lists the effort required to find a solution to the even-parity problem using com-

binator expressions with exhaustive enumeration and evolution (listed as “GP with Com-

binators” in the table). The table also shows the performance of PolyGP [39], GP with

iteration [15], Generic Genetic Programming [37], Object Oriented Genetic Programming

[1], and Genetic Programming with Automatically Defined Functions [17].13 In the table,

Evals is the minimum effort to solve the problem (E) and Fitness Cases is E × T , where

T is the number of test cases per evaluation (see Section 5.5, Comparing Effort). Smaller

numbers are better.

6.3 Stack Data Structure

Langdon [18, 19] showed that genetic programming can evolve implementations of the stack

and queue data structures. The interface for a stack consists of four functions and a value:

13Koza solved many different incarnations of the even-parity problem. The effort listing for Koza [17] is
the same problem incarnation that Yu [39] addressed. Where possible, we have used the same experimental
parameters as Yu, but they do differ in one significant way—Yu had a max-expression-depth parameter,
which was set to 4. We have no equivalent parameter; our closest equivalent, max-expression-size, was set
to 20 for all our experiments.
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push, pop, top, emptyStack, and isEmpty (emptyStack is not a function—it is the stack

containing nothing). To implement a stack, we need to find expressions for each of these

parts.

[Figure 11 about here.]

Figure 11 lists the fitness function for the stack problem, which takes the form of a brief

unit test in Mini-ML. The argument to the fitness function is a single value, a quintuple,

containing the five required parts of a stack implementation. The fitness function starts with

an empty stack, pushes an Int onto it, then pops that Int off of the stack. As it is performing

these operations, it tests four conditions that will be true for a correct implementation of a

stack, using a local function, test, to keep track of the number of failed tests. This helper

function takes as input the number of tests failed so far and a boolean representing the

success status of a new test, and returns the new number of failures. The fitness of a stack

implementation is er, the number of tests that it fails. For the purpose of calculating effort,

each call to test is a test case within an evaluation. Table 6 lists the built-in values for the

stack problem.

[Table 6 about here.]

The type system infers that the types of push, pop, emptyStack, isEmpty, and top are

α → Int → α, α → α, α, α → Bool, and α → Int, respectively. Here, α means the type

that internally represents a stack. For example, the push function takes a stack and an Int,

and returns a new stack with the Int added to it. The way in which the fitness function

uses push and top dictate that the stack holds Ints.

To provide a values for the fitness function, our genetic-programming system must create

quintuples of type

(α → Int → α) × (α → α) × α × (α → Bool) × (α → Int)

(or, stated in the terminology of our type-system, Product(α → Int → α, α → α, α,

α → Bool, α → Int)). To enable generate to make such a product, we include in our

function library a function, product5, that takes five arguments and returns a quintuple of

those argments.
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Notice that this specification does not mandate any particular representation for the

stack. Type inference determines that there is an unknown type, α, that will represent the

stack. Evolution must find an appropriate assignment of the type variable α (i.e., find an

internal representation for a stack).

One of the evolved solutions is

product5 (C cons) tail nil isempty head

which is equivalent to the Standard ML expression

(fn x => fn y => cons y x, tail, nil, isempty, head)

The type signatures of all these functions show that through evolution and type constraints,

the system found a List(Int) representation for the queue (i.e., α = List(Int)). The

fitness function specifies that the first element of the quintuple should be the implementation

of push, that the second element should be pop, and so on. Thus, push is fn x => fn y

=> cons y x and pop is tail. An interesting part of the solution is that it could not just

use cons for push because the arguments are in the wrong order. To flip them around, the

genetic algorithm constructs the expression C cons.

If the genetic algorithm stops at 7 evaluations, 60 out of 60 trials find a correct solution,

so Psuc(7) ≈ 60/60 = 1.0 and one run is necessary for a 99% chance of success. The

minimum effort for genetic programming is 1×7 = 7 evaluations for a 99% chance of success.

Exhaustive enumeration finds exactly one solution of size 7 from a total of 2 expressions of

size 7 and no smaller expressions, so the effort required for exhaustive enumeration to find

a solution is 2 evaluations.

Table 7 lists the effort required to find a stack implementation by exhaustive enumera-

tion, by evolving combinator expressions, and by evolution using Langdon’s approach [18].

Exhaustive enumeration shows us that there are few correctly typed expressions of the min-

imum size necessary to represent a solution. Type constraints make this problem very easy

for either exhaustive enumeration or random guessing with combinator expressions. Lang-

don’s system had no such type constraints and relied on indexed memory to represent the

stack rather than functional lists [18].
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[Table 7 about here.]

6.4 Queue Data Structure

Evolving an implementation of the queue data structure poses a greater challenge than

evolving a stack, because a queue cannot be as trivially implemented. Like the stack, the

fitness function for the queue is a short unit test, written in Mini-ML. It pushes four Ints onto

the queue, then pops them back off. Interspersed between pushes and pops, it tests ten cases.

The fitness of a queue implementation is the number of assertions it fails. The argument to

the fitness function is a quintuple of the form (isEmptyQ, enQ, headQ, deQ, emptyQ).

The shortest evolved solution is

product5 isempty

(C’ (B* (foldl cons nil)) cons (foldl cons nil))

head tail nil

With the exception of enQ, all the operations in this solution mirror their counterparts in

the stack experiment. The implementation of enQ is equivalent to the Standard ML function

fn x => fn y => foldl cons nil (cons x (foldl cons nil y))

The function foldl cons nil reverses the list to which it is applied, so this solution’s enQ

function could be written as

fn x => fn y => reverse(cons y (reverse x))

If the genetic algorithm stops at 4425 evaluations, 3 out of 60 trials finds a correct solution,

so Psuc(4425) ≈ 3/60 = 0.05 and 90 runs are neccessary for a 99% chance of success. The

minimum effort for genetic programming is 90×4425 = 398,250 evaluations for a 99% chance

of success. Exhaustive enumeration did not find a solution within twelve hours.

Table 8 lists the effort required to find a solution by evolving combinator expressions and

by Langdon [18]. This problem requires less effort to solve with typed combinator expressions

and functional lists than it does without a type system, using indexed memory.
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[Table 8 about here.]

Langdon also reported an effort of 86,000,000 evaluations to implement the queue if a

particular function that is somewhat problem specific is not in the function set, and must

be evolved as an automatically defined function. We could have made this problem easier by

including reverse in the built-in values, but doing so allows us to solve the problem trivially

using exhaustive enumeration (with an effort of 2064 evaluations). Only without this helper

function is the problem challenging enough to make using genetic programming necessary.

6.5 A Value that Satisfies a Simple Constraint

We have seen how genetic programming with combinator expressions can solve problems

where the solution is a function (in the linear-regression and even-parity problems), or a

data structure that consists of a collection of functions and values (in the stack and queue

problems). We can also use combinator expressions to solve problems with solutions that

are not functions. Consider the following fitness function:

fun fitness L = sqr((length L) - 3) + sqr((sum L) - 30)

Because length and sum are functions that act on values of type List(Int), the type system

infers that any solution to this problem must have type List(Int). We can see that if L is a

list with three elements, the first term in the fitness function is 0. If the elements of L sum to

30, the second term in the fitness function is 0. Thus, the solution to this problem must be a

list with three elements that sum to 30. In this problem, we must evolve an expression that

satisfies these constraints using only the functions and values given in Table 9. For brevity,

we refer to this problem as “the constrained-list problem” in the rest of this paper.

[Table 9 about here.]

An important distinction between the genetic operators in Section 3 and other genetic

operators is that our operators can evolve any type of expression, not just functions or

function bodies. Thus, we can solve this problem using exactly the same algorithms as we

used to solve the linear-regression, even-parity, stack and queue problems.14

14Genetic algorithms solve problems with answers that are data structures, but the programmer usually
needs to implement genetic operators that are specific to the solution representation. Our idea is that
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One evolved solution is

cons (sqr (inc one))

(cons one (cons (sqr (inc (sqr (inc one)))) nil))

which is equivelent to [(1 + 1)2, 1, ((1 + 1)2 + 1)2], or [4, 1, 25].

If the genetic algorithm stops at 980 evaluations, 60 out of 60 trials find a correct solution,

so Psuc(980) ≈ 60/60 = 1.0 and one run is necessary for a 99% probability of success. The

minimum effort is 1 × 980 = 980 evaluations for a 99% probability of success.

Exhaustive enumeration finds 6 solutions from a total of 5741 expressions of size 13 and no

solutions in 4060 expressions of size < 13. Thus the expected number of evaluations required

for size-first enumeration to find a solution with 99% certainty is 4060 + 0.54× 5741 = 7137

(because (1 − 0.54)6 ≈ 1 − 0.99).

6.6 The Y Combinator

Section 2.1 introduced the Y combinator as the cornerstone of recursion in the λ-

calculus. As we mentioned there, this combinator can be implemented as the λ-expression

λf.(λx.f (x x))(λx.f (x x)). In this section we address whether this combinator can be

evolved.

Unfortunately, however, the Y combinator as we have just stated it in the λ-calculus would

not be valid under the Hindley-Milner type system used by our system and by functional

languages such as Standard ML and Haskell. If f has type α → α, the subexpression

λx.f(x x) has the infinite cyclic type ((((. . .) → α) → α) → α) → α, representing a function

that when passed itself as an argument, yields an α. Although the type system prohibits

this infinite cyclic type, it does allow recursive data types, which enable us to define the

Y combinator using a type Spiral(α) to represent this infinite type, and helper functions,

wind and unwind, of type

wind : (Spiral(α) → α) → Spiral(α)

unwind : Spiral(α) → (Spiral(α) → α)

combinator expressions can represent a wide variety of data structures, such as lists of integers. If a com-
binator expression can represent the solution to a problem, then problem-specific genetic operators may be
unnecessary.
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(operationally, wind and unwind are the identity function, they change the type without

altering the underlying value). With these functions in place, instead of λx.f (x x), which

would not type check, we write λx.f ((unwindx) x), which has type Spiral(α) → α and

is a suitable argument to wind. A full Standard ML nonrecursive implementation of the Y

combinator is shown in Figure 12.15 If you find this code nonobvious, you are not alone.

Informally, we have observed that writing the Y combinator nonrecursively, even with wind

and unwind provided, is unintuitive even for experienced functional programmers. Our

question in this experiment is how difficult the problem is for a machine.

[Figure 12 about here.]

To determine whether the Y combinator can be evolved, we necessarily provide wind and

unwind, as well as our usual set of combinators (which does not include Y), and ask our

system to derive a function that will satisfy the fitness function shown in Figure 13. The

fitness function requires a function that can serve the role of the Y combinator, which it uses

to create an infinite list of the natural numbers, and then tests the first four elements.16 The

built-in values do not include any numeric functions at all, so its only hope is to successfully

create the Y combinator.

[Figure 13 about here.]

One evolved solution is C’ (B (S I wind)) B (S unwind I)), which simplifies to B

(S I wind) (C B (S unwind I)) (which is also the expression discovered by exhaustive

enumeration), and is equivalent to the alternate (shorter) Y combinator given in the footnote

in Section 2.1.

If the genetic algorithm stops at 16 evaluations, 60 out of 60 trials find a correct solution,

so Psuc(16) ≈ 60/60 = 1.0 and one run is necessary for a 99% probability of success. The

minimum effort is 1 × 16 = 16 evaluations for a 99% probability of success.

Exhaustive enumeration finds 7 solutions from a total of 48 expressions of size 9 and no

solutions in 3 expressions of size < 9. Thus the expected number of evaluations required for

15In Standard ML, the Y combinator would actually be a little more complex because Standard ML is strict
rather than lazy. This issue need not concern us because we are developing Y for Mini-ML, which is lazy.
A full implementation using these ideas for Standard ML can be found on the Internet in the comp.lang.ml
FAQ.

16With lazy evaluation, only the first four elements of the list are actually created.
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size-first enumeration to find a solution with 99% certainty is 3 + 0.48 × 48 = 27 (because

(1 − 0.48)7 ≈ 1 − 0.99).

7 Genetic Programming vs. Exhaustive Enumeration

Table 10 compares the effort required by genetic programming and exhaustive enumeration

to solve each of the six problems that we investigated.

[Table 10 about here.]

The stack and Y-combinator problems require very little effort to solve using either genetic

programming or exhaustive enumeration, because type constraints limit the search space to

only a few possible expressions. The genetic algorithm finds the solution while generating

the initial population, so it can be viewed as a random search.

Type constraints do not restrict the search space in the linear-regression problem much,

so the number of well-typed expressions increases rapidly as a function of expression size.

The smallest possible solution is fairly large, so exhaustive enumeration must try many ex-

pressions before finding one that is correct. We speculate that genetic programming solves

the problem with much less effort than exhaustive enumeration because the fitness landscape

is smooth; children are likely to have similar fitness to their parents. Because of this char-

acteristic, the genetic algorithm can start with a population of poor solutions, and makes

small changes that gradually lead to a correct solution.

[Figure 14 about here.]

The constrained-list problem is more type-constrained than the linear-regression problem,

but exhaustive enumeration still takes more effort to solve this problems than genetic pro-

gramming. The solutions to both problems require nontrivial numeric expressions. We think

that expressions which contain numbers are generally easier to find using evolution than ex-

haustive enumeration. To investigate this hypothesis, we ran a series of experiments with the

built-in values 1, add, times, and inc. The fitness function was fitness x = sqr(x - N),

where N = 1, 2, . . . , 50 (so the goal is simply to build a number between 1 and 50 by

adding, incrementing, and multiplying ones). Figure 14 shows the results for generating
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such expressions using genetic programming and exhaustive enumeration (using our usual

effort metrics).17 As the size of the solution increases, the effort for exhaustive enumeration

increases faster than for genetic programming.

The queue problem was infeasible for exhaustive enumeration, but feasible with genetic

programming. Like the stack problem, the search space is heavily constrained by types, but

unlike the stack problem, the solution is not one of the smallest valid expressions.

Exhaustive enumeration took less effort than genetic programming to solve the even-

parity problem, in large part because this incarnation of the problem can be solved with

a relatively short expression. Interestingly, a small change to this problem causes genetic

programming to outperform exhaustive evaluation. The if . . . then . . . else variant of this

problem (in which we remove the logical operators from the function set, provide a cond

function, and keep all other aspects the same), requires an expression of size 10 rather than

size 7. This change makes the problem much more difficult for exhaustive enumeration to

solve, but makes a relatively small difference for genetic programming—our system solves

this variant with an effort of 150,384 evaluations.

Despite our insights into when it is better to choose genetic programming over exhaustive

program enumeration and vice versa, it may not be obvious which technique will be best

for a new problem. But because it is straightforward to implement an exhaustive search

system given a system for genetic programming with combinators, such a choice is a false

dichotomy. It is practical and sensible to do both.

8 Conclusion

Combinator expressions are a useful program representation for genetic programming. They

offer the power of fully general functional programs, but algorithms to manipulate combinator

expressions do not require special cases to handle variables, because combinator expressions

do not contain variables (even though they can represent any expression that does contain

variables).

The effort required to generate combinator-expression solutions to the even-parity prob-

17Exhaustive search for expressions for 43 and 47 did not find a solution amongst the 1, 209, 974 expressions
of size ≤ 14; resource constraints prevented a search for expressions of size 15.
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lem on N inputs, and to find implementations of a stack and queue compares favorably with

the works of Yu [39], Kirshenbaum [15], Agapitos and Lucas [1], Wong and Leung [37], Koza

[17], Langdon [18], and Katayama [14].

Genetic programming with combinator expressions can find a solution to the constrained-

list problem. This result demonstrates that combinator expressions are also a useful repre-

sentation for problems with solutions that are not functions.

The Y-combinator experiment shows that there are some functions that can be found

almost trivially by genetic programming and exhaustive enumeration, even though they are

conceptually difficult for humans. It also demonstrates the applicability of genetic program-

ming with combinator expressions to finding higher-order functions.

We hope we have inspired the reader to continue exploring combinator expressions as a

program representation for genetic programming and other methods of program search. The

following section gives a few possible directions for further research; and there are certainly

many more.

9 Future Work

There are many ideas, questions, and issues related to genetic programming with combinator

expressions that might be fruitful areas for future research.

The impact of the set of combinators that are included in the built-in values on the

evolution of combinator expressions remains unexplored. We used the I, S, B, C, S’, B*,

and C’ combinators because Peyton Jones [26] listed these as an appropriate basis for the

implementation of an efficient combinator-reduction machine. However, Katayama [14] used

S, B, C, and a “list only” K.

With a compiler to transform code from an expressive functional-programming language

(such as Mini-ML) into combinator expressions, it would be possible to evolve populations

of combinator expressions that include code written by humans. There may be applications

of this idea to optimizing compilers [32, 6].

It seems that code bloat [36], introns, and neutrality [11, 40, 5] play important roles in

the dynamics of evolving populations of combinator expressions. Combinator expressions

may provide useful ways to investigate these phenomena. Partial evaluation on combinator
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expressions can remove some, but not all introns.18

Genetic programming and size-first search are not the only methods of automatically

deriving functional programs [25]. Combinator expressions could be used in automatic pro-

gramming systems that use other optimization algorithms.

10 Related Work

Church and Turing developed the idea that a Turing machine or λ-expression can compute

any function that is computable [34, 2, 3]. Schönfinkel [30] developed the S and K combi-

nators to eliminate the need for variables in logic. Curry and Feys [7] further developed

the field, adding the B and C combinators. Curry and Feys [7], Turner [35], Peyton Jones

[26], and Sorensen and Urzyczyn [31] give algorithms to convert a λ-expression to a combi-

nator expression. The existence of these algorithms constitutes a proof of the equivalence

of the two representations. Both Turner and Peyton Jones discussed implementations of

functional programming languages that compile λ-expressions into combinator expressions

and run them by combinator reduction.

In Koza’s original genetic-programming system [17], expressions satisfy the property of

“closure.”19 For an expression to satisfy the closure property, all functions (non terminals)

it contains must take arguments and return values of the same type, and all constants

(terminals) must be of that type. Koza offered constrained syntactic structures as a way

to evolve expressions that did not satisfy the closure property. When using constrained

syntactic structures, only certain terminals and nonterminals can go together. The user of

the system specifies which terminals and nonterminals can go together. Problem-specific

genetic operators maintain these syntactic constraints.

In Montana’s Strongly Typed Genetic Programming (STGP) [24], the user supplies syn-

tactic constraints implicitly through a static type system. Users specify the type of each

function and constant that can be incorporated into an evolved program. STGP’s genetic

operators always produce correctly typed expressions. Its type system supports generic func-

tions in the function set, but they are instantiated to a monomorphic type that does not

18An intron is a piece of code that has no effect on the behavior of the program in which it resides.
19The property of closure in genetic programming should not be confused with the functional-programming

languages concept of closures.
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change during evolution. STGP can evolve parametrically polymorphic functions through

the use of type variables. The genetic operators in STGP use a type-possibilities table that

makes higher-order function types difficult to implement in a fully general way.

McPhee et al. [21] showed that typed genetic programming is close to or more efficient

than Koza’s original genetic programming on a set of problems that can be solved naturally

without a type system.

Clack and Yu [4] introduced a new program representation called PolyGP, which Yu

has since refined [38, 39]. PolyGP combines Montana’s static typing with functional-

programming concepts such as λ-abstractions, higher-order functions, and partial appli-

cation. In order to support higher-order functions, Yu replaced Montana’s type-possibilities

table with a unification algorithm.

PolyGP does not allow the body of a λ-abstraction to refer to any variable other than the

one that it introduces, and can only perform crossover between λ-abstractions that represent

the same argument of the same higher-order function, so it does not fully support evolving

higher-order functions (functions that return functions as their results). These limitations

arise in PolyGP because it is difficult to apply genetic operators to expressions that introduce

named variables. Our genetic operators in Section 3 avoid these restrictions on crossover.

Combinator expressions can represent λ-expressions that would require closures (like the Y

combinator). We think that PolyGP could not evolve the Y combinator, because its definition

in λ-calculus requires a λ-abstraction with a body containing a variable bound in another

λ-abstraction.

Kirshenbaum [16] provided several new genetic operators that enable genetic program-

ming to evolve expressions that introduce statically scoped local variables through let ex-

pressions. In contrast, evolving combinator expressions does not require specialized genetic

operators that deal only with variables. Speaking of closures, Kirshenbaum writes that

they “may be worth investigating but will necessitate changes in the way local variables are

implemented”.

Yu [39] and Kirshenbaum [16] used their GP systems to address several problems that

depend on iteration or recursion, including the even-parity problem on N inputs. Yu showed

that PolyGP could evolve polymorphic recursive functions, such as map and length.

Katayama [14] presented a system for automatic program discovery by depth-first enu-
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meration of all correctly typed expressions in order of size. Exhaustive enumeration requires

less effort than PolyGP to find many of the same functions (including map and length).

Our experiments show that some problems are easier to solve with exhaustive enumera-

tion, whereas others are easier to solve with evolution. Although derived independently, our

generate algorithm has much in common with Katayama’s enumeration algorithm.

Augustsson’s Djinn20 is similar to Katayama’s enumeration system and our generate

function, but finds a single expression that satisfies a given type constraint. Djinn uses a

decision procedure for intuitionistic propositional calculus due to Dyckhoff [10], and will

always (eventually) find an expression if one exists.

Langdon [18, 19] used genetic programming with indexed memory to evolve the stack

and queue data structures. In Langdon’s representation, each of the functions in the im-

plementation of a data structure is a separate expression tree. Crossover could only take

place between corresponding trees. In contrast, we evolve a single expression that contains

all parts of a data structure.

Haynes et al. [12] evolved expressions that represented sets of cliques in a graph with a

strongly typed genetic-programming system. This work shows that evolving typed expression

trees is an effective way to solve problems that require a data structure as the solution. We

demonstrated that genetic programming with combinator expressions is applicable to such

problems, by evolving a list represented as a combinator expression.
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fun foo x =

let val y = x + 3

in y + x / y

end

(a) Parent 1

fun bar x = x * 7 + 1

(b) Parent 2

fun foobar x = x / y + 1

(c) Invalid Child

Figure 1: An example of invalid crossover.
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let fun double x = x + x

in double (double 2)

end

Figure 2: A simple functional program.
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fun sum list =

case list of

nil => 0

| h :: t => h + (sum t)

Figure 3: Standard ML code to sum a list.
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fun sum_nr sum_rec list =

case list of

nil => 0

| h :: t => h + (sum_rec t)

val sum = Y sum_nr

Figure 4: Code to sum a list using the Y combinator.
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I x = x
K c x = c
S f g x = f x (g x)
B f g x = f (g x)
C f g x = f x g
S’ c f g x = c (f x) (g x)
B* c f g x = c (f (g x))
C’ c f g x = c (f x) g
Y f = f (Y f)

Figure 5: The definitions of several useful combinators.
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Trans[[ x ]] = x

Trans[[ M N ]] = (Trans[[ M ]])(Trans[[ N ]])

Trans[[ λx.x ]] = I

Trans[[ λx.λy.M ]] = Trans[[ λx.Trans[[ λy.M ]] ]]

Trans[[ λx.M ]] = K (Trans[[ M ]]) if x /∈ FV[[ M ]]

Trans[[ λx.N x ]] = Trans[[ N ]] if x /∈ FV[[ N ]]

Trans[[ λx.N O ]] = B (Trans[[ N ]]) (Trans[[ λx.O ]]) if x /∈ FV[[ N ]]

Trans[[ λx.N O ]] = C (Trans[[ λx.N ]]) (Trans[[ O ]]) if x /∈ FV[[ O ]]

Trans[[ λx.N O ]] = S (Trans[[ λx.N ]]) (Trans[[ λx.O ]])

FV[[ x ]] = {x}
FV[[ M N ]] = FV[[ M ]] ∪ FV[[ N ]]

FV[[ λx.M ]] = FV[[ M ]] − {x}

Figure 6: Translating λ-expressions to combinator expressions.
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S add I 7

⇒ add 7 (I 7) – rule for S

⇒ add 7 7 – rule for I

⇒ 14 – rule for add

Figure 7: Running a combinator expression.
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B (times (times (inc (inc one)) (inc one))) inc

C’ (C’ times (B* (C (S times) (inc (inc zero))) (B* I inc) add))

(add one)

zero

C’ (S B* (S add)) (C times) (B (C times one) inc)

(times one (inc one))

Figure 8: Three evolved solutions to the linear-regression problem.
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fun f x = times (times (inc (inc one)) (inc one)) (inc x)

fun f x =

let val y = inc (inc zero)

in times (times y (inc (add zero y))) (add one x)

end

fun f x =

let fun g y = times y (times one (inc one))

val z = times (inc x) one

in g (add z (g z))

end

Figure 9: A human-readable version of Figure 8.
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fun foldl f accum list =

case list of nil => accum

| h :: t => foldl f (f h accum) t

Figure 10: The foldl function for iterating over lists.
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fun fitness (push, pop, emptyStack, isEmpty, top) =

let fun test er b = if b then er else er + 1

val er = 0

val s1 = emptyStack

val er = test er (isEmpty s1)

val s2 = push s1 3

val er = test er (not (isEmpty s2))

val v1 = pop s2

val er = test er (isEmpty v1)

val v2 = top s2

val er = test er (v2 = 3)

in er end

Figure 11: The fitness function for stack.
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datatype ’a spiral = Spiral of ’a spiral -> ’a

fun wind x = Spiral x

fun unwind (Spiral x) = x

val Y = fn f => (fn x => f ((unwind x) x))

(wind (fn x => f ((unwind x) x)))

Figure 12: The Y combinator in Standard ML syntax.
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fun fitness ycomb =

let val nats = ycomb (fn self => 0 :: map (fn x => x+1) self)

in sqr((head nats) - 0) +

sqr((head (tail nats)) - 1) +

sqr((head (tail (tail nats))) - 2) +

sqr((head (tail (tail (tail nats)))) - 3)

end

Figure 13: The fitness function for the Y combinator problem.
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Table 1: Types of S, I, add and 7

Value Type

S (α → β → γ) → (α → β) → α → γ
I δ → δ
add Int → Int → Int

7 Int
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Table 2: The parameters for the genetic algorithm.

Parameter Value

max-expression-size 20
max-phrases 9
population-size 500
tournament-size 4
num-iterations 20,000
num-trials 60
tries-to-be-unique 50
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Table 3: Built-in values for the linear-regression problem.

Value Type

0 Int

1 Int

add Int → Int → Int

times Int → Int → Int

inc Int → Int
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Table 4: Built-in values for the even-parity problem.

Value Type

true Bool

false Bool

and Bool → Bool → Bool

or Bool → Bool → Bool

nor Bool → Bool → Bool

nand Bool → Bool → Bool

head List(α) → α
tail List(α) → List(α)
foldl (α → β → β) → β → List(α) → β
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Table 5: Results comparison for the even-parity problem.

Approach Evals Fitness Cases

Exhaustive Enumeration 9478 113,736
PolyGP 14,000 168,000
GP with Combinators 58,616 703,392
GP with Iteration 60,000 6,000,000
Generic GP 220,000 1,760,000
OOGP 680,000 8,160,000
GP with ADFs 1,440,000 184,320,000
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Table 6: Built-in values for the stack problem.

Value Type

product5 α → β → γ → δ → ε → Product(α, β, γ, δ ε)
0 Int

1 Int

true Bool

false Bool

nil List(α)
cons α → List(α) → List(α)
head List(α) → α
tail List(α) → List(α)
isEmpty List(α) → Bool

foldl (α → β → β) → β → List(α) → β
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Table 7: Results comparison for the stack problem.

Approach Evals Fitness Cases

Exhaustive Enumeration 2 8
GP with Combinators 7 28
Langdon 938,000 150,080,000
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Table 8: Results comparison for the queue problem.

Approach Evals Fitness Cases

GP with Combinators 398,250 3,982,500
Langdon 3,360,000 1,075,200,000
Exhaustive Enumeration Infeasible Infeasible
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Table 9: Built-in values for the list problem.

Value Type

1 Int

inc Int → Int

sqr Int → Int

nil List(α)
cons α → List(α) → List(α)

59



Table 10: Effort for genetic programming vs. exhaustive enumeration.

Problem Effort for GP Effort for EE

Stack 7 2
Y Combinator 16 27
Linear Regression 2866 311,879
List 980 7137
Even Parity 58,616 9478
Queue 398,250 Infeasible
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