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Abstract

Using a strongly typed functional programming language for genetic
programming has many advantages, but evolving functional programs
with variables requires complex genetic operators with special cases to
avoid creating ill-formed programs. We introduce combinator expres-
sions as an alternative program representation for genetic program-
ming, providing the same expressive power as strongly typed func-
tional programs, but in a simpler format that avoids variables and
other syntactic clutter. We outline a complete genetic-programming
system based on combinator expressions, including a novel generalized
genetic operator, and also show how it is possible to exhaustively enu-
merate all well-typed combinator expressions up to a given size. Our
experimental evidence shows that combinator expressions compare fa-
vorably with prior representations for functional genetic programming
and also offers insight into situations where exhaustive enumeration
outperforms genetic programming and vice versa.

1 Introduction

Genetic programming is a powerful technique for evolving programs, with
many applications in artificial intelligence [9, 17, 19], from controlling robotic
soccer players [20] to modeling biological processes [29]. At its heart, a
genetic-programming system is a genetic algorithm, where programs form
the genome of the organisms in the evolutionary system. Because our choice
of program representation influences both the overall design of the evolu-
tionary system and the scope of the programs that can be evolved, choosing
a good program representation is important for successful genetic program-
ming.

Typed, functional program representations are well suited for genetic
programming and other methods of program search [24, 39, 14, 25]. A
strong type system can eliminate a very large number of ill-formed programs
from the search space, and the expressiveness of functional programming
languages makes it possible to represent complex programs concisely. But
a high-level language intended for human programmers also presents some
challenges to a genetic-programming system.

1



fun foo x =
let val y = x + 3
in y + x / y
end

(a) Parent 1

fun bar x = x * 7 + 1

(b) Parent 2

fun foobar x = x / y + 1

(c) Invalid Child

Figure 1: An example of invalid crossover.

Most programming languages, including functional languages, provide
variables, but variables add complexities to a genetic programming system.
Figure 1 shows one example of the difficulties that variables cause for genetic
operators. A näıve crossover operator could produce the code in Figure 1(c)
by replacing the subexpression x * 7 from Figure 1(b) with the subexpres-
sion x / y from Figure 1(a). This result is invalid because foobar does not
define y.

In functional programming languages there are at least three common
ways to introduce local variables: let-expressions (which define local vari-
ables), function definitions (where variables represent function parameters),
and case expressions (which decompose structured types into their con-
stituent parts). If we build a genetic-programming system using these syn-
tactic forms, its genetic operators must correctly handle each kind of vari-
able. Doing so complicates the genetic operators, requiring strategies for
introducing (and possibly eliminating) variables (and named functions), as
well as strategies to handle or avoid ill-formed programs such as our example
[16]. An alternative to this approach is to avoid the problems of variables
by avoiding variables themselves.

In this paper, we show that combinator expressions are a useful program
representation for genetic programming, because they provide the expressive
power of high-level strongly-typed functional programming languages while
avoiding the problems of variables by eliminating them. Specifically,

• We observe that combinator expressions can represent programs that
introduce local variables, but the genetic operators to manipulate com-
binator expressions do not require special cases for variables;

• We give genetic operators that can evolve statically typed combinator
expressions;

• We show that generating combinator expressions is efficient compared
to the works of Yu [39], Kirshenbaum [15], Agapitos and Lucas [1],
Wong and Leung [37], Koza [17], Langdon [18], and Katayama [14] on
several problems: even parity on N inputs, and devising representa-
tions and implementations for stacks and queues;
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let fun double x = x + x
in double (double 2)
end

Figure 2: A simple functional program.

• We compare the effort required by genetic programming and exhaus-
tive program enumeration to solve six problems using the combinator-
expression program representation.

Combinator expressions are not new—their origins date back to the early
history of computer science. Our contribution is recognizing that they are
well suited for genetic programming and developing a framework in which
they may be used for that purpose.

2 Background: Combinator Expressions

Programs in functional languages such as Standard ML [23] and Haskell
[27] can be simplified to λ-expressions [26], which, in turn, correspond to
combinator expressions [7, 26, 31]. For example, the functions foo and bar
from Figure 1(a) and (b) can be written in combinator form as

foo ≡ S’ (S plus) div (C plus 3)

bar ≡ C’ plus (C times 7) 1

In this representation, crossover between expressions avoids the complexities
of variables; for example, the expressions S’ (S plus) plus (C times 7)
and S’ (S plus) (C times) (C’ plus (C times 7) 1) are two possible
ways we might combine foo and bar.

In this section, we provide the background to explain how the above
combinator expressions can actually be equivalent to the functions from
Figure 1(a) and (b), and lay the groundwork for understanding how genetic
programming on this representation can be implemented.

2.1 λ-Expressions

λ-Expressions are recursively defined as expressions that match one of the
following forms, where x, y, and z are arbitrary variables and M , N , and O
are arbitrary λ-expressions:

• λx.M — A λ-abstraction (i.e., an unnamed function, which introduces
the variable x);

• x — A variable (used in λ-abstraction bodies to represent arguments);

• M N — The function M applied to N .

In practice, the pure λ-calculus above is usually augmented with constants
(e.g., integer constants) and built-in functions (e.g., math primitives).
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fun sum list =
case list of

nil => 0
| h :: t => h + (sum t)

Figure 3: Standard ML code to sum a list.

fun sum_nr sum_rec list =
case list of

nil => 0
| h :: t => h + (sum_rec t)

val sum = Y sum_nr

Figure 4: Code to sum a list using the Y combinator.

Programs written in a human-readable language such as Standard ML
can be translated to their more baroque λ-calculus equivalent by following
transformation rules.1 For example, the program shown in Figure 2 has a
λ-calculus equivalent: Given a built-in plus function to perform addition,
we can define an anonymous function that doubles its input with the λ-
expression λx.plus x x. Additionally, we can replace the let expression in
Figure 2 with a λ-abstraction, allowing us to write our entire program as
(λd.d (d 2)) (λx.plus x x).

We can also eliminate if and case statements. For case statements on
lists, we translate case statements to calls to a listcase built-in function
as follows:

case L of
nil => E1

| v1 :: v2 => E2

→ listcase L E1 (λv1.λv2.E2)

The listcase built-in takes three (curried) arguments: the list to match,
the value to compute if the list is empty, and a function to call (passing in
the head and tail of the list) if the list is nonempty. We can use a similar
transformation to turn if statements into calls to a built-in cond function.

Finally, in the λ-calculus there is no explicit recursion, but all recur-
sive programs can be written nonrecursively by calling a helper function,
the Y combinator. Figure 4 adapts the code from Figure 3 to use the Y
combinator—notice that sum nr is a nonrecursive function (it does not call
itself, it calls sum rec, which is its first argument). Figure 5 defines the be-
havior of the Y combinator. The Y combinator itself can actually be defined
in the pure λ-calculus as λf.(λx.f(x x))(λx.f(x x)).2

1We present this transformation to show the correspondence between the λ-calculus
forms and their more human-readable equivalent forms. In our genetic-programming sys-
tem, we form combinator expressions directly, and thus do not require this transformation.
We do, however, use this transformation in ancillary parts of our system, such as trans-
forming a user-specified fitness function into combinator form for execution.

2Or alternatively, slightly more briefly as λf.(λx.x x)(λx.f(x x)).
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I x = x
K c x = c
S f g x = f x (g x)
B f g x = f (g x)
C f g x = f x g
S’ c f g x = c (f x) (g x)
B* c f g x = c (f (g x))
C’ c f g x = c (f x) g
Y f = f (Y f)

Figure 5: The definitions of several useful combinators.

Applying all of the preceding rules, our sum function can be written as
an anonymous function in the λ-calculus as

Y (λs.λl.listcase l 0 (λh.λt.plus h (s t)))

If we were to use λ-expressions as our program representation, the regular
form of λ-expressions would make all aspects of the system implementation
simpler as compared to using a more typical functional-programming lan-
guage. In particular, there would be only one mechanism by which variables
are introduced. But we can simplify our format for expressions further yet.

2.2 Eliminating Variables

All λ-expressions that represent evaluatable expressions can be translated
to combinator expressions. Combinator expressions represent programs en-
tirely by function application alone; they contain no λ-abstractions and no
variables. The job of variables, namely directing function arguments to their
intended destinations, and storing values that are to be used in multiple
places, is instead performed by a small set of built-in functions, such as the
ones shown in Figure 5 (only S and K are strictly necessary, but the other
combinators allow a more compact translation). An arbitrary λ-expression
can be translated into combinator form using the mechanical translation
rules given in Figure 6.

Continuing our sum example, applying the Trans transformation to the
λ-expression from the previous section yields

Y (B (C (C listcase 0)) (C (B B plus)))

Because all λ-expressions can be translated to combinator expressions,
and programs written in functional languages such as Standard ML can be
translated to λ-expressions, combinator expressions can represent arbitrary
functional programs.

One downside of using combinator expressions is that the meaning of an
expression, such as C B (S plus I), may not be as clear to a human reader
as the function λf.λx.f (plus x x) in the λ-calculus. However, it is possible
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Trans[[ x ]] = x

Trans[[ M N ]] = (Trans[[ M ]])(Trans[[ N ]])
Trans[[ λx.x ]] = I

Trans[[ λx.λy.M ]] = Trans[[ λx.Trans[[ λy.M ]] ]]
Trans[[ λx.M ]] = K (Trans[[ M ]]) if x /∈ FV[[ M ]]

Trans[[ λx.N x ]] = Trans[[ N ]] if x /∈ FV[[ N ]]
Trans[[ λx.N O ]] = B (Trans[[ N ]]) (Trans[[ λx.O ]]) if x /∈ FV[[ N ]]
Trans[[ λx.N O ]] = C (Trans[[ λx.N ]]) (Trans[[ O ]]) if x /∈ FV[[ O ]]
Trans[[ λx.N O ]] = S (Trans[[ λx.N ]]) (Trans[[ λx.O ]])

FV[[ x ]] = {x}
FV[[ M N ]] = FV[[ M ]] ∪ FV[[ N ]]
FV[[ λx.M ]] = FV[[ M ]] − {x}

Figure 6: Translating λ-expressions to combinator expressions.

S add I 7
⇒ add 7 (I 7) – rule for S
⇒ add 7 7 – rule for I
⇒ 14 – rule for add

Figure 7: Running a combinator expression.

to transform combinator expressions into λ-expressions by an algorithm that
is analogous to the one in Figure 6, but in reverse.3

2.3 Running Combinator Expressions

Genetic-programming systems need to run the programs they generate. Com-
binator reduction [35, 26] is an efficient technique for executing combinator
expressions. Although this technique has been described at length elsewhere,
we can cover its essence here.

The rules given in Figure 5 provide the basis for implementing the nec-
essary reduction machine. If a built-in function does not yet have all its
arguments, it cannot yet be reduced. But once the function has been ap-
plied to all of the arguments it needs, we can perform a reduction. Thus, K
and K 7 cannot yet be reduced, but K 7 3 can be reduced to 7, using the
rule for K given in Figure 5. To run a combinator expression, we repeat-
edly consider the outermost function application and attempt to reduce it.
Figure 7 shows an example of running S add I 7.

It is worth noting that combinator reduction is a lazy-evaluation strategy.
Function arguments are only evaluated when they are needed. Lazy eval-
uation is an advantageous technique in genetic programming because more
programs terminate under lazy evaluation than under strict evaluation.

3We used such an algorithm to find the human-readable equivalents of evolved combi-
nator expressions.
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Table 1: Types of S, I, add and 7

Value Type

S (α → β → γ) → (α → β) → α → γ
I δ → δ
add Int → Int → Int
7 Int

2.4 Type System

Many of the expressions that we could form by applying built-in functions
to each other are not meaningful; for example, the expression add I I is
meaningless, because the add function adds numbers, not identity functions.
By not constructing such meaningless expressions, we can greatly narrow the
search space of our genetic algorithm. A type system can impose constraints
that prevent these kinds of obvious errors.

The most natural type system for a functional language, even a simple
one based on combinator expressions, is the Hindley–Milner type system
[13, 22, 8], which forms the basis for the type systems of most modern
functional languages, such as Standard ML [23] and Haskell [27]. The key
ideas behind this type system are parametric types and type inference via
unification.

Every type in the Hindley–Milner system has zero or more types as pa-
rameters. Types such as Int and Bool are types with zero parameters,
whereas types such as List take a single parameter indicating the kinds of
objects stored in the list; thus we would write List(Bool) to denote a list
of booleans. For brevity, we write the type of the function from X to Y as X
→ Y, which is short for Function(X,Y).

Types can include type variables (which we will denote with greek let-
ters). For example, the type of the length function is List(α) → Int. Here
α is a type variable.Type variables are implicitly universally quantified (i.e.,
List(α) → Int is short for ∀α, List(α) → Int).

The Hindley–Milner system infers the type of an expression using unifi-
cation [4, 26, 28]. Two types unify if there is a way in which all of their type
variables can be assigned such that after substituting the assigned values for
the type variables, the two types are equal. For example, List(α) unifies
with List(Int) if α = Int. List(α) cannot unify with Bool, because there
is no way to assign α that makes the types equal.

The details of type inference are beyond the scope of this paper, but
an example is useful. Let us infer the type of S add I, given the types in
Table 1. The only consistent way to assign type variables for S applied to
add is to set α = β = γ = Int, inferring the type of S add as (Int → Int) →
Int → Int. Similarly, from the types of S add and I, the type of S add I
results in δ = Int and an inferred type for S add I of Int → Int.
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3 Genetic Operators

In order to evolve combinator expressions, it is necessary to generate random
expressions, and to have genetic operators that recombine parent expressions
to make similar children (usually mutation and crossover). This section
discusses an implementation of genetic operators for combinator expressions.

3.1 Generating Combinator Expressions

Whether we are creating a new combinator expression from scratch (random
creation), or a new expression based on existing expressions (mutation and
crossover), our needs are similar—to assemble expression fragments into a
single well-typed expression. We use a single function, generate, to provide
this facility, where generate(τ, L) assembles a well-typed expression of type τ
using function application to connect phrases taken from the library L. A
phrase is a value of a known type, either a simple built-in value, or a larger
prebuilt expression.

The problem addressed by the generate algorithm is strongly analogous
to theorem proving in the intuitionistic propositional calculus [31]. The cor-
respondence between computer programs and mathematical proofs, known
as the Curry–Howard isomorphism, can be described as follows for our prob-
lem: Suppose we have the functions f : α → β and g : β → γ. If we interpret
the types of f and g, α → β and β → γ, as given theorems, we can prove
the theorem α → γ. Suppose α is true; by rule f , β is true; by rule g, β
implies that γ is true; and, therefore, α → γ. Analogously for combinator
expressions, given a value x of type α, f x yields a value of type β, and
g (f x) yields a value of type γ.

The needs of the generate function differ from those of a conventional
theorem prover in two significant ways. Whereas short proofs are desirable,
short expressions need not be. It is generate’s task to return a randomly
chosen expression from those that are possible, rather than a single “best”
expression.4 In addition, in theorem proving we usually desire a proof if one
exists and will wait for it, but in genetic programming, we may be willing
to trade completeness for performance. If generate does not generate some
very complex expressions for performance reasons, the chances are that no
harm will be done, because complex expressions can usually be evolved over
subsequent generations rather than produced by generate in a single step.

Our relatively simple implementation of generate(τ, L) operates as follows:

1. Find a value in L with a type that matches our desired type, τ , or a
function in L that can return such a value if given suitable arguments.

2. Recursively use the generate algorithm to find values for any necessary
arguments. If no suitable arguments can be found, repeat Step 1 to
find a different starting point.

For example, if we wanted a function of type Int → Int, using Table 1 as
our library, one possibility is for generate to choose I, as I has a type that
matches (α → α matches if α = Int).

4Or, in the case of exhaustive enumeration, all possible expressions.
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There are more possible ways to make an Int → Int function, however.
In functional programming, multiargument functions are usually curried [7]
and can be partially applied. Thus, add can be seen as both a function of two
arguments and as a function with one argument that returns an Int → Int
function. Hence generate should consider all possible partial applications of
the functions in its library. Including such partial applications, observe that
we can not only use add to make an Int → Int function (provided we can
come up with an Int to pass to add), but that we can also use S, provided
that we can come up with two arguments for S of type Int → β → Int
and an Int → β. Using add as the first argument defines β = Int, leaving
us seeking an Int → Int value for the second argument; I is an acceptable
choice. Thus, S add I, which corresponds to λx.addx x, is another possible
result.

In practice, we limit the amount of time the algorithm may spend by
limiting the number of pieces it may assemble to form an expression. We
define two parameters, max-expression-size and max-phrases to control this
limit.

3.2 Generalized Genetic Operator

Genetic algorithms typically require genetic operators for mutation, crossover,
and random creation. The generate algorithm can serve as the basis of all
three. When we wish to mutate an expression or combine expressions, we
can do so by constructing a library for generate that includes subexpressions
from the parent expressions. In other words, we

1. Make a phrase for every subexpression in each parent;5

2. Construct a list of phrases consisting of the phrases from all of the
parent subexpressions and phrases for built-in values;

3. Use the list of phrases with generate to produce a new expression of
the required type.

This algorithm can make any new expression that the point-mutation or
crossover operators [17] can, as well as some expressions that those operators
would be very unlikely to make. Many genetic-programming systems have
distinct mutation and crossover operators, which are associated with free pa-
rameters that determine how often they occur. Using only the generalized
genetic operator eliminates these parameters (but adds a new parameter,
max-phrases). There is still some probability that the output of the gener-
alized operator will be an expression that crossover and/or point mutation
could make, but these probabilities are implicit in the behavior of the algo-
rithm, rather than explicit parameters.

5For an expression with n nodes, there are exactly 2n − 1 subexpressions. For a lin-
early structured expression, the average subexpression length is O(n), but more typical
expressions have a tree structure resulting in an average subexpression length of O(log n).
Regardless, through sharing, storing these expressions actually requires only O(n) space.
In our system, n is always less than max-expression-size, which is 20 in our experiments.
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Suppose we apply the generalized genetic operator to the parent expres-
sions add (mult 2 3) 4 and sub 7 9, with the set of built-in values {add,
sub, mult, 2, 3, 4, 7, 9}.

First, we make a phrase for every subexpression in each parent. The nine
phrases produced by the first parent are 2, 3, 4, mult, mult 2, mult 2 3,
add, add (mult 2 3) and add (mult 2 3) 4. The five phrases produced
by the second parent are 7, 9, sub, sub 7 and sub 7 9. To make a new
child, we call generate with the union of both parent’s phrase lists and the
built-in values.

In this example, we seek to generate an Int. The first step in generate
is to randomly pick a phrase that is an Int or that returns an Int when
applied to one or more arguments. Suppose we choose add, which returns
an Int when given two Int arguments. To provide those arguments, we
recursively call generate. For the first argument, we may choose mult 2 3,
because it is an Int. For the second argument, we may choose sub 7, which
requires an integer argument, which we randomly generate as 4. This process
gives a complete expression, add (mult 2 3) (sub 7 4). In this outcome,
the generalized operator reproduces the effect of crossover, applying sub 7
from the second parent to the subtree rooted at 4 in the first parent. But
it could also have generated add (mult 2 3) (mult 2 2), which would be
equivalent to a point mutation at 4.

The generalized operator can also make children that the point operators
would be very unlikely to make. Suppose that we choose sub applied to two
arguments as the root expression. For the first argument, let us choose
the phrase add (mult 2 3) 4, and for the second, let us choose 3 (because
these are whole phrases, there isn’t any further recursion in generate). Now
we have the expression sub (add (mult 2 3) 4) 3. Point mutation and
crossover would not be likely to make this expression, because it embeds the
first parent as a subtree of a new root.6

4 Exhaustive Enumeration

Genetic programming is not always the best way to automatically generate
programs—sometimes, particularly in the case of small programs, an ex-
haustive enumeration of every correctly typed expression is more efficient
than evolution [14]. Although, in principle, exhaustive enumeration of all
valid programs can be applied to any program representation, the simple
structure of combinator expressions makes them well suited for this task,
and the algorithms we have developed for genetic programming can be eas-
ily adapted for this purpose.

Our depth-first enumeration algorithm for combinator expressions uses
the same generate function as our generalized genetic operator. Normally,
generate is asked to produce a single, randomly chosen, expression of a given
type. In the case of exhaustive search, we instead enumerate all available

6A point mutation might affect a node near the root of a tree, but only by randomly
generating the mutated subtree. Our approach differs in that the mutated subtree can be
replaced by a phrase that consists of a multinode subtree from a parent.
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expressions matching a given type and size constraint.7

Even with type constraints, the number of possible expressions usually
grows exponentially with the size of the expression, thus exhaustive enu-
meration is usually only practical for relatively small expressions. By using
essentially the same generate function for both exhaustive enumeration and
our genetic algorithm, we can explore the trade-offs between evolutionary
programming and exhaustive search in the context of automatically gener-
ating programs.

5 Experimental Setup

Before we can provide experimental data to substantiate our claim that
combinator expressions are a useful program representation for genetic pro-
gramming and exhaustive search, we must complete our description of our
genetic-programming system by detailing our genetic algorithm and other
aspects of our experimental setup. Our genetic algorithm is not intended
to be novel—we provide the details only to give a complete account of our
experiments.

5.1 Genetic Algorithm

The basic idea behind a genetic algorithm is to simulate a population of
evolving organisms that represent possible solutions to a problem. In this
case, the organisms are combinator expressions. There are many variants of
genetic algorithms. Like Langdon [19], our genetic algorithm uses tourna-
ment selection and steady-state replacement [33].

Our genetic algorithm draws inspiration from Langdon [19] and Yu [39]
by attempting never to evaluate the same expression twice. Whenever a
genetic operator produces a new expression, if the expression is not different
from every other expression so far, the algorithm tries again as many as
tries-to-be-unique times to get a unique expression. If it takes more than
tries-to-be-unique attempts to get a unique expression, the algorithm accepts
the next new expression, regardless of whether it is unique.

The parameters of the genetic algorithm are population-size, tournament-
size, and num-iterations. The genetic algorithm works in the following way:

1. Generate and evaluate the fitness of population-size unique expres-
sions.8 If any of these expressions is a correct solution, stop immedi-
ately.

2. Choose the best amongst tournament-size randomly selected expres-
sions in the population as a parent. Choose a second parent in the
same way.

7The difference in generate for exhaustive enumeration is that after Step 2, it always
starts over until there are no further possibilities.

8In the context of a genetic algorithm, evaluate means “find the fitness of”.
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Table 2: The parameters for the genetic algorithm.

Parameter Value

max-expression-size 20
max-phrases 9
population-size 500
tournament-size 4
num-iterations 20,000
num-trials 60
tries-to-be-unique 50

3. Apply the genetic operator to these parents to produce a new expres-
sion. Evaluate the fitness of the new expression. If the expression is a
correct solution, stop immediately.

4. If the new expression has a better fitness than the most unfit expres-
sion in the population, randomly choose one of the expressions in the
population tied for most unfit, and replace it with the new expression.9

5. If the algorithm has iterated less than num-iterations times, go back
to Step 2. Otherwise, stop.

We used the same parameters for the genetic algorithm in all experi-
ments. Those parameters are listed in Table 2.

5.2 Problem Specification

Like Katayama [14], to specify a problem, we parse the built-in values and the
fitness function, and infer their types from code in a programming language,
rather than coding them directly into the system. We specify the built-in
values and fitness function in a subset of Standard ML that we call Mini-ML.

5.3 Combinator Library

In addition to any problem-specific built-in values, we provide generate with
a library containing all the combinators from Figure 5, except for Y and K.
For our experiments, Y is unnecessary—in some cases the evolved functions
iterate using a provided function such as foldl, and in one case we derive
Y from scratch. The K combinator is rendered largely redundant by the B
and C combinators. The uses of the K combinator not subsumed by B and
C effectively introduce an unused local variable—if ignoring a value is really
required, it is usually possible for an evolved program to contrive a way,
such as multiplying by zero or ingeniously using foldl.10 By avoiding K we
simply make it less easy to create expressions that contain ignored values.

9Lower fitness scores are better. A fitness of 0 corresponds to a correct solution.
10Specifically, C’ C (C’ foldl (C C)) nil ≡ K.
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Finally, we also eliminate from our library the option to create fully ap-
plied variants of each of our combinators. Doing so eliminates the generation
of redundant forms such as I e and I (I e), where e is some arbitrary ex-
pression, which can be expressed more simply as e (because I is the identity
function). Similarly, there is little point in generating C e1 e2 e3 when we
will can more directly generate the shorter equivalent expression e1 e3 e2,
and likewise for B.

5.4 Runtime Errors

Several kinds of errors can occur when evaluating a combinator expression,
such as taking the head of an empty list, dividing by zero, and causing integer
overflow. If an expression causes a run-time error, we stop evaluating it im-
mediately and give it the worst possible fitness score (∞). Expressions that
make more than 1000 recursive functional calls are deemed nonterminating,
which we count as a run-time error.

5.5 Comparing Effort

A standard measure of effort for genetic programming is the minimum num-
ber of evaluations necessary to achieve a 99% likelihood of finding a correct
solution [17]. Each time the genetic algorithm runs, there is some chance
that it will find a correct solution. This probability is approximately S/C,
where S is the number of trials that succeed out of C, the total number
of trials. Let Psuc(n) be the approximate probability of succeeding af-
ter evaluating n expressions. The number of times that the genetic algo-
rithm must run to achieve a 99% likelihood of finding a correct solution is
R(Psuc(n)) = �ln (1 − 0.99)/ ln (1 − Psuc(n))	 [17]. If the algorithm stops at
n evaluations, the number of evaluations necessary to have a 99% likelihood
of finding a correct solution is E(n) = R(Psuc(n)) × n. There is some value
for n that minimizes E(n). We refer to this minimum effort as E.11

Different authors use fitness functions with different numbers of test cases
for some of the problems in Section 6. Therefore, it is meaningful to compare
effort in terms of the number of test cases that must be evaluated to have a
99% chance of finding a correct solution. This number is E × T , where T is
the number of test cases per evaluation.

5.5.1 Effort for Exhaustive Enumeration

We need a measure of effort for exhaustive enumeration that is comparable
to E, as defined in the preceding section. We could use the number of ex-
pressions that our depth-first–search algorithm tries before finding a correct
solution, but doing so risks a result that is overly specific to details of our
implementation (such as the order in which it stores built-in values) rather
than to exhaustive enumeration in general. Not only can different imple-
mentations enumerate expressions in different orders (while being otherwise

11Authors who use a generational genetic algorithm call this minimum effort I(M, z),
but as we use a steady-state genetic algorithm, this notation does not apply.
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equivalent), but a single randomized algorithm might cover the search space
in different orders from run to run. Thus we use a metric that depends on
the results of exhaustive enumeration (up to a given expression size), but
not on their particular order.

First, let us define effort for non–size-first exhaustive enumeration in
which all expressions up to some maximum size are listed in arbitrary order.
If we find one solution in a search yielding all n expressions of size ≤ k, we
define the expected number of evaluations for a 99% likelihood of finding
the correct solution in that search as n × 0.99. But if those n expressions
contain s solutions, the expected number of evaluations required to have a
99% chance of finding a solution is n(1 − s

√
1 − 0.99).

In size-first enumeration, we list all expressions of a given size before
listing any expressions of the next largest size. Thus if the first solution is
of size k, we must have iterated through all m expressions of size < k before
we stand any chance of finding that solution. If there are s solutions and n
expressions of size k, the expected effort is m + n(1 − s

√
1 − 0.99)

If our exhaustive enumeration algorithm did not find a solution after
twelve hours, we stopped and declared the problem infeasible for exhaustive
enumeration. (In contrast, our evolutionary algorithm completed all sixty
trials well within this time limit for all problems.)

6 Experiments

In this section, we examine how well our genetic-programming system works
in practice by presenting results from six experiments. Three of the experi-
ments (the even-parity, stack, and queue experiments) are benchmark prob-
lems used by several authors to test genetic programming systems [1, 15, 18,
17, 37, 39]. The other three experiments (linear regression, the constrained-
list problem, and the Y-combinator problem) are included to provide a better
sense of the range of our system.

6.1 Linear Regression

Let us begin with a simple problem: linear regression from the data points
(0, 6), (1, 12), (2, 18), (3, 24), (4, 30). The fitness of a candidate solution is
its sum-squared error on the data set. The line y = 6x + 6 goes directly
through these data points, and thus the goal in this problem is to discover
a function corresponding to this line, given these points. Table 3 lists the
built-in values for this problem.

Figures 8 and 9 show three of the evolved solutions, in combinator and
human-readable form (where f is the desired function), respectively. The
first solution is the shortest one found by genetic programming, the other two
are arbitrarily chosen and more representative. These results are revealing
in several ways. First, output from genetic programming can be as short as
human-written code, although it is more likely to contain some redundant
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Table 3: Built-in values for the linear-regression problem.

Value Type

0 Int
1 Int
add Int → Int → Int
times Int → Int → Int
inc Int → Int

B (times (times (inc (inc one)) (inc one))) inc

C’ (C’ times (B* (C (S times) (inc (inc zero))) (B* I inc) add))
(add one)
zero

C’ (S B* (S add)) (C times) (B (C times one) inc)
(times one (inc one))

Figure 8: Three evolved solutions to the linear-regression problem.

fun f x = times (times (inc (inc one)) (inc one)) (inc x)

fun f x =
let val y = inc (inc zero)
in times (times y (inc (add zero y))) (add one x)

end

fun f x =
let fun g y = times y (times one (inc one))

val z = times (inc x) one
in g (add z (g z))
end

Figure 9: A human-readable version of Figure 8.

code. Second, the latter two evolved solutions correspond to human-written
code that defines local variables: the second evolved solution shown defines
a value and uses it twice; and the third solution also defines and reuses a
local function. Thus, although evolved combinator expressions contain no
variables themselves, they correspond to expressions that use variables in
meaningful ways.

If the genetic algorithm stops at 2866 evaluations, 60 out of 60 trials
find a correct solution, so Psuc(2866) ≈ 60/60 = 1.0 and 1 run is necessary
for a 99% probability of success. The minimum effort is 1 × 2866 = 2866
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Table 4: Built-in values for the even-parity problem.

Value Type

true Bool
false Bool
and Bool → Bool → Bool
or Bool → Bool → Bool
nor Bool → Bool → Bool
nand Bool → Bool → Bool
head List(α) → α
tail List(α) → List(α)
foldl (α → β → β) → β → List(α) → β

fun foldl f accum list =
case list of nil => accum

| h :: t => foldl f (f h accum) t

Figure 10: The foldl function for iterating over lists.

evaluations for a 99% probability of success.
Exhaustive enumeration finds 21 solutions from a total of 856,668 expres-

sions of size 9 and no solutions in 143,188 expressions of size < 9. Thus the
expected number of evaluations required for size-first enumeration to find a
solution with 99% certainty is 143,188 + 0.20 × 856,668 = 311,879 (because
(1 − 0.20)21 ≈ 1 − 0.99).

6.2 Even Parity

Koza [17] established the even-parity problem as a benchmark for genetic
programming. The problem is: Given a list of boolean values, return true
if there are an even number of true values in the list, and false otherwise.
The type of the evenParity function on N inputs is List(Bool) → Bool.
Like Yu [39], we use twelve test cases, which comprise every list of two or
three boolean values. The fitness of a potential solution to this problem is
the number of test cases that it fails.12 Table 4 lists the built-in values for the
even-parity problem. These values include the foldl function (sometimes
also called reduce), which provides a mechanism to iterate over lists. An
implementation of foldl is shown in Figure 10.

One of the evolved solutions is

B* (foldl (S’ (S’ and) or nand) true) I I

which is equivalent to the Standard ML expression

foldl (fn x => fn y => and (or x y) (nand x y)) true

12If a solution fails 0 test cases, it is correct.
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Table 5: Results comparison for the even-parity problem.

Approach Evals Fitness Cases

Exhaustive Enumeration 9478 113,736
PolyGP 14,000 168,000
GP with Combinators 58,616 703,392
GP with Iteration 60,000 6,000,000
Generic GP 220,000 1,760,000
OOGP 680,000 8,160,000
GP with ADFs 1,440,000 184,320,000

Our genetic algorithm found 23 solutions within the 20,000 iteration limit
imposed by num-iterations. From our experimental data, we find that if the
genetic algorithm stops at 431 evaluations, 2 out of 60 trials find a correct
solution, so Psuc(431) ≈ 2/60 = 0.033 and 136 runs are necessary for a 99%
probability of success. The minimum effort is 136×431 = 58,616 evaluations
for a 99% probability of success.

Exhaustive enumeration finds 4 solutions from a total of 11,114 expres-
sions of size 7 and no solutions in 1878 expressions of size < 7. Thus the
expected number of evaluations required for size-first enumeration to find
a solution with 99% certainty is 1878 + 0.68 × 11,114 = 9478 (because
(1 − 0.68)4 ≈ 1 − 0.99).

Table 5 lists the effort required to find a solution to the even-parity prob-
lem using combinator expressions with exhaustive enumeration and evolu-
tion (listed as “GP with Combinators” in the table). The table also shows
the performance of PolyGP [39], GP with iteration [15], Generic Genetic
Programming [37], Object Oriented Genetic Programming [1], and Genetic
Programming with Automatically Defined Functions [17].13 In the table,
Evals is the minimum effort to solve the problem (E) and Fitness Cases is
E × T , where T is the number of test cases per evaluation (see Section 5.5,
Comparing Effort). Smaller numbers are better.

6.3 Stack Data Structure

Langdon [18, 19] showed that genetic programming can evolve implemen-
tations of the stack and queue data structures. The interface for a stack
consists of four functions and a value: push, pop, top, emptyStack, and
isEmpty (emptyStack is not a function—it is the stack containing nothing).
To implement a stack, we need to find expressions for each of these parts.

13Koza solved many different incarnations of the even-parity problem. The effort listing
for Koza [17] is the same problem incarnation that Yu [39] addressed. Where possible,
we have used the same experimental parameters as Yu, but they do differ in one signif-
icant way—Yu had a max-expression-depth parameter, which was set to 4. We have no
equivalent parameter; our closest equivalent, max-expression-size, was set to 20 for all our
experiments.
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fun fitness (push, pop, emptyStack, isEmpty, top) =
let fun test er b = if b then er else er + 1

val er = 0
val s1 = emptyStack
val er = test er (isEmpty s1)
val s2 = push s1 3
val er = test er (not (isEmpty s2))
val v1 = pop s2
val er = test er (isEmpty v1)
val v2 = top s2
val er = test er (v2 = 3)

in er end

Figure 11: The fitness function for stack.

Table 6: Built-in values for the stack problem.

Value Type

product5 α → β → γ → δ → ε → Product(α, β, γ, δ ε)
0 Int
1 Int
true Bool
false Bool
nil List(α)
cons α → List(α) → List(α)
head List(α) → α
tail List(α) → List(α)
isEmpty List(α) → Bool
foldl (α → β → β) → β → List(α) → β

Figure 11 lists the fitness function for the stack problem, which takes the
form of a brief unit test in Mini-ML. The argument to the fitness function
is a single value, a quintuple, containing the five required parts of a stack
implementation. The fitness function starts with an empty stack, pushes an
Int onto it, then pops that Int off of the stack. As it is performing these
operations, it tests four conditions that will be true for a correct implemen-
tation of a stack, using a local function, test, to keep track of the number of
failed tests. This helper function takes as input the number of tests failed so
far and a boolean representing the success status of a new test, and returns
the new number of failures. The fitness of a stack implementation is er, the
number of tests that it fails. For the purpose of calculating effort, each call
to test is a test case within an evaluation. Table 6 lists the built-in values
for the stack problem.

The type system infers that the types of push, pop, emptyStack, isEmpty,
and top are α → Int → α, α → α, α, α → Bool, and α → Int, respectively.
Here, α means the type that internally represents a stack. For example, the
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push function takes a stack and an Int, and returns a new stack with the
Int added to it. The way in which the fitness function uses push and top
dictate that the stack holds Ints.

To provide a values for the fitness function, our genetic-programming
system must create quintuples of type

(α → Int → α) × (α → α) × α × (α → Bool) × (α → Int)

(or, stated in the terminology of our type-system, Product(α → Int → α,
α → α, α, α → Bool, α → Int)). To enable generate to make such a
product, we include in our function library a function, product5, that takes
five arguments and returns a quintuple of those argments.

Notice that this specification does not mandate any particular represen-
tation for the stack. Type inference determines that there is an unknown
type, α, that will represent the stack. Evolution must find an appropriate
assignment of the type variable α (i.e., find an internal representation for a
stack).

One of the evolved solutions is

product5 (C cons) tail nil isempty head

which is equivalent to the Standard ML expression

(fn x => fn y => cons y x, tail, nil, isempty, head)

The type signatures of all these functions show that through evolution and
type constraints, the system found a List(Int) representation for the queue
(i.e., α = List(Int)). The fitness function specifies that the first element of
the quintuple should be the implementation of push, that the second element
should be pop, and so on. Thus, push is fn x => fn y => cons y x and
pop is tail. An interesting part of the solution is that it could not just use
cons for push because the arguments are in the wrong order. To flip them
around, the genetic algorithm constructs the expression C cons.

If the genetic algorithm stops at 7 evaluations, 60 out of 60 trials find
a correct solution, so Psuc(7) ≈ 60/60 = 1.0 and one run is necessary for
a 99% chance of success. The minimum effort for genetic programming is
1 × 7 = 7 evaluations for a 99% chance of success. Exhaustive enumeration
finds exactly one solution of size 7 from a total of 2 expressions of size 7 and
no smaller expressions, so the effort required for exhaustive enumeration to
find a solution is 2 evaluations.

Table 7 lists the effort required to find a stack implementation by ex-
haustive enumeration, by evolving combinator expressions, and by evolution
using Langdon’s approach [18]. Exhaustive enumeration shows us that there
are few correctly typed expressions of the minimum size necessary to rep-
resent a solution. Type constraints make this problem very easy for either
exhaustive enumeration or random guessing with combinator expressions.
Langdon’s system had no such type constraints and relied on indexed mem-
ory to represent the stack rather than functional lists [18].
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Table 7: Results comparison for the stack problem.

Approach Evals Fitness Cases

Exhaustive Enumeration 2 8
GP with Combinators 7 28
Langdon 938,000 150,080,000

6.4 Queue Data Structure

Evolving an implementation of the queue data structure poses a greater
challenge than evolving a stack, because a queue cannot be as trivially im-
plemented. Like the stack, the fitness function for the queue is a short
unit test, written in Mini-ML. It pushes four Ints onto the queue, then
pops them back off. Interspersed between pushes and pops, it tests ten
cases. The fitness of a queue implementation is the number of assertions
it fails. The argument to the fitness function is a quintuple of the form
(isEmptyQ, enQ, headQ, deQ, emptyQ).

The shortest evolved solution is

product5 isempty
(C’ (B* (foldl cons nil)) cons (foldl cons nil))
head tail nil

With the exception of enQ, all the operations in this solution mirror their
counterparts in the stack experiment. The implementation of enQ is equiv-
alent to the Standard ML function

fn x => fn y => foldl cons nil (cons x (foldl cons nil y))

The function foldl cons nil reverses the list to which it is applied, so this
solution’s enQ function could be written as

fn x => fn y => reverse(cons y (reverse x))

If the genetic algorithm stops at 4425 evaluations, 3 out of 60 trials finds
a correct solution, so Psuc(4425) ≈ 3/60 = 0.05 and 90 runs are neccessary
for a 99% chance of success. The minimum effort for genetic programming
is 90 × 4425 = 398,250 evaluations for a 99% chance of success. Exhaustive
enumeration did not find a solution within twelve hours.

Table 8 lists the effort required to find a solution by evolving combinator
expressions and by Langdon [18]. This problem requires less effort to solve
with typed combinator expressions and functional lists than it does without
a type system, using indexed memory.

Langdon also reported an effort of 86,000,000 evaluations to implement
the queue if a particular function that is somewhat problem specific is not
in the function set, and must be evolved as an automatically defined func-
tion. We could have made this problem easier by including reverse in the
built-in values, but doing so allows us to solve the problem trivially using
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Table 8: Results comparison for the queue problem.

Approach Evals Fitness Cases

GP with Combinators 398,250 3,982,500
Langdon 3,360,000 1,075,200,000
Exhaustive Enumeration Infeasible Infeasible

Table 9: Built-in values for the list problem.

Value Type

1 Int
inc Int → Int
sqr Int → Int
nil List(α)
cons α → List(α) → List(α)

exhaustive enumeration (with an effort of 2064 evaluations). Only without
this helper function is the problem challenging enough to make using genetic
programming necessary.

6.5 A Value that Satisfies a Simple Constraint

We have seen how genetic programming with combinator expressions can
solve problems where the solution is a function (in the linear-regression and
even-parity problems), or a data structure that consists of a collection of
functions and values (in the stack and queue problems). We can also use
combinator expressions to solve problems with solutions that are not func-
tions. Consider the following fitness function:

fun fitness L = sqr((length L) - 3) + sqr((sum L) - 30)

Because length and sum are functions that act on values of type List(Int),
the type system infers that any solution to this problem must have type
List(Int). We can see that if L is a list with three elements, the first term
in the fitness function is 0. If the elements of L sum to 30, the second term
in the fitness function is 0. Thus, the solution to this problem must be a
list with three elements that sum to 30. In this problem, we must evolve an
expression that satisfies these constraints using only the functions and values
given in Table 9. For brevity, we refer to this problem as “the constrained-list
problem” in the rest of this paper.

An important distinction between the genetic operators in Section 3 and
other genetic operators is that our operators can evolve any type of expres-
sion, not just functions or function bodies. Thus, we can solve this problem
using exactly the same algorithms as we used to solve the linear-regression,
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even-parity, stack and queue problems.14

One evolved solution is

cons (sqr (inc one))
(cons one (cons (sqr (inc (sqr (inc one)))) nil))

which is equivelent to [(1 + 1)2, 1, ((1 + 1)2 + 1)2], or [4, 1, 25].
If the genetic algorithm stops at 980 evaluations, 60 out of 60 trials find

a correct solution, so Psuc(980) ≈ 60/60 = 1.0 and one run is necessary for a
99% probability of success. The minimum effort is 1×980 = 980 evaluations
for a 99% probability of success.

Exhaustive enumeration finds 6 solutions from a total of 5741 expressions
of size 13 and no solutions in 4060 expressions of size < 13. Thus the
expected number of evaluations required for size-first enumeration to find
a solution with 99% certainty is 4060 + 0.54 × 5741 = 7137 (because (1 −
0.54)6 ≈ 1 − 0.99).

6.6 The Y Combinator

Section 2.1 introduced the Y combinator as the cornerstone of recursion in
the λ-calculus. As we mentioned there, this combinator can be implemented
as the λ-expression λf.(λx.f (x x))(λx.f (x x)). In this section we address
whether this combinator can be evolved.

Unfortunately, however, the Y combinator as we have just stated it in the
λ-calculus would not be valid under the Hindley-Milner type system used by
our system and by functional languages such as Standard ML and Haskell.
If f has type α → α, the subexpression λx.f(x x) has the infinite cyclic type
((((. . .) → α) → α) → α) → α, representing a function that when passed
itself as an argument, yields an α. Although the type system prohibits this
infinite cyclic type, it does allow recursive data types, which enable us to
define the Y combinator using a type Spiral(α) to represent this infinite
type, and helper functions, wind and unwind, of type

wind : (Spiral(α) → α) → Spiral(α)

unwind : Spiral(α) → (Spiral(α) → α)

(operationally, wind and unwind are the identity function, they change
the type without altering the underlying value). With these functions
in place, instead of λx.f (x x), which would not type check, we write
λx.f ((unwindx)x), which has type Spiral(α) → α and is a suitable ar-
gument to wind. A full Standard ML nonrecursive implementation of the Y
combinator is shown in Figure 12.15 If you find this code nonobvious, you

14Genetic algorithms solve problems with answers that are data structures, but the
programmer usually needs to implement genetic operators that are specific to the solution
representation. Our idea is that combinator expressions can represent a wide variety of
data structures, such as lists of integers. If a combinator expression can represent the
solution to a problem, then problem-specific genetic operators may be unnecessary.

15In Standard ML, the Y combinator would actually be a little more complex because
Standard ML is strict rather than lazy. This issue need not concern us because we are
developing Y for Mini-ML, which is lazy. A full implementation using these ideas for
Standard ML can be found on the Internet in the comp.lang.ml FAQ.
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datatype ’a spiral = Spiral of ’a spiral -> ’a
fun wind x = Spiral x
fun unwind (Spiral x) = x

val Y = fn f => (fn x => f ((unwind x) x))
(wind (fn x => f ((unwind x) x)))

Figure 12: The Y combinator in Standard ML syntax.

fun fitness ycomb =
let val nats = ycomb (fn self => 0 :: map (fn x => x+1) self)

in sqr((head nats) - 0) +
sqr((head (tail nats)) - 1) +
sqr((head (tail (tail nats))) - 2) +
sqr((head (tail (tail (tail nats)))) - 3)

end

Figure 13: The fitness function for the Y combinator problem.

are not alone. Informally, we have observed that writing the Y combinator
nonrecursively, even with wind and unwind provided, is unintuitive even for
experienced functional programmers. Our question in this experiment is how
difficult the problem is for a machine.

To determine whether the Y combinator can be evolved, we necessarily
provide wind and unwind, as well as our usual set of combinators (which does
not include Y), and ask our system to derive a function that will satisfy the
fitness function shown in Figure 13. The fitness function requires a function
that can serve the role of the Y combinator, which it uses to create an infinite
list of the natural numbers, and then tests the first four elements.16 The
built-in values do not include any numeric functions at all, so its only hope
is to successfully create the Y combinator.

One evolved solution is C’ (B (S I wind)) B (S unwind I)), which
simplifies to B (S I wind) (C B (S unwind I)) (which is also the expres-
sion discovered by exhaustive enumeration), and is equivalent to the alter-
nate (shorter) Y combinator given in the footnote in Section 2.1.

If the genetic algorithm stops at 16 evaluations, 60 out of 60 trials find
a correct solution, so Psuc(16) ≈ 60/60 = 1.0 and one run is necessary for a
99% probability of success. The minimum effort is 1 × 16 = 16 evaluations
for a 99% probability of success.

Exhaustive enumeration finds 7 solutions from a total of 48 expressions
of size 9 and no solutions in 3 expressions of size < 9. Thus the expected
number of evaluations required for size-first enumeration to find a solution
with 99% certainty is 3 + 0.48 × 48 = 27 (because (1 − 0.48)7 ≈ 1 − 0.99).

16With lazy evaluation, only the first four elements of the list are actually created.
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Table 10: Effort for genetic programming vs. exhaustive enumeration.

Problem Effort for GP Effort for EE

Stack 7 2
Y Combinator 16 27
Linear Regression 2866 311,879
List 980 7137
Even Parity 58,616 9478
Queue 398,250 Infeasible

7 Genetic Programming vs. Exhaustive
Enumeration

Table 10 compares the effort required by genetic programming and exhaus-
tive enumeration to solve each of the six problems that we investigated.

The stack and Y-combinator problems require very little effort to solve
using either genetic programming or exhaustive enumeration, because type
constraints limit the search space to only a few possible expressions. The
genetic algorithm finds the solution while generating the initial population,
so it can be viewed as a random search.

Type constraints do not restrict the search space in the linear-regression
problem much, so the number of well-typed expressions increases rapidly as
a function of expression size. The smallest possible solution is fairly large, so
exhaustive enumeration must try many expressions before finding one that
is correct. We speculate that genetic programming solves the problem with
much less effort than exhaustive enumeration because the fitness landscape
is smooth; children are likely to have similar fitness to their parents. Because
of this characteristic, the genetic algorithm can start with a population of
poor solutions, and makes small changes that gradually lead to a correct
solution.

The constrained-list problem is more type-constrained than the linear-
regression problem, but exhaustive enumeration still takes more effort to
solve this problems than genetic programming. The solutions to both prob-
lems require nontrivial numeric expressions. We think that expressions which
contain numbers are generally easier to find using evolution than exhaustive
enumeration. To investigate this hypothesis, we ran a series of experiments
with the built-in values 1, add, times, and inc. The fitness function was
fitness x = sqr(x - N), where N = 1, 2, . . . , 50 (so the goal is simply
to build a number between 1 and 50 by adding, incrementing, and multi-
plying ones). Figure 14 shows the results for generating such expressions
using genetic programming and exhaustive enumeration (using our usual ef-
fort metrics).17 As the size of the solution increases, the effort for exhaustive

17Exhaustive search for expressions for 43 and 47 did not find a solution amongst the
1, 209, 974 expressions of size ≤ 14; resource constraints prevented a search for expressions
of size 15.
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Figure 14: Effort to generate simple numeric values.

enumeration increases faster than for genetic programming.
The queue problem was infeasible for exhaustive enumeration, but feasi-

ble with genetic programming. Like the stack problem, the search space is
heavily constrained by types, but unlike the stack problem, the solution is
not one of the smallest valid expressions.

Exhaustive enumeration took less effort than genetic programming to
solve the even-parity problem, in large part because this incarnation of the
problem can be solved with a relatively short expression. Interestingly, a
small change to this problem causes genetic programming to outperform
exhaustive evaluation. The if . . . then . . . else variant of this problem (in
which we remove the logical operators from the function set, provide a cond
function, and keep all other aspects the same), requires an expression of size
10 rather than size 7. This change makes the problem much more difficult
for exhaustive enumeration to solve, but makes a relatively small difference
for genetic programming—our system solves this variant with an effort of
150,384 evaluations.

Despite our insights into when it is better to choose genetic program-
ming over exhaustive program enumeration and vice versa, it may not be
obvious which technique will be best for a new problem. But because it is
straightforward to implement an exhaustive search system given a system for
genetic programming with combinators, such a choice is a false dichotomy.
It is practical and sensible to do both.

8 Conclusion

Combinator expressions are a useful program representation for genetic pro-
gramming. They offer the power of fully general functional programs, but
algorithms to manipulate combinator expressions do not require special cases
to handle variables, because combinator expressions do not contain variables
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(even though they can represent any expression that does contain variables).
The effort required to generate combinator-expression solutions to the

even-parity problem on N inputs, and to find implementations of a stack
and queue compares favorably with the works of Yu [39], Kirshenbaum [15],
Agapitos and Lucas [1], Wong and Leung [37], Koza [17], Langdon [18], and
Katayama [14].

Genetic programming with combinator expressions can find a solution
to the constrained-list problem. This result demonstrates that combinator
expressions are also a useful representation for problems with solutions that
are not functions.

The Y-combinator experiment shows that there are some functions that
can be found almost trivially by genetic programming and exhaustive enu-
meration, even though they are conceptually difficult for humans. It also
demonstrates the applicability of genetic programming with combinator ex-
pressions to finding higher-order functions.

We hope we have inspired the reader to continue exploring combinator
expressions as a program representation for genetic programming and other
methods of program search. The following section gives a few possible di-
rections for further research; and there are certainly many more.

9 Future Work

There are many ideas, questions, and issues related to genetic programming
with combinator expressions that might be fruitful areas for future research.

The impact of the set of combinators that are included in the built-in
values on the evolution of combinator expressions remains unexplored. We
used the I, S, B, C, S’, B*, and C’ combinators because Peyton Jones [26]
listed these as an appropriate basis for the implementation of an efficient
combinator-reduction machine. However, Katayama [14] used S, B, C, and a
“list only” K.

With a compiler to transform code from an expressive functional-
programming language (such as Mini-ML) into combinator expressions, it
would be possible to evolve populations of combinator expressions that in-
clude code written by humans. There may be applications of this idea to
optimizing compilers [32, 6].

It seems that code bloat [36], introns, and neutrality [11, 40, 5] play
important roles in the dynamics of evolving populations of combinator ex-
pressions. Combinator expressions may provide useful ways to investigate
these phenomena. Partial evaluation on combinator expressions can remove
some, but not all introns.18

Genetic programming and size-first search are not the only methods of
automatically deriving functional programs [25]. Combinator expressions
could be used in automatic programming systems that use other optimization
algorithms.

18An intron is a piece of code that has no effect on the behavior of the program in which
it resides.

26



10 Related Work

Church and Turing developed the idea that a Turing machine or λ-expression
can compute any function that is computable [34, 2, 3]. Schönfinkel [30] de-
veloped the S and K combinators to eliminate the need for variables in logic.
Curry and Feys [7] further developed the field, adding the B and C combi-
nators. Curry and Feys [7], Turner [35], Peyton Jones [26], and Sorensen
and Urzyczyn [31] give algorithms to convert a λ-expression to a combi-
nator expression. The existence of these algorithms constitutes a proof of
the equivalence of the two representations. Both Turner and Peyton Jones
discussed implementations of functional programming languages that com-
pile λ-expressions into combinator expressions and run them by combinator
reduction.

In Koza’s original genetic-programming system [17], expressions satisfy
the property of “closure.”19 For an expression to satisfy the closure property,
all functions (non terminals) it contains must take arguments and return val-
ues of the same type, and all constants (terminals) must be of that type.
Koza offered constrained syntactic structures as a way to evolve expres-
sions that did not satisfy the closure property. When using constrained syn-
tactic structures, only certain terminals and nonterminals can go together.
The user of the system specifies which terminals and nonterminals can go
together. Problem-specific genetic operators maintain these syntactic con-
straints.

In Montana’s Strongly Typed Genetic Programming (STGP) [24], the
user supplies syntactic constraints implicitly through a static type system.
Users specify the type of each function and constant that can be incorporated
into an evolved program. STGP’s genetic operators always produce correctly
typed expressions. Its type system supports generic functions in the function
set, but they are instantiated to a monomorphic type that does not change
during evolution. STGP can evolve parametrically polymorphic functions
through the use of type variables. The genetic operators in STGP use a
type-possibilities table that makes higher-order function types difficult to
implement in a fully general way.

McPhee et al. [21] showed that typed genetic programming is close to or
more efficient than Koza’s original genetic programming on a set of problems
that can be solved naturally without a type system.

Clack and Yu [4] introduced a new program representation called PolyGP,
which Yu has since refined [38, 39]. PolyGP combines Montana’s static
typing with functional-programming concepts such as λ-abstractions, higher-
order functions, and partial application. In order to support higher-order
functions, Yu replaced Montana’s type-possibilities table with a unification
algorithm.

PolyGP does not allow the body of a λ-abstraction to refer to any vari-
able other than the one that it introduces, and can only perform crossover
between λ-abstractions that represent the same argument of the same higher-
order function, so it does not fully support evolving higher-order functions

19The property of closure in genetic programming should not be confused with the
functional-programming languages concept of closures.
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(functions that return functions as their results). These limitations arise in
PolyGP because it is difficult to apply genetic operators to expressions that
introduce named variables. Our genetic operators in Section 3 avoid these re-
strictions on crossover. Combinator expressions can represent λ-expressions
that would require closures (like the Y combinator). We think that PolyGP
could not evolve the Y combinator, because its definition in λ-calculus re-
quires a λ-abstraction with a body containing a variable bound in another
λ-abstraction.

Kirshenbaum [16] provided several new genetic operators that enable
genetic programming to evolve expressions that introduce statically scoped
local variables through let expressions. In contrast, evolving combinator
expressions does not require specialized genetic operators that deal only
with variables. Speaking of closures, Kirshenbaum writes that they “may be
worth investigating but will necessitate changes in the way local variables
are implemented”.

Yu [39] and Kirshenbaum [16] used their GP systems to address several
problems that depend on iteration or recursion, including the even-parity
problem on N inputs. Yu showed that PolyGP could evolve polymorphic
recursive functions, such as map and length.

Katayama [14] presented a system for automatic program discovery by
depth-first enumeration of all correctly typed expressions in order of size.
Exhaustive enumeration requires less effort than PolyGP to find many of
the same functions (including map and length). Our experiments show that
some problems are easier to solve with exhaustive enumeration, whereas
others are easier to solve with evolution. Although derived independently,
our generate algorithm has much in common with Katayama’s enumeration
algorithm.

Augustsson’s Djinn20 is similar to Katayama’s enumeration system and
our generate function, but finds a single expression that satisfies a given type
constraint. Djinn uses a decision procedure for intuitionistic propositional
calculus due to Dyckhoff [10], and will always (eventually) find an expression
if one exists.

Langdon [18, 19] used genetic programming with indexed memory to
evolve the stack and queue data structures. In Langdon’s representation,
each of the functions in the implementation of a data structure is a sepa-
rate expression tree. Crossover could only take place between corresponding
trees. In contrast, we evolve a single expression that contains all parts of a
data structure.

Haynes et al. [12] evolved expressions that represented sets of cliques in a
graph with a strongly typed genetic-programming system. This work shows
that evolving typed expression trees is an effective way to solve problems
that require a data structure as the solution. We demonstrated that genetic
programming with combinator expressions is applicable to such problems,
by evolving a list represented as a combinator expression.

20Announced on the haskell@haskell.org mailing list in December, 2005.
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