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Abstract
We introduce a method for providing lightweight daemons, called
simplifiers, that attach themselves to program data. If a data item
has a simplifier, the simplifier may be run automatically from time
to time, seeking an opportunity to “simplify” the object in some
way that improves the program’s time or space performance.

It is not uncommon for programs to improve their data struc-
tures as they traverse them, but these improvements must wait until
such a traversal occurs. Simplifiers provide an alternative mecha-
nism for making improvements that is not tied to the vagaries of
normal control flow.

Tracing garbage collectors can both support the simplifier ab-
straction and benefit from it. Because tracing collectors traverse
program data structures, they can trigger simplifiers as part of the
tracing process. (In fact, it is possible to view simplifiers as analo-
gous to finalizers; whereas an object can have a finalizer that is run
automatically when the object found to be dead, a simplifier can be
run when the object is found to be live.)

Simplifiers can aid efficient collection by simplifying objects
before they are traced, thereby eliminating some data that would
otherwise have been traced and saved by the collector. We present
performance data to show that appropriately chosen simplifiers can
lead to tangible space and speed benefits in practice.

Different variations of simplifiers are possible, depending on the
triggering mechanism and the synchronization policy. Some kinds
of simplifier are already in use in mainstream systems in the form
of ad-hoc garbage-collector extensions. For one kind of simplifier
we include a complete and portable Java implementation that is less
than thirty lines long.

1. Introduction
Sometimes it is sensible for a garbage collector to performsimpli-
ficationwork on a data structure it is traversing.

Consider, for example, the graph corresponding to a lazy func-
tional program shown in Figure 1(a). In this figure,@ corresponds
to function application;: is the list constructor;head is the function
that returns the head of a list; andident is the identify function (the
question mark in the cloud represents the tail of the list, which is not
actually needed by our computation, and could be arbitrarily large
or even a lazy nonterminating computation). Ifb is evaluated (as
shown in Figure 1(b)), it is customary to overwrite the application
node with anindirection node(the square in our diagram) pointing
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Figure 1. Simplification in Graph Reduction.

to the result of the function application so that other computations
need not reevaluate this result. The indirection says, essentially,
“skip me and continue on to the node I point to”, and can thus
be elided if there is a suitable opportunity (resulting in the graph
shown in Figure 1(c)). If onlya is required, further simplification
of the graph can eliminate a space leak—because nothing actually
requires the tail of the list and the structure of the list is sufficiently
known to identify its head and tail, we could eagerly evaluatehead
and makea point directly to the head of the list (as shown in
Figure 1(d)).

Because both of these simplifications can save space, and be-
cause a tracing garbage collector (whether a copying collector or a
mark-sweep collector) traverses the data structures of the program,
a garbage collector for a lazy functional language will often contain
some ad-hoc code to handle some issues of this kind [26, 35]. But
language implementers working with an off-the-shelf garbage col-
lector (such as the Boehm collector [7]) are faced with a dilemma,
because these off-the-shelf collectors provide no obvious facility to
perform these kinds of operations. In fact, there is not even a widely
used term for this kind of code. It appears that an implementer must
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either modify the internals of their off-the-shelf collector to handle
the specific kinds of simplification they require, or implement their
own garbage collector from scratch.

This paper

• Introducessimplifiersas a solution to the above problem and
shows how simplifiers can be used to advantage in a variety of
related problems.

• Shows that simplifiers can be very easy to implement in a
language that already supports finalizers. An complete imple-
mentation of simplifiers and an application that uses simplifiers
is given in Java.

• Discusses issues relating to the implementation and use of sim-
plifiers, including direct support in a garbage collector for sim-
plifiers, and various synchronization issues.

• Provides performance results that demonstrate that a well-
chosen simplifier can have significant impact on the space
performance of real-world programs.

2. Simplifiers
We define asimplifier to be a lightweight daemon that usually runs
for a short period of time and does a small amount of work when
activated.

A simplifier should satisfy the following two requirements:1

1. A simplifier will do something to improve the efficiency of
a program. The correctness of a program will not depend on
whether or not, or how often, a simplifier is activated.

2. Except for synchronization issues (discussed below), it will not
matter when a simplifier is activated, as far as the correctness of
a program is concerned.

This umbrella definition of simplifiers allows several possible
realizations that differ according to

1. What triggers the activation of a simplifier; and

2. How simplifiers synchronize with each other and with the pro-
gram as a whole.

In this paper we will be primarily concerned with simplifiers that
are triggered by the garbage collector and are used to better manage
memory.

Even if a garbage collector or programming language includes
support for a particular form of simplification, there are also
choices to be made regarding the level of code that may define
simplifiers. Some possible variations include

1. Not exposing simplifiers to ordinary user-level code, but pro-
viding them as a part of a low-level interface to the garbage
collector. In this context the simplifier mechanism can improve
abstraction and separation of garbage collector and program-
ming language.

2. Allowing user-level code to define simplifiers as an unsafe
feature.

3. Allowing user-level code to define simplifiers, either with suffi-
cient restrictions to avoid violations of the above requirements,

1 We will call a simplifier that does not satisfy these requirements acom-
plicator, and avoid complicators in this paper. We note that in general a
compiler cannot distinguish between a simplifier and a complicator, and
in some cases the distinction may be only in the eyes of the programmer.
For example, a simplifier that can alter the result that a program produces,
perhaps in a heuristic search, may be okay if the program is viewed as a
nondeterministic program that may return any result that satisfies certain
requirements.

or wrapped in such a way as to ensure that arbitrary user code
cannot actually violate them.

2.1 Breeds of Simplifer

There are a number of differentbreedsof simplifiers, which differ
in how they synchronize with each other and with the program as
a whole.2 We will always assume that simplifiers may be activated
in any order, and that no fairness is guaranteed (i.e. one simplifier
may be activated much more often than another in a completely
arbitrary manner). Some breeds of simplifiers can be active con-
currently with other simplifiers, whereas others cannot; some can
be active concurrently with the main program, whereas others can
be active only when the main program is halted; and still others
must be synchronized with the main program in some way. There
is also the question of whether a simplifier can run concurrently
with the garbage collector. No single synchronization policy seems
best in all cases, but there should be no problem with a single
program using several different breeds of simplifiers for different
purposes. Similarly, those designing and and implementing garbage
collectors and programming languages may choose the breed of
simplifier that is most expedient and easiest to implement.

In some situations, simplifiers may have additional constraints,
such as running for at most a bounded amount of time on each
activation or not allocating any memory.

2.2 Implementation Strategies

Different breeds of simplifier demand different implementation
strategies. In this paper, we are concerned with simplifiers that
are triggered by garbage collection, but even in that domain, there
are a number of possible implementation choices. For example, as
we shall see in the next section, simplifiers can be implemented
in many languages without actually modifying the garbage col-
lector at all. (We discuss implementation concerns more fully in
Section 5.)

3. Example Implementation and Application
In this section we will describe a very simple—but complete and
useable—implementation of simplifiers in Java and show how sim-
plifiers can be used in an application. This section should be con-
sidered as a worked example, not a final answer.

3.1 Simplifier Invocation Infrastructure

The key to this small implementation of simplifiers is a class,
Watcher, defined in Figure 2. AWatcher is an object that is created
on the heap such that it will later be found and collected by the
garbage collector in the next garbage-collection cycle; thus, after
creating a watcher, the program drops its reference to it.3 Each
Watcher has a weak reference to another object called thewatchee.
The purpose of aWatcher is to see that thesimplify method of the
watchee is run when the garbage collector is run.

When the garbage collector is run, eachWatcher should be
finalized and destroyed. Thefinalize method of aWatcher calls
the simplify method of itswatchee, then creates a newWatcher to
continue watching thewatchee until the process is repeated on the
next garbage-collection cycle.

A Watcher has a weak reference to itswatchee so that the
watchee can be reclaimed by the garbage collector if appropriate.

2 We use the termbreed, beause many similar terms, such astype, kind, sort,
etc. have other specialized meanings.
3 Depending on the sophistication of the language and its garbage collector,
some care may be required to ensure that the watcher is not collected the
moment it is created but instead persists until the next garbage-collection
cycle. We have found our implementation sufficient for Sun’s implementa-
tion of the Java language.
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import Java.lang.ref.*;
public class Watcher {

WeakReference<Simplifiable> wref;

private Watcher (Simplifiable watchee) {
wref = new WeakReference<Simplifiable>(watchee);

}

static void watch(Simplifiable watchee) {
new Watcher (watchee);

}

protected void finalize() throws Throwable {
Simplifiable watched = wref.get();
if (watched != null) {

watched.simplify();
new Watcher (watched);

};
}

}

Figure 2. Watchers for Triggering Simplifiers.

abstract class Simplifiable {
abstract void simplify();

public Simplifiable() {
Watcher.watch(this);

}
}

Figure 3. A Small but Complete Implementation of Simplifiers
using Watchers.

Thusfinalize needs to check for the special case where thewatchee
has preceded theWatcher in death.

For a class to use a simplifier, two things are necessary. First,
the class must have asimplify method. Second, the class must be a
subclass of theSimplifiable class, as defined in Figure 3.4 Thanks to
inheritance, the constructor for all objects derived fromSimplifiable
will cause aWatcher to be launched for theSimplifiable object at
the time the object is created.

3.2 Simplifying Disjoint-Set Union

In Section 1, we used an example of simplification drawn from
the implementation of functional languages, but now let us ex-
amine a small, self-contained example from the data-structures
community—Tarjan’s well-known disjoint-set–union data structure
[32] (further examples are given in Section 4). In the disjoint-set–
union problem, we can

• Create a new node that describes a singleton set whose element
is not a member of any existing sets;

• Destructively union two (previously disjoint) sets—the nodes
that previously referred to the two disjoint set now both refer to
the same (unioned) set; and,

• Compare two nodes to see if they refer to the same set.

In Tarjan’s data structure, an example of which is shown in Fig-
ure 4, a node may be either a root node (shaded black in the
diagram) or an indirection node that points to another node—two
nodes are considered to refer to the same set if they lead to the same
root.

4 We can also achieve similar ends with Java’s interfaces.

(a) Two Disjoint Sets.

(b) After Path Compression.

(c) After Garbage Collection.

Figure 4. The Disjoint-Set Data Structure.

When comparing two nodes to determine whether they are in the
same set,path compressionis used to short-circuit paths to the root,
redirecting links so that they point directly to the root node. Union
is performed by making the root node in one set point to a node in
the second set. Figure 4(a) shows an example of Tarjan’s disjoint-
set data structure. Figure 4(b) shows the data structure after path
compression.5 (The dotted arrows in the diagram indicate nodes
that are externally referenced.)

Path compression speeds future comparisons, and allows un-
referenced nodes to be garbage collected (Figure 4(c))—prior to
path compression, a garbage collector would not be able to re-
claim any of the nodes in our example. But the entire process of
path compression only occurs if a path is traversed. For as long
as no comparisons or unions are performed (or none that directly
or indirectly involve a particular node), the path-compression opti-
mization is not performed (on that node) and “logical garbage” may
be retained. Worse, the amount of retained logical garbage could
be arbitrarily large for a suitably pathological sequence of unions
where we retain references to only a few of the resulting sets.6

Traversing the entire data structure and performing path com-
pression onall paths (rather than just those that are encountered
in ad-hoc partial traversals), would both ensure that no unneces-
sary garbage was retained and have the added benefit of reducing
subsequent set-membership queries to constant real time, rather
than almost-constant amortized time, at least until further union
operations were performed.

5 Ours is a simplified discussion of Tarjan’s algorithm, because it serves
only to provide a motivating example. Thus, we ignore the details of union
by rank.
6 If we use tricks involving weak pointers and finalizers (not entirely dis-
similar to the ones used in Section 5.2), itis possible to cause nodes that are
no longer externally referenced to be short-circuited, but doing so requires
some careful bookkeeping, at least in part because the in-degree of nodes
may be greater than one.
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public class DisjointSetNode extends Simplifiable {
DisjointSetNode indirect = null;

public boolean inSameSet(DisjointSetNode that) {
return this.pathCompress() == that.pathCompress();

}

public synchronized void union (DisjointSetNode that) {
this.pathCompress().indirect = that;

}

public synchronized DisjointSetNode pathCompress() {
if (indirect == null)

return this;
else

return indirect = indirect.pathCompress();
}

public void simplify() {
this.pathCompress();

}
}

Figure 5. A Trivial Implementation of Disjoint Sets, including a
Simplifier.

3.2.1 Implementation Essentials

Figure 5 shows a simple Java implementation of a disjoint-set class
using path compression (but without union-by-rank).

As we can see, theDisjointSetNode type is associated with a
simplifier that performs path compression. Even though a given call
to simplify may requireO(n) real time, for a disjoint-set–union data
structure of sizen, if simplify is run on alln nodes of the structure,
it will also require at mostn work. Thus the simplification work
parallels the cost of the tracing work performed during garbage
collection.7

3.3 Caveats

In this example implementation of simplifiers, we have ignored
many issues, such as synchronization, possible consequences of
generational garbage collectors, and many issues that might arise
in languages other than Java, or in applications in which simpli-
fiers are used primarily for purposes other than garbage collection.
These issues will be considered to various degrees later in the
paper. This example implementation provides a concrete context
for examining some of these issues.

It is also probably fair to say that our example code is “yet
another abuse of finalizers.” We agree with this criticism—while
it may bepossibleto leverage finalization as a means to trigger
simplification, it is not the best implementation strategy. A garbage
collector that supports simplification more directly is preferable.

4. Applications
We have already seen three applications of simplifiers (indirection
removal, avoiding space leaks in lazy functional programs, and
performing path compression in Tarjan’s disjoint-set–union data
structure), but we have done so in the context of motivation and
background. In this section we bring applications of simplifers
to the foreground, reexamine these examples and the issues that
surround them, and describe some additional examples.

7 As our use of the disjoint-set–union data structure is only to provide a
motivating example, we leave a proof of this bound as an exercise for the
reader.

4.1 Indirection Removal

We mentioned indirection removal in Section 1, and stated that it is
common to include indirection removal in the garbage collector for
functional languages [26].

In our example, we removed a single indirection, but in practice
long chains of indirection nodes can be created. Thus indirection
removal can recover an arbitrarily large amount of memory.

In current collectors, indirection-removal code is typically
comingled with other garbage-collector code as an ad-hoc garbage-
collection extension. Recasting indirection removal as a simplifier
allows us to refactor this code and lets the garbage-collector code
focus on its primary task, garbage collection.

4.2 Disjoint-Set Union

Tarjan’s disjoint-set–union algorithm [32] (discussed in Section 3)
is, essentially, another example of indirection removal. As before,
long chains of indirection nodes can be created, and in a world
without simplifiers, those indirection nodes will only be removed
if the path is traversed by the program, which is not guaranteed to
happen. Thus, without simplifiers, a disjoint-set–union data struc-
ture could consume an arbitrary amount of memory that would not
be considered garbage by a traditional tracing collector.

Our earlier discussion of Tarjan’s algorithm explicitly avoided
the complexities of “union-by-rank”, yet it is the rank informa-
tion (a rough approximation of tree height) that gives this data
structure its almost-linear amortized-time bound. Ordinarily, such
data structures must sometimes settle for a “rough approximation”
because the true value is infeasible to calculate efficiently given
the readily available information. Interestingly, although the most
obvious simplifier for disjoint-set union is one that performs path
compression, an alternative simplifier improves the accuracy of
ranks.

It is instructive to consider indirection removal and disjoint-set
union side by side. Both data structures have commonalities, and
their simplifiers are very similar, but one is typically implemented
via an ad-hoc garbage-collector extension, whereas the other has, to
our knowledge, never been implemented inside a garbage collector.
In the framework of simplifiers, it is possible to treat both examples
similarly.

4.3 Amortized Algorithms

Our example of path compression in the disjoint-set–union data
structure is just one example in the general area of amortized al-
gorithms and data structures. In amortized algorithms, “expensive”
operations are frequently delayed until they can be paid for with
the stored potential of the data structure. Simplifiers can provide an
alternative way to perform for these expensive operations, provided
they can be executed incrementally.

4.4 Lazy Evaluation

In a garbage-collected lazy functional language, an unevaluated
thunk (i.e., a computation that has been delayed until it is required)
may retain an arbitrary amount of garbage. Consider, for example,
the code snippet

x = snd pair
where pair = (huge_value, tiny_value)

Until x is evaluated, it will be a thunk that refers to the entire pair,
even though only the second part of the pair is required. It might
appear that a suitably optimizing compiler could produce more
sensible code for this example, but we don’t need to stray very far
to find cases that are not as obvious, such as

l = (fst pair) : (snd pair)
where pair = expensive_function arg
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(where: is the list cons operator). Even after the head of the listl is
consumed, the entire pair will once again be retained to be given to
snd.

The usual solution to this problem is to include special-purpose
code in the garbage collector to detect this specific kind of space
leak and correct it by replacingsnd pair with a reference to the ac-
tual second component of the pair after the pair has been evaluated
to weak-head normal form.

This example is therefore an instance of simplification. Thus
we can say that current garbage collectors for lazy functional
languages already perform simplification on a limited basis. But
whereas these garbage collectors have been adjusted to have a
specific understanding of the semantics of thunks, in our framework
the garbage collector itself can treat heap object more generally and
uniformly—thunks such as these just happen to have an associated
simplifier.

4.4.1 Optimistic Evaluation

It is possible generalize the above mechanism to avoid even more
wasted space. Consider, for example, the code

sum xs = sumacc 0 xs
where sumacc n [] = n

sumacc n (x : xs) = sumacc (n+x) xs
ns = [1,2,3,4,5]
nsum = sum ns

If we assume that inlining leaves us withnsum defined assumacc 0
ns, with conventional lazy evaluation we would proceed no further.
Even if we add strictness analysis, the conservatism involved in
static analysis might leave us uncertain as to whethernsum is
ever evaluated, and thus fail to evaluatensum eagerly. But because
sumacc is tail recursive and can execute in constant space, we can
associate its thunk with a simplifier to perform one iteration of the
function if its arguments have been evaluated sufficiently for the
iteration to proceed.

After five runs of the simplifier, we would have determined
that nsum = 15 and potentially freed the listns. Even after one
run of the simplifier, we may have potentially allowed ourselves to
discard one element ofns, which is a potentially large savings for
analogous situations where the list elements are larger.

4.5 Managing Cached Data

Programs can often improve their time performance at the cost of
increased memory use by caching data in case it will be used again,
saving the costs of recalculating or refetching it if it is indeed
needed. But such a caching approach raises the question of how
and when such cached data might be released if it later seems to be
unnecessary.

The Java language [21] providessoft referencesas one way to
manage this kind of data, but this method is not without problems.
The Java approach leaves it up to the garbage collector to use its
own heuristic for disposing of softly referenced data (a VM might
use factors such as how recently the object was created or accessed,
or it could instead only rely on measuring how much memory
pressure the VM is under). In some cases, memory pressure might
be entirely the wrong basis to dispose of cached data (e.g., if
disposing of a memoized result will cause more calculation and
even more memory pressure).

An alternative is to use a simplifier to control the continued exis-
tence of this cached data. Such an approach gives the programmer
the control to make a more informed choice about what criteria
to use to determine whether retaining this data continues to be
worthwhile.

5. Implementing Simplifiers
We shall now examine two possible implementation strategies for
simplifiers. Both strategies revolve around the garbage collector.
The first approach extends the garbage collector to understand
simplifiers, whereas the second leverages existing functionality
present in many current garbage collectors to provide a “user-
space” implementation.

In this section, we are mostly concerned with the implementa-
tion mechanics of simplifiers, namely how they can be run with
little overhead, rather than questions that might arise from provid-
ing simplifiers as a feature for user programs.

5.1 Inside-Collector Implementation

To implement simplifiers as an extension to normal garbage collec-
tion, we extend the tracing phase of garbage collection to perform
simplification on objects prior to tracing their children. In short, for
each object examined by the garbage collector, there are two new
steps that the garbage collector performs:

1. Determining whether the heap object has a simplifier that
should be executed.

2. Executing the simplifier.

The first step requires us to first determine whether the object
has an associated simplifier. This determination can be made based
on the type of the object, or through an added field in the object’s
heap header describing the object as having a simplifier.

5.1.1 Basic Simplification

One strategy is to support only those breeds of simplifier that can
safely run in the restricted environment of active garbage col-
lection. This restriction limits simplifier use to implementers of
language systems (or other programmers willing to write code that
runs in a relatively unsafe environment where significant care must
be taken).

The exact restrictions will vary depending on the collector and
its environment. In some systems, collection only occurs at “safe
moments”, not halfway through the construction or update of an ob-
ject, eliminating many synchronization concerns. In other systems,
access to program data may need to be handled more cautiously.

5.1.2 Two-Phase Simplification

To support more general simplification, we may extend the basic
simplification model above to provide a less restricted environment
for simplification. To do so, we divide the simplifier itself into
two phases, acheap phaseand asafe phase, either of which may
do essentially nothing. Only the cheap phase is executed by the
garbage collector itself; if a safe phase is required, it is run in a
separate thread.

Cheap Phase

The cheap phase is executed by the garbage collector itself inline
with tracing; that is, before proceeding with tracing the object’s
children. The cheap phase may

• Indicate that the safe phase should be run;

• Simplify the object by changing its fields;

• Indicate that pointers to this object should be redirected to point
to some other object;

and it must

• Avoid allocating new storage and execute in constant space;

• Execute in (amortized) constant (and relatively short) time;

• Avoid acquiring any other resources; and,
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• Avoid introducing any race conditions.

The conditions on the cheap phase are exactly those required to
ensure that it can be executed by the garbage collector without any
significant impact on the collection process. If we were to allow
arbitrary code to execute inline with garbage collection, a variety
of problems, such as deadlock or memory exhaustion, could occur
[6].

Safe Phase

The restrictions that apply to code executing in the cheap phase
preclude a number of useful simplifications, but this drawback can
be eliminated by providing a safe phase that allows the execution
of arbitrary simplification code. The safe phase is not executed by
the garbage collector directly; instead, any safe-phase actions are
performed in a separate thread. By keeping only weak references to
objects awaiting safe-phase execution, we can ensure that pending
simplification does not prevent an object from being collected. We
may also prevent the simplification thread from falling behind if
repeated garbage-collection cycles occur by not enqueuing a safe
phase multiple times.

Partitioning Simplification into Phases

It might seem onerous to be required to determine whether a given
piece of simplification code can execute in the relatively unsafe
environment of an active garbage-collection cycle or whether it
requires the safety of a separate thread, but we can always adopt
the conservative strategy of running any code that cannot be shown
to be cheap in the safe phase. The cheap phase only exists as an
optimization, present because some existing simplifiers (such as
our example from Section 1) can be executed inline with collection.

When garbage-collector–provided simplifiers are used solely by
language implementers behind the scenes, the two-phase structure
may be used to aid efficiency; but we might choose to run all user-
supplied simplification in the safe phase if simplifiers are provided
to user code.

It is also worth noting that static analysis, such as cheapness
analysis [23, 16, 17], could be applied to arbitrary simplifier code
to assist in determining what work can be performed in the cheap
phase of simplification.

5.1.3 Differences from Finalizers

There are broad parallels between finalizers [6] and simplifiers, but
also some key differences. In supporting finalizers, it is common to
have to maintain an auxiliary data structure that lists those objects
that have finalizers so that, even though they are not reachable
by any other means, they may be reached for the purposes of
finalization. In contrast, only reachable objects are simplified, and
such a data structure is not required.

Interestingly, our division of simplifiers into cheap and safe
phases could also be applied to finalizers and thereby occasionally
eliminate the cost of running finalization code in a separate thread.

5.1.4 Generational Collection

In a generational collector, recently created objects are traced more
frequently than long-standing objects, on the basis that these ob-
jects are more likely to have become garbage. Thus, in a naïve
implementation in which simplification is tied directly to tracing,
simplifiers would be applied much more frequently to young ob-
jects than old ones.

In fact, very young objects may benefit little from simplifica-
tion. If they are short lived, the work of simplification may be
wasted; moreover, if the objects were just created by the program,
it seems reasonable to assume that less time has passed to provide
an opportunity for simplification to arise (assuming, of course, that

the program isn’t deliberately creating obviously simplifiable data
from the outset).

Thus, in a generational collector, it may make better sense to
only perform simplification on objects in later generations. In other
words, ignore young objects, but simplify adolescent and older
objects. Such a rule is safe because we make no guarantees about
when or if simplifiers are run.

5.1.5 Implementation Experience

Simplification can easily be provided in a custom-written garbage
collector—we merely need to extend the tracing algorithm as de-
scribed at the very start of this section. We have written one such
collector for the programming language system used in Section 7.

It is also straightforward to extend some existing collectors. For
example, the Boehm collector [7] can support basic simplification
(or the cheap phase of two-phase simplification) because it allows
objects to be associated with custom tracing functions. Objects can
have an associated simplifier by using a custom tracer that first calls
the simplifier.

Because the custom-tracer facility is already built into the
Boehm collector, we can provide a simplifier mechanism that
only has overheads for programs that actually use simplifiers.
For objects that have simplifiers, calling out to the custom tracer
does have a small overhead compared to normal tracing, but these
overheads are minimal compared to the overheads of the finalizer-
based trickery we showed in Section 3.

It is also possible to easily extend some Java collectors to sup-
port basic simplification. For example, when using a simple mark-
sweep collector under the MMTk framework [3] of the Jikes RVM
[2], it is sufficient to add lines of the form

if (object.toObject() instanceof Simplifiable)
((Simplifiable)object.toObject()).simplify();

to the mark phase. In this case simplifiers become easily accessible
to any Java program, but all such simplifiers must take care not to
allocate memory.

5.2 Outside-Collector Implementation

As we have already seen in Section 3, it is possible to achieve
almost the same operational behavior as the inside-the-collector
implementation approach we have described without actually mod-
ifying the garbage collector at all. All that we require is a means to
detect when garbage collection is occurring so that we may perform
simplification at the same time.

Some garbage collectors provide a hook that allows arbitrary
code to be executed every garbage-collection cycle. In other cases,
as we saw with theWatcher class described in Section 3.1, we
can use the mechanism of finalization to provide such a facility.
Of course, such an approach may be able to make few guarantees
about when simplifiers will be executed, since garbage collectors
are often vague about when they will perform finalization. But, in
practice, we have found that this approach works adequately with
several current collectors, including both the Boehm collector and
the collector in Sun’s Java 1.5 virtual machine.

Even with a mechanism to determine when garbage collection
is occurring, there are a number of design choices we can make
when implementing simplifiers outside the collector.

5.2.1 Concurrent Simplification

In this model, each simplifier runs concurrently in its own thread,
and thus simplifiers run in parallel not only with the main program
but also with each other. In cases where parallel execution could be
problematic, appropriate synchronization primitives must be used
by the simplification code.
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This model is the one used by the code we presented in Sec-
tion 3, in large part because each simplifier was triggered by the
finalizer of a distinctWatcher object, and Java is free to run each
finalizer in its own thread.

5.2.2 Serial Simplification

In this model, all simplifiers are run from a single thread, and
thus the simplifiers run in parallel with the main program but not
with each other. The only race conditions that simplifiers need be
concerned with are interactions with the main program, and not
with one another. Once again, synchronization primitives may be
used by the simplification code to avoid problems.

This model can be implemented by maintaining a list of objects
that require simplification, and traversing that list at every garbage-
collection cycle. The list needs to be maintained in such a way as to
not prevent dead objects from being collected, but this requirement
is easy to achieve.

A variation on this scheme would be to use different lists for
different types of simplifiable objects, and thereby allow greater
concurrency.

6. Other Synchronization Options
In this section we examine the synchronization concerns that exist
for breeds of simplifier that allow normal program execution and
simplifiers to simultaneously access the same objects, thereby al-
lowing the possibility of race conditions. (In some environments,
the available breeds of simplifier may naturally sidestep such con-
cerns. For example, if simplifiers are run from a garbage collector
that is only invoked when program execution is in a “safe state”
where changes to program data can be made safely, simplification
will not be prone to these kinds of races.)

If arbitrary code is allowed to execute when a simplifier is
activated, we run the usual risks that occur with concurrent code
execution, such as race conditions or deadlock. But these issues
are not new; in fact, they are already reasonably well understood
in the context of finalizers [6]. The usual solution applied to final-
izers is to run them in a separate thread and provide conventional
multithreaded mutual-exclusion mechanisms to give programmers
the necessary means to ensure that the execution of a finalizer does
not unduly affect other code. The same approach may be taken for
simplifiers, and we have already suggested as much elsewhere in
this paper. But simplifiers are not exactly like finalizers, so there
are some additional options with regard to synchronization that we
shall explore here.

Because simplifiers make no promises as to when or if they will
run, a simple mechanism for ensuring safe simplifier behavior is
to prevent simplification from occurring whenever the action of the
simplifier could introduce a harmful race condition, either in the
underlying program or in the simplifier itself. Below we present
two alternative ways for preventing a given simplifier from running
at inopportune times.

Both approaches are intended to allow a wider range of sim-
plification work to be performed by cheap simplifiers (see Sec-
tion 5.1.2) in a classic stop-the-world garbage collector, because
in that situation we are prohibited from using mutual exclusion
based on locks. Neither approach can be applied to concurrent
collectors, incremental collectors, or simplifiers run in their own
thread because disabling simplification for the object does not pre-
vent an already activated simplifier from continuing to run. This
restriction is not as severe as it might seem, because in many of
these cases the simplifier could instead use conventional mutual-
exclusion techniques.

6.1 Locally Disabling Simplification

We can avoid running the cheap simplifier phase by turning off
simplification for that object (e.g., by modifying the object header
to remove its association with a simplifier) whenever it would be
dangerous to allow the object to be simplified.

Explicitly disabling simplification costs no more than explicit
synchronization operations, such as thesynchronized methods of
Java, because the operations are essentially the same. In both cases,
the object’s state needs to be updated.

6.2 Locally Avoiding Simplification

In the preceding technique, it was the program’s responsibility
to lock out simplifiers when necessary. The obvious variation on
this approach is to make avoiding race conditions the simplifier’s
responsibility. In this case, it is the responsibility of the simplifier
to check the object’s state itself and only execute the simplification
action if it is safe to do so.

7. Performance
At this point, a skeptical reader might well ask, “Well, this is all
very well in theory, but what about in practice?”. Are simplifiers
useful, and, in particular, can they really aid garbage collection?
In this section, we show that they can indeed help collection.
Obviously, simplifiers may not be appropriate for every problem,
but even a single example can show that they arevery useful for
someproblems.

As an example, we will use the runtime for a minimalist toy
functional programming language based on combinator reduction
[34]. In this system, user programs and even user data structures
are formed from the application of very simple built-in functions,
represented as a graph. Program evaluation is achieved through
graph reduction.

In Sections 4.1 and 4.4, we described several opportunities for
applying simplification to functional-programming languages. For
this simple combinator-based system, we shall distill those ideas
into two simple opportunities for simplification:

• The indirection nodes that arise as part of graph reduction:
Whenever possible, they should be to short-circuited.8

• Function applications that had “unknowns” as arguments when
they were created but now have simple knowns can safely
be eagerly evaluated: For example,(<lazy-thunk> "Big string")
cannot be safely evaluated, but if later evaluation reveals that
the lazy thunk evaluates to an instance of theK combinator,
such as(K "Ha!") we can safely simplify what we now know to
be(K "Ha!" "Big string") to "Ha!".

7.1 A Simple Example under Simplification

We examine the performance of executing the code fragment below
to find the value forresult.

countupto n = counter 0
where counter i = [], if i = n

counter i = i : counter (i+1), otherwise

result = sum (ns ++ [head (tail (tail ns))])
where ns = countupto 1000

In this computation,ns is a lazy list for the first thousand non-
negative integers. We then form a new lazy list by appendingns
to its own third element (the++ operator is list append, defined
recursively in the obvious way). This list is thensummed (using
the function from 4.4.1).

8 Irrespective of the presence of simplifiers, the runtime system does short-
circuit indirection nodes whenever it encounters them in traversing the
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Figure 6. What Happens During Simplification.
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Ordinarily, the evaluation order of lazy languages and the usual
rules for tracing collection conspire to cause this program to use
O(n) space. We would normally expect the entirety of thens list to
persist until the end of the computation becausehead (tail (tail ns))
refers to the start of the list. The program is somewhat contrived,
but serves as a short, easy-to-understand example of the kinds of
problems that can arise in much larger programs. Its brevity also
allows us to examine its execution in more detail than is possible
for larger programs.

Figure 6 shows what happens if the simplifiers we described
earlier can act on the heap. In this figure, the dotted lines (blue in
color renderings) show data that is “simplified away” and the thick
lines (red in color renderings) show additions to the graph. At this
stage in execution, we have just produced the seventh element of
ns and are in the process of computing the eighth (which has the
value7). Two important simplifications have occurred here. First,
the sum has been computed rather than waiting to be computed
later, and second,head (tail (tail ns)) has been evaluated, freeing the
front of the list (we can also see some indirection nodes in the graph
(shown as---> inside a small rectangular node), but these exist
entirely in the eliminated section of the graph). After simplification,
computation can proceed with the list acting as a stream—there is
no need to preserve its contents. Without simplification, all one-
thousand elements of the list will be retained; in other words,
without simplification, the “unnecessary” subgraph shown in the
diagram will grow to well over one-hundred times its present size.

Figure 7 shows graphs of the memory use of the program. In
these graphs, the upper line shows total heap allocation and the
lower line shows the amount of data that is reachable from the
root set. The sharp discontinuities in the upper line are garbage-
collections (the garbage collector begins with a heap of capacity
25000 fixed-size nodes and expands the heap as necessary to keep
it at about ten times the amount of live data). We have drawn all
three graphs to the same scale to facilitate easy visual comparison
of the memory usage.

Figure 7(a) shows the performance of the program without any
simplification. As we expect, the amount of “live” data has linear
growth throughout the execution of the program. Figure 7(b) shows
how indirection elimination can make small dents in the space
usage of the program but does not change its fundamentalO(n)
space behavior. Figure 7(c) shows the dramatic difference a simple
simplifier that “understands” the semantics of program data can
make—heap usage is dramatically reduced, resulting inO(1) space
behavior.

Slightly harder to see in the graphs, but nevertheless noticeable,
is that the code without simplifiers requires 4.28% more reduction
steps in the normal control flow of the program compared to the
version with all simplifiers running (49,051 compared to 47,037).

Table 1 shows execution times for this program (and the two
programs discussed in Section 7.2) with simplifiers enabled and
with the entire simplification framework removed.9 From these
numbers we can see that simplification can significantly speed up
execution times. This improvement seems reasonable given the
graphs—a smaller heap means much less tracing work for the col-
lector. Note, however, that these particular timings are for our own
simple tracing collector—for more some highly tuned collectors,
departing from a highly optimized tracing loop to call a simplifier
might lead to higher overheads and thus lower time-performance

graph, but there is no guarantee that normal control flow will lead to any
particular indirection being encountered in a timely way.
9 Timings were taken on a Dual 2.0GHz PowerPC G5 running Mac OS X
10.4.7 with 5.5 GB of RAM and energy-saving CPU throttling disabled. The
time value is the median from seven runs (although the variance between
runs is negligible).

Without With Speedup
Program Simplifiers Simplifiers Ratio

sum 1.03 0.21 4.90
quicksort / filter 163.88 39.67 4.13
quicksort / partition 12.46 10.61 1.17

Table 1. Performance Timings (in seconds).
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Figure 8. Performance ofquicksort.

benefits. (But other efficient collectors, such as Thomas’s tailored
collector [33] have no such tracing loop.)

7.2 Quicksort

Because our previous example could be seen as being constructed
specifically to showcase the power of simplification, we also show
a favorite short functional program that often surprises the unwary
with its space performance—quicksort, defined as:

quicksort [] = []
quicksort (h : t) = (quicksort lhs) ++ [h] ++ (quicksort rhs)

where lhs = filter (< h) t
rhs = filter (>= h) t

wherefilter is the well-known list function, defined recursively in
the obvious way.

Figure 8 shows the performance ofquicksort executed with
and without simplifiers. In the test, we usequicksort to sort a list
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of one thousand random integers and then print the sorted list.10

We can again see the difference that simplification during garbage
collection can make, at times reducing heap usage by a factor of
four.

The graph follows similar conventions to the previous graphs,
but, because of the greater number of reductions, we avoid the
noisiness of showing each garbage collection—instead, we show
the heap’s high-water mark. Also, because there is more fine detail
in these graphs, each graph uses its own scale for they-axis.

As we mentioned in the previous subsection, Table 1 lists the
execution times for thisquicksort algorithm. We can see once again
that running simplifiers significantly improves the time perfor-
mance of the algorithm, presumably due to the smaller heap size.11

7.2.1 Better Quicksort

A seasoned functional programmer might recommend that quick-
sort be written slightly differently, as follows:

quicksort [] = []
quicksort (h : t) = (quicksort lhs) ++ [h] ++ (quicksort rhs)

where (lhs,rhs) = partition (< h) t

wherepartition is the well-known list function, defined recursively
in the obvious way.

Figure 9 shows the space behavior of this alternative implemen-
tation. We can see that it is generally much more parsimonious in
its heap usage and benefits less from simplification. Interestingly,
however, we can also see that this version requires many more
reduction steps than the previousquicksort implementation (largely
becausepartition spends much of its time packing and unpacking
the tuples it uses to return its results). Interestingly, the one clear
benefit of simplification in this version is that the program com-
pletes with fewer reduction steps.

Table 1 shows that despite the greater number of reduction steps,
the reduction in heap usage causes this version ofquicksort to run
significantly faster than the version from the previous section. But
even here (perhaps surprisingly given the small differences between
the two graphs in Figure 9) the version with simplifiers does run
noticeably faster than the version without.

7.3 Performance Conclusions

The thesis of this section is that “real world” circumstances ex-
ist where using simplifiers improves the performance properties
of programs. Our small but realistic examples show that the use
of well-chosen simplifiers can lead to dramatic improvements in
both time and space behavior. Of course, simplifiers are not a
panacea—in some situations simplifiers may only bring modest or
even negligible benefits.

8. Conclusion
In our view, there should be no debate as to whether simplifiers
should exist or can perform useful work. Even if the performance
results from Section 7 are taken with a grain of salt (as almost all
performance results should be), they nevertheless present a fairly
compelling case for providing a simplification mechanism.

In fact, simplification is already performed by ad-hoc code in
custom garbage collectors written for some functional languages
(although this code is usually fairly limited in scope and not ex-
tensible). Prior to our paper, however, there has been no unifying

10We print the list because otherwise laziness would cause no actual exe-
cution to occur.
11Perhaps one additional conclusion one might reach from these numbers
is that if you have a thousand numbers to sort, using quicksort on a toy
combinator-reduction machine is not likely to be the fastest method.
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Figure 9. Performance of a Revisedquicksort.

concept corresponding to that of simplifiers, only scattered, ad-hoc
pieces of the puzzle.

We hope that having made a case for simplifiers and explained
some of the implementation issues, they might become a more
widely available and widely used garbage-collector feature.

9. Future Work
The simplifier abstraction is a new idea, so there is almost certainly
work to be done in determining what kinds of simplifiers work well
in practice. In addition, assessing the value of a given simplifier
may turn out to be a topic worthy of study itself, as more complex
simplifiers may involve a variety of tradeoffs (in particular, space
vs speed).

In this paper we have focused on using simplifiers for memory
management. In this context, simplifiers are activated (directly or
indirectly) by the garbage collector. Other mechanisms for simpli-
fier activation are possible, and probably worthy of study.

10. Related Work
Simplifiers can be seen as being a natural complement to final-
izers. Finalizers have appeared in a number of languages and are
becoming an expected feature of most new garbage-collected lan-
guage implementations; appearing, for example, in object-oriented
languages such as Java [21] and C# [14], as well as in functional-
language implementations, such as the Glasgow Haskell Compiler
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[13, 27]. Hayes [18] provides one of the earliest reviews of finaliza-
tion and presents a number of applications and issues to consider.
Boehm [6] extends this latter work and specifically addresses syn-
chronization concerns that arise in finalization. As we mentioned in
Section 5.1.3, some of these concerns do not apply to simplifiers.

The techniques used by theWatcher class in our Java implemen-
tation are echoed by theSIGGC signal proposed for Standard ML
[28] and theFinalize.everyGC mechanism present in Mozart/Oz
[12].

Using the garbage collector to bypass indirection nodes is dis-
cussed by Peyton Jones [26]; using the garbage collector to elimi-
nate obvious space leaks in lazy functional programs is discussed
by Wadler [35]. The simplifiers we present here can be seen as
a generalization of both of these approaches. Although Wadler’s
method handles one space leak in lazy functional programs, current
research shows that plenty of opportunities to save space remain
[31, 30, 29, 5, 1], although we do not claim here that simplifiers
can address all of them.

When simplifiers are applied to aid the efficient evaluation of
functional programs, they may be seen as being related to opti-
mistic evaluation [15, 22], which is itself related to speculative
evaluation [9]. The key difference is when these simplifications
occur—in optimistic evaluation, we must decide whether to eval-
uate or not at the point a call is made, whereas with simplifiers, we
may delay the decision until later, perhaps until enough evaluation
has taken place elsewhere for it to be worthwhile.

To allow as much simplification work as possible to be per-
formed in-line with garbage collection, we have divided simplifier
execution into a cheap phase and an safe phase. Cheapness analy-
sis [23, 16, 17] provides one possible mechanism for determining
whether code is cheap enough to execute in this phase.

Similarly, in addition to cheapness analysis, other forms of
abstract interpretation [10, 11] may be useful in determining when
it is both worthwhile and safe to perform simplification. Strictness
analysis [24, 8, 25, 36], update analysis [4, 19], and sharing analysis
[20] may all be able to provide useful information.
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