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ABSTRACT
Persistent data structures often use tricks to achieve their
performance guarantees. In these structures, pointer reach-
ability fails as a method of determining what is and isn’t
garbage. We present an extension for a garbage collector
which can understand and collect a particular persistent
structure called trailer arrays. Our method does not in-
crease the time or space complexity of garbage collection in
most cases.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; D.3.4 [Programming Lan-
guages]: Processors—Memory management

1. INTRODUCTION
A classic method for efficiently storing multiple versions

of a large file or data structure is to store just one version
in full, and encode all other versions as deltas that express
the changes between one version and the next. Such an ap-
proach is frequently used for external storage; for example,
revision control systems have used this approach for more
than twenty years [15]. The same techniques can and have
been applied to arbitrary in-memory data structures [2, 13,
6]. Arrays are especially amenable to this form of storage
compression because array update changes a single element
of a potentially large array. Thus, if we wish to keep mul-
tiple versions of an array, we simply need to record which
element updates need to be performed to transform one ar-
ray version into another.

Strangely, work in this area (i.e., persistent data struc-
tures, defined in Section 2) almost always assumes that it
is necessary to keep all versions of the data indefinitely—
sidestepping the question of whether such data structures
are actually amenable to garbage collection. Similarly, the
reachability heuristic used by most garbage collectors does
not work well on such data structures—if some of the ver-
sions present in one of these delta-based data structures are
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1: An example trailer array.
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2: The example from Figure 1 after making y the root.

no longer required, the garbage collector is unlikely to realize
that they are garbage.

In this paper, we examine the case of trailer arrays. A
trailer array, as described by Aasa, Holmström & Nilsson
[1], is a collection of deltas and one actual array. Each delta
represents a particular array version, usually created by an
update performed on some previous version. Deltas store the
array index that was modified, the new value for that array
element, and a pointer to its “parent”, which contains the
values for all other array elements. The collection of deltas
forms a tree in which pointers run from child to parent.1 The
delta at the root of the tree, the master array, is special,
holding a pointer to an actual array instead of an array
index and value. A simple trailer-array tree representing
four versions of an array is shown in Figure 1.

While changes can be made in O(1) time, reading an ele-
ment may require traversing an arbitrary number of deltas.

1Normally, in a directed tree, there are pointers from parent
to child, but throughout this paper we use terminology based
on the underlying undirected tree.
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For this reason, the array can be rerooted, as shown in Fig-
ure 2. In this process, some delta is chosen to be the mas-
ter array and each object between the old and new roots
is changed to maintain the versions correctly. Rerooting is
usually performed each time an array element is read.

Although a traditional tracing garbage collector may be
able to remove some garbage from a trailer array, there can
easily exist deltas that are logically garbage while neverthe-
less being “reachable” from the collector’s perspective. In
Figure 2, for example, z is easy to collect if it is unrefer-
enced; but if z remains referenced and w is unreferenced by
the program, the pointer from to z to w would cause w to
be retained even though it is garbage. Moreover, whether w
is garbage depends entirely on its value, not on which nodes
it points to—if w modified element 6 rather than element 3,
it would not be garbage.

Retaining garbage is a potentially serious issue. If the val-
ues stored in the array could be large (e.g., strings), retain-
ing even one delta may be problematic. In the worst case,
an arbitrary number of deltas may be retained, as shown
in Figure 3. This latter scenario can occur if we have an
array that we are making changes to and at some point we
decide to hold on to an old version. We may then continue
making changes to the array and build up a long chain of
deltas between the two versions, of which at most n could
actually be necessary for an array of size n. Moreover, there
is no guarantee that this garbage will be collected in future
garbage-collection cycles.

Our contributions in this paper are as follows:

• We raise the issue of collecting change-based struc-
tures, which seems to be rarely, if ever discussed.

• We present a method for garbage collecting trailer
arrays. In the absence of cyclic dependencies, our
method has complexity linear in the size of the data
structure—a complexity equivalent to standard trac-
ing collection. Unlike standard tracing collectors, our
algorithm can recognize reachable parts of the trailer
array as garbage and free them.

• We present a proof that our method is correct.

• We present an efficient set representation that may be
useful for related problems, and show that it requires
constant space and has amortized constant-time per-
formance.

2. BACKGROUND
Data structures in languages such as C, Java, and Python

are usually ephemeral [6], meaning that changes to the struc-
ture are destructive—the old version is lost and only the new
version incorporating the change remains. In contrast, mak-
ing a change to a persistent structure creates a new way to
access the structure that displays that change, but the struc-
ture will appear unchanged from any previous reference to
it.

Persistence is a useful property. It is a requirement for
data in a purely functional language, because such languages
disallow mutation of existing data. Persistent data struc-
tures are also used in the imperative world for storing mov-
ing Zand-et-al:92:mvng-images:sac [16], editing digital Nugroho-
Sajeev:95:prsst-music:sac [10], and solving computational ge-
ometry problems [14, 7].

Although functional data structures are, by definition,
persistent, the converse is not true—persistent data struc-
tures need not be implemented using functional-program-
ming techniques. A persistent data structure only needs
to ensure that what can be externally observed does not
change—it can use mutation to adjust itself behind the scenes.
For example, the rerooting performed in Figure 2 does not
change the visible contents of the array versions over their
contents in Figure 1, but internally the data structure has
changed considerably.

Persistent arrays impose the requirements of persistence
on arrays, transforming array update from a side effect that
modifies an existing array into a function that appears to
return a whole new array with a single element changed.
Persistent arrays are of interest not only because persistence
makes new array algorithms possible, but also because func-
tional languages require or prefer that their data structures
be persistent.

Unfortunately, there appears to be no perfect way to pro-
vide persistent arrays. Trailer arrays [2, 1, 3, 4] are a pop-
ular choice with a particular set of trade offs. The method
is easy to implement, requires constant space for single-
element updates, and supports many common access pat-
terns in constant time or constant amortized time (see Sec-
tion 7 for a comparison with other techniques).

3. CONCEPTUAL ALGORITHM
We will begin describing our method for garbage collecting

trailer arrays with a conceptual overview of the algorithm.
The algorithm has multiple phases of execution. The first
three phases discover everything that must be kept. The
fourth and final phase prepares the tree for the removal of
unneeded deltas.

In our discussion, we will refer to the following data stored
in a delta x:

• index(x) — The index of the array element changed by
the delta.

• value(x) — The new value for that element.

• parent(x) — The parent of x; that is, the array version
that this delta changes (if parent(x) = NULL then x
is the root of the tree and stores the pointer to the
ephemeral array).

• indegree(x) — A count of the number of pointers to
x that have not yet been processed by Phase 3 (the



count begins at zero, rises to the in-degree of the node
in Phase 2 and falls back to zero in Phase 3).

• ignored(x) — An optional temporary store for the set
of array indices that are ignored by all x’s children
examined so far (initially no set is stored, represented
by the undefined value).

• needed(x) — A single bit indicating whether this delta
is needed, initially false (i.e., a mark bit).

In addition, the algorithm uses two sets, both initially
empty:

• L — The set of externally reachable deltas (i.e., those
the program explicitly needs because it needs that ar-
ray version).

• T — The set of array indices that are ignored by all
deltas in the current subtree.

Phase 1: In this phase, we find L, the set of externally
reachable deltas. The work of this phase is mostly done by
the garbage collector, using whatever method it uses to find
live data. The only change to normal operating procedure is
that each delta x is treated as atomic by the collector (the
object is not examined for pointers) and we add each x to
L. Garbage collection continues until the only unexamined
objects are deltas.

Phase 2: In the second phase we find the in-degree of
each of the reachable deltas and store it in their indegree
counters. We do so by traversing the path from each node
x ∈ L to the root, starting at x. At each node y on the path,
we increment indegree(y) and then,

• If indegree(y) > 1, stop traversing the path. Continue
with the next path.

• If indegree(y) = 1, move on up the path (i.e., y :=
parent(y)) and repeat.

This phase is illustrated in Figure 4; in this diagram the
indegree counter of each node is shown by the number of
dots placed outside it.

Phase 3: The goal of Phase 3 is to mark as needed every
delta that contains a change required for some version of
the array in L. To accomplish this task, we maintain sets of
array indices that track which indices are unnecessary at a
node. We keep one active set, T , and at times we store T in
the ignored field of a delta.

For each node, x ∈ L, we traverse the path from x to the
root. We begin the path traversal with T := ∅. For each
node y on this path, starting with x, if ignored(y) is defined,
we perform the following updates: T := T ∩ ignored(y)
and ignored(y) := undefined. We intersect the sets because
an index is only unnecessary if it is unnecessary for all ver-
sions of the array that depend on x. We then decrement
indegree(x), and

• If indegree(y) > 0, we stop traversing the path at that
point (because we will reach y again later coming from
a different x). We set ignored(y) := T and T := ∅. We
then continue with the next path traversal.

• If indegree(y) = 0, we process y as follows:

– If index(y) ∈ T , the delta y is not needed and so
we do nothing.

(a) After one node from L has
been processed

(b) After three nodes from L
have been processed

4: An example trailer array during Phase 2. The modi-
fication indices and values are not shown, only the parent
pointers.

– If index(y) /∈ T , y is necessary and we have deter-
mined that value(y) is live and needed(y) := true.

To continue along the path, we update T := T ∪
{index(y)} and y := parent(y).

We follow a special procedure to process the root of the
tree, r, because it is a special node that has no index field.
Each element of array(r), with index i, is live if i /∈ T—thus,
if T = ∅, all of the elements in the master array are live.
Finally, we set ignored(r) := T and T := ∅.

Phase 4: At the start of this phase, we have found all
the live data, and we now begin the process of cleaning up
the data structure to remove deltas that we do not need.

In this phase, we fix the ephemeral array at the root of
the tree to ensure that all of its elements are required, po-
tentially eliminating the need for some deltas and avoiding
any wasted space in the array. If ignored(r) = ∅, there is
nothing to do and we can proceed to the next phase.

Otherwise, let r be the root of the tree (trivially available
from Phase 3), and arbitrarily pick an x ∈ L (such as the last
one from Phase 3) and traverse the path from r to x (i.e.,
the reverse of our usual order). For each y on the path, if
index(y) ∈ ignored(r), then set array(r)[index(y)] := value(y)
and needed(y) := false.

Notice that moving values in ignored(r) off our chosen path
into array(r) has no effect on other paths to r, because, by
definition, they ignore whatever value the r contains at those
indices. Also, it might seem like it would be awkward to
trace the path backwards from r to x, either requiring a
stack or something akin to rerooting, but, as we shall see in
Section 4, this process is actually trivial, given ignored(r).

Phase 5: In this phase, we wish to remove all the garbage
deltas (taking care to properly preserve the tree structure).
A delta g is garbage if needed(g) = false, and is live oth-
erwise. Preserving the tree structure requires that we ad-
just the parent pointer of each nongarbage delta to skip any
garbage deltas and point to its first live ancestor.

First we repeat the work we performed in Phase 2 to prop-
erly set the indegree counters for all nodes, but this time we
will merely use the zero/nonzero status of the indegree to



indicate done/to-do. To avoid confusion, we will now refer
to the “indegree” field as the “fixed” field, with values done
and to-do. After applying the Phase 2 algorithm, all deltas
reachable from the nodes in L have a nonzero indegree field
and thus are marked to-do.

We traverse the tree, following the path from each node in
x ∈ L toward the root, by applying the following recursive
algorithm to x: To fix a node y, if fixed(y) = done, we
have already fixed this node. Otherwise, we first recursively
fix parent(y), and then, if needed(parent(y)) = false, we set
parent(y) := parent(parent(y)). Finally, we set fixed(y) :=
done.

Although we have presented the above algorithm recur-
sively, it is straightforward to implement it nonrecursively
using pointer reversal.

3.1 Correctness
We now wish to prove the correctness of our algorithm.

Most importantly, we wish to show that it only deletes
garbage, but we will also show that it deletes all garbage
contained in deltas.

Let us first define the sets of items that we will be con-
sidering in the proof. We call the set of all deltas X. L
is as defined earlier (i.e., all deltas reachable from external
data). For modification cells x, y ∈ X, we define x → y
to mean that parent(x) = y (i.e., that x points to y) and
x

∗→ y to mean that x is a descendant of y (i.e., there is a
directed path from x to y). We include x among its ances-
tors, so x

∗→ y means that y is reachable from x within the
structure. We next define a set Rv for each v ∈ L where
Rv = {x|v ∗→ x} and a set R =

S
v∈L Rv. We then define

the set of unreachable deltas as U = X\R. The set I con-
tains all array indices. Because the set T changes over time,
we use Tx to refer to the value of T when the algorithm is
about to process node x. This definition leads us to our first
item:

Lemma 1. ∀x ∈ L : Tx = ∅
Proof. We begin at each x with an empty tracking set.

If we do not immediately process x, we still intersect each
set that comes in with the stored empty set resulting in a
new empty set.

The algorithm also creates a set Tx ∪{index(x)}, and it is
convenient to give that set a name, so we shall.

Definition 2. T+
x = Tx ∪ {index(x)}

Lemma 3. ∀x ∈ R, x /∈ L : Tx =
T

c∈{c | c∈R,c→x} T+
c

Proof. This lemma follows directly from the algorithm.
For reachable internal nodes, the tracking set is formed by
progressively taking the intersection of the T+

c sets of all of
its (reachable) children.

For completeness, we define Tx for x /∈ R (i.e., unreachable
nodes we never visit). In spirit, this definition follows from
the above lemma, because such a node has no reachable
children, and it seems reasonable that

T
c∈∅ T+

c = U , the
universal set. We define it as I, the set of all indices.

Definition 4. For each x ∈ U , Tx = I.

We next define our garbage. We say, for some v ∈ L,
x ∈ X, that v needs x if accessing index(x) from v uses the
data in x.

Definition 5. v needs x iff x ∈ Rv and ∀y ∈ [v, x) :
index(y) 6= index(x) (where [a, b) is used to indicate the set
of nodes that are on the path between a and b, including a
but not including b).

At a node we do visit, we mark the node as live based on
whether its index is needed.

Lemma 6. x is marked as live iff index(x) /∈ Tx

Proof. This lemma follows directly from the algorithm.

Next, we examine the relationship between tracking sets
in a node and that node’s parent.

Lemma 7. If i /∈ Tx and index(x) 6= i then i /∈ Tparent(x).

Proof. Again, this lemma follows from our algorithm.
From Definition 2, if i /∈ Tx and index(x) 6= i, then x /∈ T+

x .
Because Tparent(x) is formed either according to Lemma 1 or
Lemma 3, i /∈ parent(x).

Lemma 8. If i /∈ Tx then x ∈ L or ∃c ∈ {c | c ∈ R, c → x}
such that i /∈ Tc and i 6= index(c).

Proof. If x ∈ L, then Tx = ∅, and thus ∀i ∈ I, i /∈ Tx. If
x /∈ L, then from Lemma 3, Tx =

T
c∈{c | x∈R,c→x} T+

c and

thus ∃c ∈ {c | c ∈ R, c → x} such that i /∈ T+
y .

We now have the pieces necessary to prove the correctness
of our algorithm. We will begin by proving that our algo-
rithm only deletes garbage, and then show that it deletes all
garbage deltas.

Theorem 9. For all x ∈ X, if ∃v ∈ L such that v needs a,
then a is not deleted.

Proof. Assume there exists such a v. By Lemma 1, Tv =
∅ and thus index(x) /∈ Tv. By Definition 5, x ∈ Rv and
∀y ∈ [v, x): index(y) 6= index(x). By induction via Lemma
7, index(x) /∈ Tx. By Lemma 6, x is marked. Therefore x
will not be deleted.

Theorem 10. For all x ∈ X, if 6 ∃v ∈ L such that v needs x,
then x is deleted.

Proof. We will prove this theorem by contradiction. As-
sume that x is not deleted. Then x was marked, and so, by
Lemma 6, index(x) /∈ Tx. Thus, by Lemma 8, either x ∈ L
or ∃c ∈ {c | c ∈ R, c → x} such that i /∈ Tc and i 6= index(c).
We can repeat this process on index(x) /∈ Ty, but because
the structure is finite, we must eventually find some z ∈ L.
Because index(x) is not equal to index(y), index(z), or the
index of any node in between, and because x ∈ Rv, we can
apply Definition 5. Thus z needs x, and therefore ∃v ∈ L
such that v needs x.

4. IMPLEMENTATION
We now will present details of our implementation of the

algorithm described in Section 3 for garbage collecting trailer
arrays. These details are important in achieving the desired
linear complexity.

4.1 Data Structures
In the algorithm, we make use of various data structures

to maintain the needed information, including a set list of
reachable nodes, L, and sets of array indices. We have cre-
ated special implementations of these structures both be-
cause we wish to avoid allocating memory during garbage
collection, and because we desire a linear-time algorithm.



4.1.1 The Externally Reachable Deltas
In every phase of the algorithm we make use of a set, L,

of deltas. Because we only use this set to iterate over its
contents in arbitrary order, we can represent it as a linked
list.

We preallocate an extra pointer liveset(x) in each delta x
and keep two static pointers, headL and tailL. We can then
insert delta x into the list at the head by setting liveset(x) =
headL; followed by headL = x (and setting tailL = x if x
is the first node to be inserted). We can also determine
whether x is already in the list (since we don’t want to insert
it twice) by examining liveset(x) to see if it’s NULL; and, if
so, comparing x to tailL because the only item in L with a
non-NULL liveset pointer is the last element.

4.1.2 Sets of Indices
Phase 3 depends heavily on being able to maintain sets of

array indices. We need to maintain both a “current set” T
and also store sets at deltas. We will implement these sets
using more linked lists of deltas. Each delta x will have a bit
hasset(x) to indicate whether or not a set is stored at that
object. x will also have a pointer elem(x) to point to either
the first element in the set stored at x (when hasset(x) =
true) or the next element in the set (when hasset(x) = false).
Recall that when we store a set at x we do not use index(x)
in the set. Each x will, by default, have no set stored so we
initialize hasset(x) := false and elem(x) := NULL.

To provide the necessary complexity, the set T is repre-
sented by two separate representations that are kept in sync.
The values in T are represented by a linked list, whose head
is stored in headT , and also by a bit vector B with size equal
to the size of the ephemeral array. We allocate a bit vector
B as long as the ephemeral array when we create a trailer
array. This bit vector can be stored with the ephemeral ar-
ray and found during Phase 1 when the array is traversed.2

The set T is initially empty, so we initialize the elements of
the bit vector to false when it is created.

Let us consider the operations on sets of indices performed
by our algorithm:

• i ∈ T

Simply check B[i]. O(1) time is required.

• T := T ∪ {index(y)}
Set B[index(y)] := true, elem(y) := headT , headT := y.
Assumes that y is not being used to store any set, which
is true in our algorithm. O(1) time is required.

• T := ∅
We traverse the linked list, starting at headT . For each
n in the list, set B[index(n)] := false and elem(n) :=
NULL. O(|T |) real time is required.

• ignored(y) := T and T := ∅
We store T by iterating over T , setting the correspond-
ing bits in B back to false. Then set elem(y) := headT

and hasset(y) := true, and headT := NULL. O(|T |) real
time is required.

• T := T ∩ ignored(y) and ignored(y) := undefined

2Alternatively, we could allocate a static bit vector large
enough for the largest trailer array.

First, note that the bits set in B correspond to each
element of T . We now iterate over ignored(y), set-
ting B[index(n)] := false for each n ∈ ignored(y)—the
first such n is found in elem(y) and the next node
after n is found in elem(n). As we iterate, we set
elem(n) := NULL, and afterwards set hasset(y) := false.
At this point, the only bits that will be true in B are
those that are not in ignored(y). We then create the
intersection by iterating over the linked-list represen-
tation of T once more, flipping the bit B[ignored(m)]
for each m in T and removing m from the list if its cor-
responding bit ends up as false. O(|T | + |ignored(y)|)
real time is required.

4.1.3 Additional data
The items listed above account for most, but not all, of

the data for which we must preallocate space. Each delta
also needs the indegree counter preallocated.

5. COMPLEXITY
Scanning and compacting a trailer array using our method

has complexity comparable to normal garbage-collection al-
gorithms; that is, linear in the size of memory being exam-
ined. To prove this result, we must show that the number
of node visits performed by each phase of algorithm is linear
in the total number of reachable nodes and that a constant
amount of work is done at each node. Most important is
showing that the set operations take no more than constant
amortized time.

For most trailer arrays, a single scan of the array is suf-
ficient; but if trailer arrays are allowed to hold arbitrary
data, cyclic dependencies become possible. If array versions
directly or indirectly refer to older array versions that were
not otherwise reachable, multiple scans may be required.
We will ignore this issue for now, and examine it in more
detail in Section 6.

5.1 Phases
In each phase, we follow each pointer into a reachable node

once, so our sweep visits a number of nodes bounded by the
number of edges into the nodes.3 These edges can either be
from other nodes or from elsewhere in memory, in which case
we find them in L. Since each node has out-degree 1, the
number of edges from other nodes is bounded by the number
of nodes. Similarly, each node can only appear once in L
and thus the number of edges from elsewhere in memory for
which we do work is also bounded by the number of nodes.

5.2 Sets
We now demonstrate that all required operations on these

sets can be done in constant amortized time. We will be
using the accounting method for amortized analysis. We
will maintain the following invariants:

• Every set of size n will have n rupees in its account.4

• The set T will have an additional n rupees for a total
of 2n rupees in its account.

3Since we cannot know about nonreachable nodes, we’ll as-
sume from now on that nodes we mention are reachable.
4Rupees are the currency of our local Amortized Analysis
Bank.



Our sets have only a few restricted operations, as de-
scribed earlier:

• i ∈ T

This operation has constant real time, and no financial
changes occur.

• T := T ∪ {index(y)}
This operation has constant real time, but also requires
a deposit of 2 rupees. Again, constant real and amor-
tized time.

• T := ∅
This operation requires O(|T |) real time, but we have
2|T | rupees, so the operation is easily paid for, result-
ing in constant amortized time.

• ignored(y) := T and T := ∅
This operation requires O(|T |) real time, but we have
2|T | rupees. We spend |T | rupees to pay for the op-
eration, and save the other |T | rupees for ignored(y).
Again we have paid for the operation, resulting in con-
stant amortized time.

• T := T ∩ ignored(y) and ignored(y) := undefined

Let us define m = |T | and n = |ignored(y)|. We begin
with a total of 2n+m rupees from both sets. The oper-
ation requires O(m + n) real time, which is equivalent
to taking O(max(m, n)) time. The new set has size at
most s = min(m, n), due to the properties of set inter-
section. Thus we can use max(m, n) rupees to pay for
this operation and we are left with min(m, n)+n ≥ 2s
rupees to put in our tracking set’s account. We put in
enough to maintain the invariant and potentially some
to spare.

Thus, all operations require constant amortized time.

6. CYCLIC DEPENDENCIES
Throughout this paper, we have assumed that the struc-

ture was free of cyclic dependencies. But if array versions
directly or indirectly refer to other array versions that were
not otherwise reachable, multiple scans may be required.
Phases 1–3 of our algorithm scan the array to determine
what data is live and it is these phases that might need to
be repeated. Phases 4 and 5 compact the trailer array and
will always be executed exactly once.

Although it is possible to simply discard the work of pre-
vious scans and rescan the trailer array from scratch, it is
straightforward to modify the algorithm to preserve prior
work by making two observations:

1. Only deltas that were added to L since the last scan
need to be examined in phases Phases 1–3.

2. We can stop scanning whenever we reach a delta that
has already been processed if T was empty at that
node (because from that node onwards, all indices were
required).

Unfortunately, a suitably unpleasantly constructed array
of size n could require O(n) scans, each of which required
O(n) time to perform, resulting in O(n2) time performance
for garbage collection. The only consolation is that such a
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5: The tree from Figure 1 after splitting between w and x.

strange array would be equally unpleasant to construct using
actual arrays, and so the data structure we are representing
would itself be grotesque.

But if a constant number of scans is performed, garbage
collection remains linear in the size of the trailer array ex-
amined. One possible way to avoid poor time performance
is to limit the number of scans on a particular trailer array
to a small constant, and after that fall back to the mecha-
nisms of traditional tracing collection and thus potentially
pay a space penalty rather than a speed penalty.

7. RELATED WORK
Trailer arrays are just one technique for providing per-

sistent arrays (sometimes called functional arrays). There
are several other techniques that provide similar functional-
ity using different (usually tree-based) data structures, in-
cluding Okasaki’s purely functional random-access lists [11];
Dietz’s, and later O’Neill & Burton’s refinement of, the fat-
elements method [5, 12]; and Hinze’s one-sided flexible ar-
rays [8]. Each of these techniques makes different trade-offs
for complexity, typically being logarithmic for array access
and update, as compared to the constant-time performance
that trailer arrays provide when updates are always per-
formed on the most recent version—only O’Neill & Burton’s
fat-elements method also offers constant-time performance
for such updates. Not all persistent-array data structures
are prone to issues with garbage collection—those that are
purely functional tend to avoid such issues.

Chuang [3, 4] suggests two possible enhancements to the
basic ideas of trailer arrays, each of which can reduce the
length of a chain of deltas at the cost of creating additional
ephemeral arrays. Chuang observed that when the num-
ber of updates v is much greater than the size of the array
n, even rerooting the tree does little to speed up array ac-
cesses. He speeds up accesses by breaking long chains of
deltas, creating two distinct trailer arrays (see Figure 5),
but this approach requires additional space for new copies
of the ephemeral array. In his first paper [3], he waits until a
long (> 2n) reroot is performed and then splits the tree after
every Θ(n) deltas. This method has O(n) amortized access
time and increases memory usage only by a constant factor.
In his second paper [4], Chuang uses a randomized approach
in which every step of rerooting has a 1/n probability of
splitting the tree. For a relatively large number of accesses
this method will tend to make a copy of the ephemeral array
at each heavily accessed delta, which will eventually provide



constant-time access but use O(v · n) memory.
The extent to which Chuang’s trailer-array variations cre-

ate garbage differs from basic trailer arrays, but each can
still produce arbitrary amounts of uncollected garbage.

Many complex data structures have been designed to im-
plement persistent versions of other useful ephemeral struc-
tures [13, 6, 9]. Like trailer arrays, these structures contain
the information for all versions of the ephemeral structure
they represent along with the necessary bookkeeping to find
the data for the specific version being accessed.

8. CONCLUSION
Our algorithm collects all unnecessary garbage from trailer

arrays in linear time (assuming no cyclic dependencies) with
a constant-factor overhead for bookkeeping. This result is
pleasing because we are able to collect this specialized data
structure with the same time and space performance that
is expected of ordinary garbage-collection techniques and
we collect all garbage. We are able to collect all garbage
because we can efficiently detect and remove all unneces-
sary/unreachable modification nodes from the data struc-
ture. Removing these modification nodes not only frees
memory, but also increases the efficiency of access and reroot
operations by shortening paths to the master array.

In addition to providing a method for garbage collecting
trailer arrays, our algorithm can be used to manually re-
move undesired versions. Removing versions from persistent
data structures is underdiscussed in literature, and never
discussed specifically for trailer arrays. We feel that having
this extra operation makes the trailer-array data structure
complete. Now we no longer need to adhere to the unspo-
ken rule that persistent data structures must keep track of
all versions; we can still reap their benefits by keeping only
those versions we need.

Finally, we have shown how trailer arrays provide an ex-
ample of a simple data structure where traditional tracing
collection does not discover all logical garbage. Instead,
a custom algorithm that understands the semantics of the
data structure is required—the topological structure of the
data is not sufficient to accurately determine liveness.

9. FUTURE WORK
There is still much work to be done in the area of garbage

collecting persistent data structures. Trailer arrays are not
the only peristent data structure that keeps track of changes
in separate nodes. Overmars [13] showed that any data
structure can be made persistent by keeping track of the
changes in separate nodes. One direction for future re-
search is to develop a mechanism that is general enough
to correctly garbage collect any persistent data structure
that stores changes according to Overmars’s method, not
just trailer arrays. We are also interested in garbage col-
lecting the persistent linked data structures of Driscoll et
al. [6]. Driscoll chooses to store changes alongside origi-
nal data within preexisting nodes, differentiating between
updates by giving each data field a label called a “version
stamp”. Driscoll’s method for maintaining persistence is
very different from Overmars’s, requiring entirely new algo-
rithms to be developed. Finally, at this time the most feasi-
ble method for implementing these algorithms is to build a
plug-in (i.e., a hack) for an existing garbage collector. Hav-
ing a “hack” for every special data structure is undesirable,

especially when it needs to be applied to every garbage col-
lector. The most important direction for our research is in
developing an extension to ordinary garbage-collection tech-
niques that allows for the collection of persistent data struc-
tures, as well as other structures that are hard to garbage
collect.
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