
Scrap Your Boilerplate using Dynamic Types in Ordinary SML

Melissa E. O’Neill
Harvey Mudd College, California

oneill@acm.org

Abstract
This paper introduces a Standard ML realization of the scrap-your-
boilerplate generic-programming mechanism (first introduced by
Simon Peyton Jones and Ralf Lämmel), which gives programmers
tools to make writing traversal functions over complex, mutually
recursive, data types considerably easier than with traditional hand-
written traversal code.

The scrap-your-boilerplate approach is well-known in the
Haskell community, but relies on Haskell’s class system and also
requires advanced features not present in standard Haskell (rank-2
polymorphism and a type-safe cast operator). None of these features
are available in Standard ML.

This paper shows how to provide suitable Standard ML substi-
tutes for this “missing functionality”, and builds on those techniques
to provide generic traversal-code generation in ML in a way that
comes as close as possible to the original concepts as they exist
in Haskell. Unlike its Haskell cousin, the ML version requires no
language extensions. It also differs in its use of function composition
to build efficient functions that need no dynamic type information
as they run.

1. Introduction
Functional programming languages such as Standard ML provide
powerful type-safe mechanisms to manipulate structured data.
These mechanisms—algebraic datatypes and pattern matching
under a static type system with type inference—are often essential
to writing programs that are short and obviously correct. But
sometimes these advantages become burdens. Let us examine two
(related) annoyances.

A first source of frustration is the tedium, duplication, and brit-
tleness of writing boilerplate code. For a classic example, consider
the task of adding an underscore to all variables in a data structure
representing an abstract syntax tree. The task is easy in principle,
but it is made tiresome by all the traversal code we must write
to delve into our structure. If we only had to write traversal code
once, the task would not be so onerous, but in practice each distinct
operation on the data structure frequently requires its own custom
traversal code, necessitating a copy/paste/modify strategy where we
grab the most similar preexisting traversal code (the “boilerplate”)
and modify it as necessary. All of the copied boilerplate is brittle
because small changes to our data structures require all instances of
this boilerplate code to be updated.

[Copyright notice will appear here once ’preprint’ option is removed.]

Standard ML’s type system provides a second source of occa-
sional discontent. Whereas it is frequently amply expressive, there
may be occasions when we yearn for either the flexibility of dy-
namically typed languages or the sophistication of languages with
additional features in their type system, such as classes supporting
dynamic dispatch or advanced features such as rank-2 polymor-
phism.

Interestingly, at least some of these burdens are unique to ML-
like languages. For Haskell programmers (at least those using GHC
[8] or Hugs), the boilerplate issue has already been addressed
by Lämmel & Peyton Jones [5]. And, of course, languages with
different type systems from ML obviously face different frustrations
on that front.

In this paper, I present techniques that can address these problems
for ML, allowing new kinds of generic programs to be written in
Standard ML. Specifically, I show how

• Dynamic types can be provided in ML without using the excep-
tion type (Section 4.2);

• Facilities exactly analogous to those presented by Lämmel and
Peyton-Jones in Scrap Your Boilerplate [5] can be provided in
ML without requiring any language extensions (Sections 5, 6,
and 7);

• Specialized traversal code can be generated at runtime via func-
tion composition (Section 6), resulting in code that executes with
efficiency close to that of handwritten code (Section 8).

Unusual features of my approach include its specificity to lan-
guages like ML—the techniques we will examine require language
features unavailable in Haskell. The approach also requires almost
no additional runtime storage overheads. Data structures continue
to be stored without any type tagging (i.e., they contain no type
information).

Many of the building blocks for the solution I present in this
paper are well understood. My contribution is in combining those
building blocks to create something that has previously not been
achieved in Standard ML.

Working source code for the technique is provided at http://
www.cs.hmc.edu/~oneill/syb/.

2. The Problem
Consider the task of updating the salaries in a data structure rep-
resenting the organization of a company.1 Expressed as a group of
ML datatype declarations, we can describe our example company
as follows:

datatype company = C of dept list
and dept = D of name * manager * subUnit list
and subUnit = PU of employee | DU of dept

1 Unsurprisingly, this example is taken directly from Lämmel & Peyton Jones
[5]. See Section 10 for related work.

ML 2007 submission 1 2007/6/17

and employee = E of person * salary
and person = P of name * address
withtype salary = real
and manager = employee
and name = string
and address = string

Now let us consider the task of writing a function to increase the
salaries of all employees. The traditional solution would be to write
code similar to that shown below:

fun increase k (C depts) = C (map (incD k) depts)

and incD k (D (name, manager, subunits)) =
D (name, incE k manager, map (incU k) subunits)

and incU k (PU employee) = PU (incE k employee)
| incU k (DU dept) = DU (incD k dept)

and incE k (E (name,salary)) = E (name, incS k salary)

and incS k salary = salary * (1.0+k)

The form of the code mirrors that of the data structure. We traverse
down to the places where the salary data is and update the salaries.
The only interesting part of the code is incS, which actually does the
increment.

It may seem as if writing this code was mindless but not espe-
cially onerous, but there are two factors to consider. First, because
the structure of the code mirrors the structure of the data, the more
complex our structured data, the more code we must write. Second,
other tasks, such as giving a raise only to managers, finding the
names of all the employees, calculating the salary bill, and so forth,
each requires its own block of similar but subtly different boilerplate.
As I claimed in the introduction, this code is tediously duplicative
and brittle.

It would be much nicer to be able to write something much
shorter. If we think about our task, what we want to create is a “salary
transformer” that updates the salary part of the data structure, and
then apply that transformer to the company. In Haskell, using the
Scrap Your Boilerplate [5] approach, we can write2

increase :: Float −> Company −> Company
increase k = everywhere (mkT (incS k))

where mkT means “make a generic transformation”, and has the
Haskell type

mkT :: TypeableData α =>
(α −> α) −> (∀β. TypeableData β => β −> β)

and everywhere means “apply a generic transformation everywhere”,
and has the Haskell type

everywhere :: TypeableData α =>
(∀β. TypeableData β => β −> β) −> α −> α

This code appears to require type classes, and some extensions
beyond standard Haskell [9], including rank-2 polymorphism (al-
though only everywhere actually requires it). Our goal is to write
the same kind of code in vanilla Standard ML. This paper presents
mechanisms that will allow us to write the following:

fun increase k =
everywhere companyTy (mkT salaryTy (incS k))

We can read this code in English as “everywhere in values of type
company, apply the salary transformer incS k”. Mirroring the Haskell
code, increase has type real −> company −> company. A secondary

2 I have slightly simplified the Lämmel & Peyton Jones [5] approach by
using a single Haskell type class, TypeableData instead of two related classes
Typeable and Data (originally called Term, but since renamed).

goal is for the company −> company function returned by increase k
to rival the handwritten code for its execution efficiency.

3. Haskell-Style Classes in Standard ML
Standard ML lacks Haskell’s class system, but we can often achieve
the same ends by adding an additional argument corresponding to
each class parameter of the function. For example, where in Haskell
we might define the sort function with type Ord α => [α] -> [α], in
SML we could achieve the same ends by defining sort to have the
type α ordOps -> α list -> α list, where α ordOps is defined as3

abstype α ordOps = Ord of {
cmp : α * α −> order

} with
val mkOrdOps = Ord
fun ordCmp (Ord {cmp, ...}) = cmp

end

and define ordOps for any type of our choosing; for example:

val intOrd = mkOrdOps { cmp = Int.compare }
val stringOrd = mkOrdOps { cmp = String.compare }
val realOrd = mkOrdOps { cmp = Real.compare }
val intlistOrd = mkOrdOps { cmp = List.collate Int.compare }

One difference between ordinary arguments and Haskell’s im-
plicit “class arguments” is that in Haskell there can be only one
definition of the “class argument” for a given type. It is this very
property that allows Haskell to implicitly determine these argu-
ments, but the one-to-one correspondence can only be applied as
a programming convention in SML. Arguably, SML is providing
additional flexibility. For example, sorting integers according to their
absolute value requires a little finesse given the fixedness of Ord Int
in Haskell. In the above scheme, however, we could just as easily
define a different ordering for integers and choose which to use. For
the most part, however, we will eschew this flexibility and follow
the convention of one tag value per type.

For implementing arbitrary classes, the above scheme does have
some limitations; consider the following Haskell class:

class Pairable α where
pairWith :: α −> β −> (α, β)

In this code, α is a free type variable, but there is no way to create
an ML datatype with free type variable. We cannot write

abstype α pairOps = Pairable of {
pairWith : α −> β −> α * β

} with ...

because we are not allowed to have a free type variable (in this case
β in an ML type declaration). We will return to this problem in
Section 7, but for now we can ignore such complications.

At this point, it should now be clear what companyTy and salaryTy
actually were in our example at the end of the previous section—they
were extra arguments to provide class-like functionality.

4. Two Methods for Dynamic Types in ML
To see how we may implement mkT, everywhere, and friends, we
must first lay some groundwork in the form of a framework for
dynamic types. In essence, the dynamic type problem is the creation
of a type that can hold values of any type whatsoever. Unlike para-
metric polymorphic types, which represent a specific but currently

3 I have used abstype throughout this paper, even though many ML program-
mers consider it somewhat archaic because it is a more concise way to show
abstractions than using modules and signatures. It also has the side benefit
of allowing the code to run on implementations of Standard ML that do not
support the modules system.

ML 2007 submission 2 2007/6/17

unknown type, such a type can represent any value of any type at
any time. We will call our dynamic type any.

For every type t, we will create two functions t2any : t → any
and any2t : any → t option. For example, we could create an any list
using

val l : any list = [int2any 17, int2any 42,
person2any (P ("Ralf", "Amsterdam"))]

and, after doing so, we could run map any2int l to get [SOME 17,SOME
42,NONE] : int list.

An important aspect of this scheme is that we can dynamically
extend the any type to represent any new type of our choosing.
Typically, we will extend the any type at the point in our code where
we declare a new type. In the next two subsections, we will examine
two alternative methods to create a function with the type signature

mkAnyFuncs : unit −> (’a −> any) * (any −> ’a option)

such that after defining a new type, such as company, we may write:

val (company2any : company −> any,
any2company : any −> company option) = mkAnyFuncs ()

4.1 Using the Exception Type

One way to write mkAnyFuncs is as follows:

abstype any = V of exn
with

fun mkAnyFuncs () =
let exception Tag of ’a

fun mkV v = V (Tag v)
fun getV (V (Tag v)) = SOME v

| getV _ = NONE
in (mkV, getV)
end

end

This implementation exploits Standard ML’s exception type, and
its dynamic extensibility properties. Standard ML allows a function
to declare a unique exception at runtime, extending the exn type.
Thus, each pair of converters created with mkAnyFuncs will use a
unique Tag constructor, which provides a tag that is associated with
the value in mkV, and removed by getV.

4.2 Using Entangled Functions

Interestingly, although Standard ML’s exception type makes writing
mkAnyFuncs easy, it is not actually necessary. We can achieve the
same results as follows:

abstype any = V of {
disclose: unit −> unit,
undisclose: unit −> unit

} with
fun mkAnyFuncs () =

let val box = ref NONE
fun discloser v () = box := SOME v
fun undiscloser () = box := NONE
fun mkV v =

V { disclose = discloser v,
undisclose = undiscloser }

fun useV (V {disclose, undisclose}) =
(box := NONE;

disclose ();
let val v = !box in undisclose(); v end)

in (mkV, useV)
end

end

Here, the trick is that a given mkV/getV pair share a piece of
common knowledge, namely a box where they may place and find
values of their particular type. This box is invisible to the outside
world. For example, if we use mkAnyFuncs () to create a function
pair int2any/any2int, they will share a secret box that can hold an
int. Each any value conceals a value, which it can disclose by placing
it into its associated box, thus an any made with int2any conceals an
int that the any can reveal by placing it into the box for ints. When,
say, any2int has an any value that was made by int2any, it can run
disclose() and fetch the int from the box. If, however, the any actually
represents an employee, running its disclose function will cause that
employee to briefly appear in the employees box, and any2int will
find its int box empty.

4.3 Wrapping It Up in a Class

Instead of presenting users with a plethora of t2any/any2t functions,
we can wrap these functions up into a class, using the scheme
outlined in Section 3. We’ll provide functions with the following
types:

mkAnyOps : unit −> ’a anyOps

mkV : ’a anyOps −> ’a −> any
getV : ’a anyOps −> any −> ’a option
useV : ’a anyOps −> any −> ’a
mapV : ’a anyOps −> (’a −> ’a) −> any−> any

In this arrangement, mkAnyOps creates a new instance of the
“class” for a given type.4 Class instances support the operations
mkV and getV, as well as two new convenience functions useV and
mapV. The useV operation is useful if we are certain that an any value
must hold a value from a given class instance. It uses Standard ML’s
valOf function to turn an optional value into an actual value (if getV
returns NONE, valOf will throw an exception). The mapV function is
a classic map operation on the any type. The code is shown below:

abstype any = …whatever…
and ’a anyOps = AnyOps of {

mkV : ’a −> any,
getV : any −> ’a option

} with
fun mkAnyOps () =

let
fun mkV v = …whatever…
fun getV any = …whatever…

in AnyOps {mkV = mkV, getV = getV}
end

fun mkV (AnyOps {mkV,...}) = mkV
fun getV (AnyOps {getV,...}) = getV

end

fun useV anyOps = valOf o getV anyOps

fun mapV anyOps f any =
case getV anyOps any of

SOME v => mkV anyOps (f v)
| NONE => any

5. Implementing Generic Transformers
The Haskell code in Section 2 gave us a taste of mkT, a function
to make a generic transformer. Essentially, mkT takes a function,
f , that works on some specific type, such as ints or employees and
extends it to operate on all types. When evaluating (mkT f) x, if

4 Value restriction in Standard ML requires that top-level values created by
functions cannot have generalized type parameters (i.e., α, β, etc.), thus
a common usage pattern will be to add a type constraint when calling
mkAnyOps.

ML 2007 submission 3 2007/6/17

x matches the argument and return type of f , the value of fx is
returned, otherwise x is returned.

The Haskell type for generic transformations is ∀β. TypeableData
β => β -> β. The type β must be an instance of TypeableData because
we need to be able to determine whether we can apply our function
or not.

It may seem that we cannot represent such a concept in ML,
but the dynamic types outlined in Section 4 allow us to provide an
analogous concept. Specifically, we will develop a transform type to
represent exactly the values represented by the Haskell type given
above. In the same way that the any type represents values of all
types, the transform type will all transformation of all types.

We will develop code that supports at least the following opera-
tions:

mkTransformOps : unit −> ’a transformOps

idT : transform
composeT : transform * transform −> transform
mkT : ’a transformOps −> (’a −> ’a) −> transform
useT : ’a transformOps −> transform −> ’a −> ’a

5.1 A Simple But Inefficient Approach

One option for representing a transformation is as a function of
type any −> any that meets the requirement that the underlying type
remains the same for both argument and result.

Using our code from Section 4, we can create a pair of functions
for creating and using generic transforms:

abstype transform = T of any −> any
and ’a transformOps = TransOps of {

mkT : (’a −> ’a) −> transform,
useT : transform −> (’a −> ’a)

} with
val idT = T (fn x => x)
fun composeT (T t1, T t2) = T (t1 o t2)

fun mkT (TransOps {mkT,...}) = mkT
fun useT (TransOps {useT,...}) = useT

fun mkTransformOps ()=
let val anyOps = mkAnyOps ()

fun mkT f = T (mapV anyOps f)
fun useT (T f) x =

useV anyOps (f (mkV anyOps x))
in TransOps { mkT = mkT, useT = useT }
end

end

Consider the following example, in which we create transformOps
for ints, reals, and strings, and then use them to create a generalized
double function:

val intTransOps : int transformOps = mkTransformOps ()
val realTransOps : real transformOps = mkTransformOps ()
val stringTransOps : string transformOps = mkTransformOps ()

val double : transform =
composeT (mkT intTransOps (fn x => x+x),

composeT (mkT realTransOps (fn x => x+x),
mkT stringTransOps (fn x=> x^x)))

Our example transform, double, can be applied to an int value using
useT intTransOps double, and similarly applied to reals and strings.
For other types, it will act as the identity function.

One drawback of this approach is that when we run useT int-
TransOps double 17, first, 17 is converted to an any value, then it is
passed through the doubling function for strings, which returns it
unchanged; then through the doubling function for reals; and then,
through the doubling function for ints, which decodes the any into

an int, doubles it, and then hides it again as an any; which is then
finally decoded by useT.

In the next section, we will examine an alternate implementation
of mkT and friends that avoids these deficiencies and adds additional
functionality.

5.2 A More Powerful & Efficient Approach

Observe that for a transform such as double, when we apply useT
intTransOps double 17, we don’t care about its operations on other
types, only its operation on ints. Thus another representation for
transform is a list of functions, where the functions for different
types occupy separate entries in the list. In this representation, useT
just needs to pull the right function from the list. But how can we
store this heterogeneous list of transformation functions that may
operate on different types? With the any type, of course!

The code below shows how we may implement the generic
transformations using the “list of functions” model:

abstype transform = T of any list
and ’a transformOps = TransOps of {

mkT : (’a −> ’a) −> transform,
getT : transform −> (’a −> ’a) option

} with
val idT = T []
fun composeT (T t1, T t2) = T (t1 @ t2)

fun mkT (TransOps {mkT, ...}) = mkT
fun getT (TransOps {getT, ...}) = getT

fun mkTransformOps ()=
let val anyOps = mkAnyOps ()

fun mkT f = T [mkV anyOps f]
fun getT (T ts) =

let val relevant = List.mapPartial (getV anyOps) ts
fun compose (f, NONE) = SOME f

| compose (f, SOME g) = SOME (f o g)
in foldr compose NONE relevant
end

in TransOps {mkT= mkT, getT = getT}
end

end

fun useT tOps trans =
case getT tOps trans of

NONE => (fn x=> x)
| SOME f => f

The identity transform, idT, is represented by an empty list of func-
tions to apply, and the transform composition, composeT, is simply
list concatenation—this design allows us to compose transforms
without any knowledge of the types on which they will ultimately
operate, but it does mean that the list may contain multiple transfor-
mations that act on the same type (getT will compose those functions
to return a single function).

Instances of the transform operations are created by mkTrans-
formOps. It creates an instance of the any class for the particular type
of transformation these operations will store and retrieve. The mkT
function is simple, just calling mkV to store a single function, but
getT is complicated by the need to compose functions. Finally, in
the same way that we implemented useV in terms of getV, here we
implement useT in terms of getT.

In this revised scheme, when we evaluate useT intTransOps double
we are given back exactly the same function that was passed to
mkT intTransOps—the returned function does not roundtrip anything
through the any type.

It is also possible to extend this scheme in some other useful
ways. For example, we can provide a function mapT that allows us
to “edit” all transformations of a given type in the list. To do so,

ML 2007 submission 4 2007/6/17

mkTransformOps merely needs to be extended to create the following
function:

fun mapT f (T ts) = T (map (mapV anyOps f) ts)

It is similarly straightforward to add a delT function to strip out trans-
formations of a given type, and only a small amount of additional
work to allow transformations to be composed with functions that
are executed only for their side effect.

The transform type provides a powerful abstraction, but useT is a
far cry from the everywhere function we mentioned in Section 2. In
particular, if we create a salary transformer with mkT salaryTransOps
(incS 0.25), we can apply it to a company with useT, but since the
transform is for a different type, it will merely act as the identity
function. But, as we see in the next section, the components we have
built so far are stepping stones to everywhere.

6. Generic Map
Our goal in this section is to create “generic map” functionality
that will allow us to create traversal functions that descend into
data structures and perform some degree of rewriting on that data
structure. The everywhere function mentioned in Section 2 is one
example of the kind of function we would like to be able to write
using a generic-map facility.

To understand how we may programatically create such func-
tions, we shall reexamine how we code these kinds of functions by
hand. Let us return to the salary-increment problem we first men-
tioned in Section 2. Consider the following alternate implementation
of increase:

fun increase k =
let fun incC (C depts) = C (map incD depts)

and incD (D (name, manager, subunits)) =
D (name, incE manager, map incU subunits)

and incU (PU employee) = PU (incE employee)
| incU (DU dept) = DU (incD dept)

and incE (E (name,salary)) = E (name, incS salary)

and incS salary = salary * (1.0+k)
in incC
end

The functions inside the let expression have the following types:

incC : company −> company
incD : dept −> dept
incU : subUnit −> subUnit
incE : manager −> manager
incS : salary −> salary

Each of these functions is thus a transformation on a particular
type, and could therefore be represented as a transform. But more
importantly, because each function necessarily supports a different
type, they can all be stored in a single transform. I shall call
a single transform that holds a family of functions that together
provide traversal over a data structure a library. Our goal is to
programmatically create such a library.

Our second observation is that it is not merely sufficient to
traverse the data structure, we would like to actually do something
with each value encountered in the traversal, and we would also like
to have some control over the traversal process. We can achieve both
goals by providing a modifier that can modify each of our traversal
functions before it is placed in the library. But how can we provide a
single modifier that can augment all of our traversal functions, given
that each of them has a different type? Again, the transform type can
rescue us—the modifier can have type transform −> transform.

Thus, when creating the necessary functions to implement a
map-like operation over a data structure, we need to maintain some

state consisting of a library and a traversal modifier. The following
functions will provide the facilities we need:

initML : (transform −> transform) −> maplib
getMapML : maplib −> ’a transformOps −> (’a−> ’a) option
setMapML : maplib −> ’a transformOps −> (’a−> ’a) −> unit
getModifierML : maplib −> transform −> transform

Here initML is passed a modifier function and creates an initial
state for the code that will build our map-function library, this state
consists of an empty library and the modifier function; getMapML
gets a mapping function from the library if it has one; setMapML sets
the mapping function for a given type; and getModifierML retrieves
the modifier function. These functions can be coded as follows:

abstype maplib = ML of {
modifier : transform −> transform,
library : transform ref

} with
fun initML f = ML{ modifier = f, library = ref idT }

fun getMapML (ML {library,...}) tOps =
getT tOps (!library)

fun setMapML (ML {library,...}) tOps f =
library := composeT(mkT tOps f, !library)

fun getModifierML (ML {modifier,...}) = modifier
end

With these functions in place, we can now write useMapML, a
function of type

maplib −> ’a transformOps −> (maplib −> ’a −> ’a) −> ’a -> ’a

In other words, a function that is passed a library and target type
(i.e., a transformOps value), and a function for making the mapper
if it does not yet exist, and returns the resulting mapping function.
The code for useMapML is as follows:

fun useMapML ml tOps mapper =
case getMapML ml tOps of

SOME f => f
| NONE =>

Y (fn self =>
let val _ = setMapML ml tOps self

val trans = mkT tOps (mapper ml)
val trans’ = (getModifierML ml) trans

in useT tOps trans’
end)

The use of the Y combinator in the above code warrants a little
explanation. Because datatypes may be (mutually) recursive, the
map function we are creating may (either directly, or indirectly
through the functions it calls) wish to refer to itself. But at the time
we are creating the code for the map function, it does not yet exist.
The Y combinator, a function with type

((’a −> ’b) −> (’a −> ’b)) −> (’a −> ’b)

solves this problem. Y is defined as

exception CalledBeforeDefined
fun Y f =

let fun fakeself _ = raise CalledBeforeDefined
val selfref = ref fakeself
val self = fn x => (!selfref) x
val trueself = f self

in selfref := trueself;
trueself

end

We now understand how useMapML operates, given suitable ar-
guments, but the key to useMapML is clearly the function that, given

ML 2007 submission 5 2007/6/17

a maplib, makes a map function for a given type. We will now see
how such functions may be written.

6.1 Making Mappers

The role of a map-function creation function passed to useMapML is
to create a function that will traverse the structure. Its only explicit
action is performing the traversal itself—all other actions are added
by useMapML, using the modifier function contained in the maplib.

The map-function creators for types that have no substructure,
such as integers and strings, simply return the identity function.

To understand how we can provide such map-function creators
for types that do have some substructure, we will consider the
following simple datatype:

datatype foo = FooI of int | FooB of bar
and bar = Bar of string * foo

For this type, we write the following functions:

fun fooMkMap ml =
let val intMap = useMapML ml intTransOps intMkMap

val barMap = useMapML ml barTransOps barMkMap
in fn (FooI i) => FooI (intMap i)

| (FooB b)=> FooB (barMap b)
end

and barMkMap ml =
let val stringMap = useMapML ml stringTransOps stringMkMap

val fooMap = useMapML ml fooTransOps fooMkMap
in fn (Bar (s,f)) => Z (stringMap s, fooMap f)
end

Each map-function generator looks up the map functions required to
descend into the substructure, and then returns a function that calls
those functions. Notice that because the data structure was mutually
recursive, these functions are also mutually recursive, but that their
mutual recursion is between the map-function creators—recursion
for the map functions themselves is provided by the Y combinator
in useMapML.

Notice that the pattern of these definitions is very regular and
closely matches the original datatype specification. It is thus possible
to mechanically generate this code.

6.2 Using Mappers

To usefully use this generic-map functionality, we need to provide
an appropriate modifier to act on the bare traversal functions. Here
are two examples that perform generic preorder and postorder maps
by providing a suitable modifier function to initML:

fun topdown tOps mkMap trans =
let val ml = initML (fn recurse => composeT (recurse, trans))
in useMapML ml tOps mkMap
end

fun bottomup tOps mkMap trans =
let val ml = initML (fn recurse => composeT (trans, recurse))
in useMapML ml tOps mkMap
end

We can thus make a function that increments the integer parts of a
foo object with the code

preorder fooTransOps fooMkMap (mkT intTransOps (fn x => x+1))

which will output a function identical to the function returned by
evaluating the expression

Y (fn fooMap =>
(fn (FooI i) => FooI ((fn x => x+2) i)

| (FooB b) =>
FooB ((fn (Bar (s,f)) =>

Bar ((fn x => x) s, fooMap f)) b)))

By using more complex arguments to initML, we may create
more complex maps. For example, the modifier function is passed
the function that will recursively descend the structure for each type,
but we are not required to call it. Thus it is possible to create map
functions that only examine and transform parts of a structure.

6.3 Improving the Interface

The only annoyance in this arrangement is that we must pass two
arguments to useMapML to specify the type on which we wish to
act. But this issue is cosmetic, and can be fixed by creating an all
encompassing “class” value that gathers together all of the useful
type-related functionality in a single place. Because this umbrella
class contains all the information necessary to work with a particular
type, I shall call the type used to represent instances of this class
typeinfo. With this class in place, we can now provide users with
functions that satisfy a more pleasant interface; namely,

gmap : ’a typeinfo −> (transform −> transform) −> ’a −> ’a
everywhere : ’a typeinfo −> transform −> ’a −> ’a
everywhere’ : ’a typeinfo −> transform −> ’a −> ’a

by defining the functions

fun gmap (AllOps{mapper,transOps,...}) modtrans =
useMapML (initML modtrans) transOps mapper

fun everywhere allOps t0 =
gmap allOps (fn recurse => composeT (trans, recurse))

fun everywhere’ allOps t0 =
gmap allOps (fn recurse => composeT (recurse, trans))

where AllOps is the constructor for the typeinfo type. The everywhere
and everywhere’ functions mirror the topdown and bottomup functions
suggested in the previous section, but with a better interface and with
names matching those of Lämmel & Peyton Jones [5].

At this point we have made good on the claims we made in
Section 2—we have constructed a convenient and usable mechanism
for creating traversal functions.

7. Generic Folding
In addition to the everywhere function, Lämmel & Peyton Jones [5]
provide a function everything that is equivalent to a generic fold
operation. Thus, to calculate the salary bill at a company, we would
wish to write

val addSalaries = (fn total => fn x => total+x)
val salarybill =

everything companyTy (mkQ salaryTy addSalaries) 0.0

In the same way that we built generic map functionality out of
transforms, we can build generic fold functionality out of querys,
where the query type supports the following operations (each an
analogue of the similarly named function for transforms):

mkQueryOps : unit −> ’a queryOps

idQ : ’a query
composeQ : ’a query * ’a query −> ’a query

mkQ : ’a queryOps −> (’b −> ’a −> ’b) −> ’b query
getQ : ’a queryOps −> ’b query −> (’b −> ’a −> ’b) option
useQ : ’a queryOps −> ’b query −> ’b −> ’a −> ’b

Unfortunately, this function specification poses some challenges
for an ML implementation, because whereas transforms are param-
eterized over a single type, and that type appears as an argument to
the transformOps type, querys are parameterized over two, only one
of which appears in the queryOps type. As we alluded to in Section 3,
we cannot have free type variables in ML datatypes.

ML 2007 submission 6 2007/6/17

Thus, we appear to reach an impasse. If we revised the queryOps
type to have two type parameters, we would solve one problem only
to have it replaced by another—instead of creating a queryOps value
for every type, we would need to produce one for every possible
pair of types, which is ludicrous. We could instead disguise one of
our two types by using an any value, but that approach would add
additional runtime overheads when our composed function executes.
So instead we take a different tack—one that will make every pure-
hearted functional programmer cringe.

7.1 Embracing Side Effects

In Standard ML, we do not actually need the everything function
at all. We can actually write the salarybill function (and, similarly,
every other fold-like function) using everywhere as follows:

fun salarybill company =
let val total = ref 0.0

fun add x = (total := !total + x; x)
in everywhere companyTy (mkT salaryTy add) company;

!total
end

This code performs an identity transform on the provided com-
pany (and discards the result), but as a side effect, totals the salaries.

One drawback of this approach is that we produce an unnecessary
copy of the data structure, a constant-factor overhead, but one
that can be avoided. We can do so by providing generic “app”
functionality (named after Standard ML’s app function of type (α −>
unit) −> α list −> unit, which applies a function to every element of a
list). Using the techniques we have previously outlined in Section 6,
we can define a new type analogous to transform called sink (whereas
transforms model functions of type α −> α, sinks model functions of
type α −> unit), and use it to provide a gapp facility analogous to
gmap.

The other drawback is that writing the above code is ugly, yet it
need not appear so to users. It is possible to provide everything, mkQ,
composeQ, and so forth such that users can remain largely unaware
of the use of the sink type and the side-effects taking place behind
the scenes. In this case, ignorance is bliss.

7.2 Embracing Exceptions

Another use of the generic app functionality is to produce generic
find functions. Lämmel & Peyton Jones [5] do not suggest a some-
where function, but these functions occur much as maps and folds
occur. The trick in this case is to traverse the structure and, when
we find what we are looking for, throw an exception containing
our desired result. By throwing an exception, we abort any further
traversal.

8. Performance & Optimizations
It would be unreasonable to expect the performance of our dynam-
ically created functions to equal that of handwritten code. First, for
handwritten code, a compiler has the option to analyze and optimize
the traversal functions as a group, whereas functions created at run-
time by function composition may not offer the same opportunities.
Second, our code must make occasional use of references, both for
recursive calls (due to the implementation requirements of the Y
combinator), and for maintaining state in generic folds. But, if the
performance cost is sufficiently low, we will have reason to use
generic traversal facilities in all but the most performance-critical
situations.

Table 1 shows the performance of three functions acting on our
example company data structure, contrasting timings for handcoded
functions with those for functions created using the ML rendition
of the scrap-your-boilerplate approach:

Function Handcoded Generic (1) Generic (2)

increase 3.63 4.86 3.73
salarybill 0.15 0.61 0.35
payroll 0.66 1.23 0.86

Table 1. Performance Times (in seconds)

• increase raises everyone’s salaries by a given factor (and is thus
is sometimes described as the “paradise” benchmark);

• salarybill calculates the total cost of those salaries (and thus which
could reasonably be described by employers as the “misery”
benchmark); and

• payroll produces a list of the names and salarys of everyone in the
company.

The functions (increase and salarybill) are taken from Lämmel &
Peyton Jones [5].

To obtain measurable timings, I ran these functions on a company
with approximately 1.4 million employees (and almost 900,000 de-
partments and an organizational structure that runs ten departments
deep).5,6

The first generic column in the table shows the functions coded
in the obvious way, using everywhere and mkT for increase and every-
thing and mkQ for salarybill and payroll. For increase, the abstraction
overhead is low, taking only 33% longer to execute than the original
code; for salarybill the slowdown is more pronounced, running at
only a quarter the speed of the handwritten code (but no slouch in
real terms); for payroll, a slightly more realistic fold operation, the
code executes at about half the speed of the handwritten code.

One of the reasons for the slower execution is actually that the
handwritten code descends less deeply into the structure. For exam-
ple, the generic code descends into the name field, where it seeks to
apply any necessary name transformers and string transformers; and
the salary field, too, is considered not only for salary transformers
but also for real transformers. In these cases, the identity function
is applied, but in such trivial benchmarks, those costs add up. If we
recode our generic programs in a slightly smarter way—to curtail
deeper traversal—we can speed things up. For example, we can
alternatively write increase as

fun increase k =
let fun inc (E (n,s)) = E (n, s * (1.0 + k))
in gmap companyTy (mapT employeeTy (fn recurse => inc))
end

and apply a similar strategy to write salarybill and payroll in terms
of gfold and mapQ.

The second generic column in the table shows the performance
of these “smarter” generic traversal functions. As we can see from
the table, these changes help to narrow the gap considerably. For
increase, our dynamically composed function runs less than 3%
slower than handcoded original.

These benchmarks are, of course, trivial and synthetic, but
whereas this property usually risks casting a technique in a falsely

5 The data structure was produced programmatically rather than using a real
company. The statistics about the data structure were produced by querying
it. Writing code to perform those queries was made considerably easier by
the scrap-your-boilerplate approach.
6 The tests were run under Standard ML of New Jersey, version 110.62, on a
2 GHz Power Mac G5, with 5.5 GB of ram running Mac OS X 10.4.9 with
energy saving disabled. Times are averages from seven runs, timed using
SML’s Timer.startCPUTimer/Timer.checkCPUTimes. Times are the sum of user
and system times including both garbage-collector and mutator overheads.

ML 2007 submission 7 2007/6/17

positive light, in this case, the benchmarks, if anything, overstate the
overheads of this approach. If, as in the case of salarybill, the action
we are performing is trivial, then the overheads of the traversing
machinery will dominate, but as the action becomes more computa-
tionally demanding, these overheads fade into the background noise.
Similarly, our company example is not an especially complex data
structure, but for more complex data structures, the attraction of the
scrap-your-boilerplate approach only increases.

8.1 Future Optimizations

Given the insight that some traversals deep into a structure are
useless do-nothing operations that adversely affect time and space
performance, a possible future optimization to the Standard ML
implementation would be to change the way map functions are
created. Instead of providing a useMapML that always returns a
function even if it does essentially nothing, we can envision a
variation that keeps track of when such functions are essentially
useless and doesn’t apply them.

9. Conclusions
This paper has shown that scrap-your-boilerplate generic program-
ming approach can be realized in Standard ML, without requiring
any additional language features. Strangely, it is Standard ML’s most
impure features—in particular, references—that provide us with the
tools necessary to provide this facility without tools such as rank-2
polymorphism, built-in dynamic types (or a type-safe cast operator),
or a class system.

That is not to say that some of these features would not be
welcome additions to the language. In particular, although tricks
such as our any type allow us to sidestep issues issues such as rank-
2 polymorphism, we cannot always to so easily or efficiently.

We have also discovered how flexibly we may compose functions
at runtime in Standard ML. There may be other applications besides
scrapping your boilerplate where the ability to work with a library
of functions of heterogeneous types and compose them together in
a type-safe way may be useful.

10. Related Work
The foundational paper on this topic, Lämmel & Peyton Jones [5],
provides the single strongest inspiration for the present work. That
paper targets Haskell, and the goal throughout this paper has been
to show how their ideas may be realized in Standard ML—my goal
has very clearly been “if they can do it there, we must be able to do it
here”. Since that original work, there have been several other papers
on the topic, all making progressive refinements to the original idea,
and almost all of which targeted Haskell.

Lämmel & Peyton Jones expanded their original ideas in two
further papers that are usually also considered foundational. Their
second paper [6] adds introspection facilities, as well as generic
printing, serialization, and deserialization facilities, amongst oth-
ers. I believe that these ideas provide an excellent foundation for
future work. Their third paper [7] focuses on improvements to the
techniques to allow it to interact better with Haskell’s class system,
as such it is probably less relevant to an ML audience.

Cheney [1] examines the traversals involved in capture-avoiding
substitution and develops extensions to the basic scrap-your-
boilerplate concepts to address this specific area. The features and
limitations of Haskell are fairly fundamental in Cheney’s treatment,
but his core ideas are no doubt also applicable to Standard ML.

Beyond these works, there are several other papers that extend
or explain the basic approach [2, 3, 4] but all are closely tied to the
Haskell setting.

Ren and Erwig [10] create a more customizable collection of
traversal combinators than the original approach by Lämmel &

Peyton Jones [5]. They also provide an excellent summary of more
distant work in the field of dynamically created traversal operators.

While all of this additional work has broadened and developed
the scrap-your-boilerplate idea, Standard ML programmers have
been left on the sidelines, without apparent access to the original
ideas (which were useful at their outset). This paper remedies
the situation, and will hopefully open the door for some of these
enhancements to also be provided in Standard ML in some form or
another.

I believe that the techniques described in Sections 3 and 4.1
have long been part of the programming folklore for Standard ML,
but I have been unable to locate any formal coverage of them
in the literature. The entangled functions approach described in
Section 4.2 seems to be a new alternative.

11. Acknowledgments
My thanks to Chris Stone, who convinced me to write this paper.
And thanks to everyone who read earlier drafts, in particular Claire
Connelly, Zvi Effron, Ari Wilson and Phil Miller who read some of
the rough drafts.

References
[1] J. Cheney. Scrap your nameplate (functional pearl). In O. Danvy

and B. C. Pierce, editors, Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2005,
Tallinn, Estonia, September 26-28, 2005, pages 180–191. ACM, 2005.

[2] R. Hinze and A. Löh. “Scrap your boilerplate” revolutions. In
T. Uustalu, editor, Proceedings of the 8th International Conference
on Mathematics of Program Construction, volume 4014 of Lecture
Notes in Computer Science, pages 180–208. Springer, 2006.

[3] R. Hinze, A. Löh, and B. C. D. S. Oliveira. “Scrap your boilerplate”
reloaded. In M. Hagiya and P. Wadler, editors, Proceedings of the
8th International Symposium on Functional and Logic Programming,
Fuji-Susono, Japan, April 24-26, 2006,, volume 3945 of Lecture Notes
in Computer Science, pages 13–29. Springer, Apr. 24–26 2006.

[4] R. Lämmel. Scrap your boilerplate with XPath-like combinators.
In M. Hofmann and M. Felleisen, editors, Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 137–142. ACM Press, Jan. 17–19 2007.

[5] R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In ACM SIGPLAN Workshop
on Types in Language Design and Implementation, pages 26–37.
ACM Press, 2003. ACM SIGPLAN Notices.

[6] R. Lämmel and S. L. Peyton Jones. Scrap more boilerplate: Reflection,
zips, and generalised casts. In Proceedings of the 9th ACM SIGPLAN
International Conference on Functional programming, pages 244–
255. ACM Press, Apr. 1 2004.

[7] R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate with class:
Extensible generic functions. In O. Danvy and B. C. Pierce, editors,
Proceedings of the 10th ACM SIGPLAN International Conference on
Functional Programming, pages 204–215. ACM, Sept. 26–28 2005.

[8] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. D. Partain, and P. L.
Wadler. The Glasgow Haskell Compiler: A technical overview. In
Proceedings of the UK Joint Framework for Information Technology
Technical Conference, pages 249–257, Keele, Mar. 1993.

[9] S. L. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel,
F. W. Burton, J. H. Fasel, K. Hammond, R. Hinze, P. R. Hudak,
T. Johnsson, M. P. Jones, J. Launchbury, E. Meijer, J. Peterson,
A. Reid, C. Runciman, and P. L. Wadler. Haskell 98: A non-strict,
purely functional language. Technical report, Yale University, Feb.
1999.

[10] D. Ren and M. Erwig. A generic recursion toolbox for haskell, or:
Scrap your boilerplate systematically. In Haskell ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Haskell, pages 13–24, New
York, NY, USA, 2006. ACM Press.

ML 2007 submission 8 2007/6/17

