
Design and Implementation of the

Andromeda proof assistant

Andrej Bauer1, Gaëtan Gilbert2, Philipp Haselwarter1,
Matija Pretnar1, and Christopher A. Stone3

1 University of Ljubljana, Slovenia
2 École Normale Supérieure Lyon, France

3 Harvey Mudd College, USA

Andromeda [1] is a proof assistant for dependent type theory with equality reflection fol-
lowing the tradition of Edinburgh LCF [3]: (1) there is an abstract datatype of type-theoretic
judgments whose values can only be constructed by a small nucleus, and (2) the user interacts
with the nucleus by writing programs in a high-level, statically typed Andromeda meta-language
(AML). The only part of the system that needs to be trusted is the nucleus, which at present
counts around 1800 lines of OCaml code.

The underlying type theory of Andromeda has dependent products and equality types (LCF
and its descendants implement simple type theory). The rules for products are standard and
include function extensionality. The terms are explicitly tagged with typing annotations, which
is necessary because we want to avoid various anomalies caused by the equality reflection rule [4]

Γ ` e : EqT (e1, e2)

Γ ` e1 ≡ e2 : T

The rule has the additional disadvantage of making judgmental equality undecidable. Never-
theless, this is the type theory we want to implement because it has a great deal of expressive
power. The user may essentially adjoin new judgmental equalities by hypothesizing inhabi-
tants of the corresponding equality types, and thus axiomatize many type-theoretic construc-
tions (sums, propositional truncation, (co)inductive types, inductive-inductive and inductive-
recursive types, etc.). In contrast to the J-rule of intensional type theory, equality reflection
erases uses of equality proofs, which ought to prove useful in certain kinds of formalization. By
combining equality reflection with handlers, described below, the user also controls opacity of
definitions and application of (user-provided) normalization strategies.

The AML evaluator performs bidirectional type checking of terms, invoking operations
(questions) that can be handled (answered) by user-provided AML code in the style of Eff [2].
For instance, to construct a well-typed application e1 e2, the first step is to synthesize the type
T1 of e1 and express it as a product. Since type theory with equality reflection does not enjoy
strong normalization, the evaluator simply triggers an operation as_prod(Γ ` T1 : Type) and
expects a handler to yield back an inhabitation judgment Γ ` ξ : EqType(T1,

∏
(x:A)B) for

some A, B, and ξ. Once it has the appropriate premises, the evaluator invokes the nucleus to
construct the resulting judgment Γ ` e1 e2 : B[e2/x] (with some typing annotations elided).
There is also an operation as_eq for asking how to convert a type to an equality type.

Similarly, whenever the evaluator encounters a non-trivial equality Γ ` e1 ≡ e2 : T it
triggers the operation equal(Γ ` e1 : T)(Γ ` e2 : T), and the equation is verified if and when
the handler yields a judgment Γ ` e : EqT (e1, e2) back to the evaluator. The handler can
employ an arbitrary equality checking algorithm, using support from the nucleus to produce
witnesses for the β-rule, function extensionality, η-rules for records, uniqueness of equality
proofs, and congruence rules.



Design and Implementation of Andromeda Bauer, Gilbert, Haselwarter, Pretnar, and Stone

λ (θ : a ≡ b) (ξ : b ≡ c),

handle θ : a ≡ c with

| equal ((` a ≡ b) as ?X) ((` a ≡ c) as ?Y) =>

handle yield (congruence X Y) with

| equal (` b) (` c) => yield (Some ξ)
end

end

Listing 1: Transitivity of equality

In practice most equalities can be verified by a standard type-directed equality checking
algorithm. We have implemented such an algorithm in AML and extended it with equality hints.
These allow the user to dynamically add extensionality rules, β-rules, and instructions on how
to immediately resolve equalities that are not amenable to rewriting (such as commutativity
of addition). The fact that the algorithm is implemented in AML gives it a strong correctness
guarantee.

For example, given a type T with elements a, b, c : T , the AML program1 in Listing 1
computes a witness of EqT (a, b)→ EqT (b, c)→ EqT (a, c), namely the term λθ ξ . θ (where type
annotations have been elided). While verifying that θ does have type EqT (a, c), the nucleus
encounters a non-trivial equality of types EqT (a, b) and EqT (a, c). The outer handler handles
this by an application of congruence, which attempts to generate a witness of equality by
applying congruence rules. Structural comparison of EqT (a, b) and EqT (a, c) generates three
further equality checks, of which T ≡Type T and a ≡T a are trivial, and b ≡T c is handled by
the hypothesis ξ. In general we do not expect users to write such low-level handlers but rather
rely on a sophisticated standard library provided by the developers.

Much work remains to be done. We plan to introduce mechanisms in the AML evaluator
that will allow users to implement implicit coercions, type classes, and universes. For a more
substantial example we plan to implement Voevodsky’s Homotopy Type System [5] as a way of
introducing intensional identity types in Andromeda.

References

[1] The Andromeda theorem prover. https://github.com/Andromedans/andromeda/tree/TYPES2016.

[2] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal of
Logical and Algebraic Methods in Programming, 84(1):108–123, 2015.

[3] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mecha-
nised Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer, 1979.

[4] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis, 1984.

[5] Vladimir Voevodsky. A simple type system with two identity types. https://www.math.ias.edu/

vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, 2013.

1In AML, e1 ≡ e2 can be read as EqT (e1, e2), and handlers return their answers using yield; see [1] for
details.

2

https://github.com/Andromedans/andromeda/tree/TYPES2016
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf

