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Abstract

Future network intruders will probably use an orga-
nized army of malicious nodes (here called “malnodes”,
or collectively a “malnet”) to deliver many different at-
tacks, ratherthan recruiting a disorganized set of compro-
mised nodes per attack. However, partly due to the lack
of understanding of the resiliency and efficiency a mal-
net can have, countering malnets has been ineffective.

This paper begins to address this deficiency. Through
calculation and simulation for three representative
malnets—random, small-world, and Gnutella-like—we
show that extremely resilient malnets can be formed to de-
liver attack code quickly. In particular, we show that dis-
connecting malnets is possible, but extremely naive ap-
proaches such as randomly disinfecting malnodes will
not suffice, and effective defenses must either hap-
pen very quickly during a second-wave attack, or take
effect prior to it.

1. Introduction

An increasingly important problem in network se-
curity is the emergence of large numbers of networks
of malicious nodes (here called “malnodes”, or collec-
tively a “malnet”). A single malnet can be used repeat-
edly for various nefarious purposes, such as launching
DDoS (distributed denial-of-service) attacks, sending
spam, or simply stealing computing cycles. Although
such networks are not new, recent malnets have in-
creased in number and sophistication.

For example, trinoo, a distributed denial-of-service
attack tool, builds a simple three-layer trinoo network
[1] in which the attacker controls one or more “mas-
ter” servers, each master controls many “daemons,”

and the daemons are all instructed to coordinate an at-
tack against one or more victim systems (Figure 1(a)).

Botnets and their variants [2] can also be harmful.
For example, a botnet can use IRC channels to connect
a collection of IRC bots, where each bot is executable
(malicious) code on an IRC client [3]. The study in [4]
reported two main types of IRC botnet structures: the
Hub-Leaf structure in which all bots connect through a
hub, resulting in a star architecture (Figure 1(b)), and
the Channel structure in which a bot needs to join an
IRC channel to listen to commands issued by the con-
troller (Figure 1(c)). According to [2], security experts
identify botnets with 10 to 100 compromised hosts sev-
eral times a day, and botnets with 10,000 or more hosts
weekly. Botnets with 100,000 computers have also been
found.

It is also known that malnodes of a worm can form
a worm network through which an attacker can is-
sue commands and perform remote control [6]. In this
worm network, every malnode keeps a list of other
worm malnodes, and can create encrypted communi-
cation channels with them; therefore, the command
from the attacker can be injected into any malnode and
then propagated further toward all remaining maln-
odes. Furthermore, redundancy can be used to keep
the worm network connected even if some malnodes
are disinfected and thus removed from the network.

In this paper, we generalize all of these networks as
“malnets”, which are overlay networks of malnodes. A
malnet can be built by malicious code (such as a worm
or a Trojan horse) during its infection phase. Further
overlay construction can continue even if that mali-
cious code stops propagating.

These malnets can be very sophisticated. Once an
intruder has recruited and organized its malnode army,
the overlay network it has built can serve as a super-
highway for code propagation, including the distribu-
tion of upgraded versions for maintaining the malnet it-
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self. In addition to the first wave of attack in which vul-
nerable nodes are converted to malnodes and recruited
into the malnet, second-wave attacks can be launched.
The new danger of such a malnet is that it offers the at-
tacker a surreptitious “anytime, anywhere, any flavor”
capability: attacks can be launched at a moment’s no-
tice, injected at any point in the overlay, and can be
crafted to any purpose. Attackers could create a net-
work of compromised machines that would allow them
to perform arbitrary, “useful” activities. In addition
to sending spam and launching DDOS attacks, for in-
stance, malnets could be used to break cryptographic
keys by brute force, store and distribute stolen soft-
ware or data for fun and profit, or allow malicious “cus-
tomers” to rent the malnet to perform any desired ac-
tivity that requires a large number of nodes.

Furthermore, malnets not only can perform dan-
gerous operations, but can also employ mechanisms
to manage their own network structures. For exam-
ple, a malnet might constitute itself as a small-world
network (see Figure 1(d)). Recently, malnets have also
been found [7] that utilize WASTE [8], an open source
P2P communication framework that allows anony-
mous, secure, and encrypted communication. Malnets
can maintain themselves so that they can easily incor-
porate newly recruited malnodes or forget old departed
ones. Moreover, even if they are large networks of many
malnodes, malnets can have small diameters so that
disseminating commands or new exploits is fast. They
can also be made resilient so that disinfecting a sub-
set of malnodes might not disconnect the whole mal-
net. As a result, those malnets could become hard to
defeat.

In this paper, we first justify why it is important
to understand the efficiency and resiliency of malnets,
and then use calculation and simulation to study the
efficiency and resiliency characteristics of three types
of malnets. The implications of the simulation results

will also be discussed. We will also present some re-
lated work and then conclude the paper.

2. The Importance of Understand-
ing the Efficiency and Resiliency of
Malnets

In order to defend against malnets, effective solu-
tions must be designed. Note that the focus of this pa-
per is not to discuss approaches to the difficult problem
of defense. Instead, we touch upon defense here only to
justify our study of two important properties of mal-
nets: efficiency and resiliency.

The life cycle of a malnet has many interesting
phases, each of which offers defensive opportunities.
We can attempt to limit the growth of malnets; we
can find and disinfect the malnodes; or we can insu-
late uninfected machines from the damage that exist-
ing malnodes try to inflict.

Limiting the growth of malnets and insulating the
uninfected from infection are similar to combating the
spread of worms or other malware. These approaches
are currently of limited efficacy, and are not expected
to be completely effective any time in the near future.
At best, these mechanisms will cut down on the size of
malnets, but will not eliminate them.

Thus, since malnets can be formed even in the face of
defensive measures, it is critical to be able to locate and
disinfect malnodes. Malnet-specific approaches such as
the following offer the hope of at least some success, ei-
ther individually or in combination:

e Searching for malnet command listeners (since
malnodes need to listen to malnet commands)

e Searching for heartbeats (since neighboring maln-
odes in sophisticated malnets will probably peri-
odically ensure the liveness of their neighbors)



e Traffic analysis (since malnodes will come alive in
second-wave attacks and will exchange data with
their neighbors)

e Tracing malnets (since each malnode must main-
tain certain information about other malnodes)

e Having users inspect their computers and look for
malnets

Many defensive approaches will have to rely on the
detection of malnodes in the middle of second-wave at-
tacks. Examples include searching for malnet command
listeners, traffic analysis, and tracing. As a second-wave
attack propagates, the sooner defenders can detect the
propagation, the sooner they can search as many listen-
ers as possible, conduct thorough traffic analysis, and
trace malnets to find more malnodes. Clearly, under-
standing the efficiency of malnets is essential when con-
sidering the defensive reaction-time requirement. If the
spread of malnet commands is sufficiently slow, early
detection could act as a warning allowing defenders to
effectively preempt the attack. If the spread is very fast,
there may not be enough time for a warning to be of
much use.

Furthermore, assuming certain malnodes can be
found, they should then be cleaned. Unfortunately, past
experience suggests that while many owners of infected
machines are eager to disinfect them as soon as the
problem is discovered or reported to them, a signifi-
cant number of them are either unaware of the prob-
lem, unable to perform disinfection, or unconcerned by
the infection. For instance, there are still large numbers
of machines infected with CodeRed years after its in-
troduction to the Internet [9, 10]. Therefore, if malnets
will be formed anyway (although perhaps to a lesser
degree), we probably will not be able to clean all the
malnodes on a malnet, so it will be important to know
how many malnodes must be disinfected to achieve a
certain level of disconnection or partitioning. This nat-
urally leads to studying the resiliency of malnets, which
is the focus of the present paper.

In Sections 3 and 4, we try to understand the ef-
ficiency and resiliency of malnets by simulating three
different types of malnets:

e Random malnet where every malnode randomly
adds r (a constant) malnodes on average to its
neighborhood.

e Small-world malnet where a malnet is actually a
small-world graph.

e (Gnutella-like malnet where malnodes are con-
nected through a Gnutella-like peer-to-peer net-
work.

These three malnets actually map to three possi-
ble paradigms for forming malnets by attackers. Small-
world malnets have strong local clustering characteris-
tics, corresponding to the locality feature when a mal-
net grows. This is particularly true when the infecting
code first explores vulnerabilities in the same subnet
or administrative domain before attempting to propa-
gate to other places.

In contrast, random malnets do not rely on local
knowledge; instead, every malnode infects a certain
number of victims throughout the entire Internet. As
an example construction paradigm for random malnets,
every vulnerable node might choose 1-5 other nodes
throughout the network with the same vulnerability
(here, the amount of probing needed to discover these
nodes is irrelevant to our analysis).

Gnutella-like malnets have a more stringent forma-
tion requirement: a two-level hierarchy will be formed,
where “ultrapeer” nodes have a relatively high connec-
tivity to each other, and every leaf node connects to a
small number (say 3) of ultrapeers.

3. Efficiency Analysis of Malnets

When the controller of a malnet wishes to launch a
second-wave attack, how long does it take for the attack
code or command to reach all the malnodes through the
malnet? We answer this question by studying random
malnets, small-world malnets, and Gnutella-like mal-
nets in the following. As the dissemination speed is di-
rectly related to the distance between two malnodes,
our study will focus on the diameter of a given mal-
net.

3.1. Random malnet

Through simulation, we estimated how long it would
take for exploit code or a command from an attacker
to reach all the nodes on a malnet. Figure 2(a) shows
the average and maximum diameter of random mal-
nets in which every malnode has an average of four
neighbors, i.e. r = 4. (4 is a typical number; for ex-
ample, [6] reports the average node degree to be 4—
5.5 in a l-million-node worm network formed through
permutation scanning.) We have found that the max-
imum and average hop count between any two maln-
odes closely follow a logarithmic trend with respect to
the number of malnodes. Assuming the trend is sus-
tained when a malnet has 1 million nodes, at most 17
hops are needed between any two nodes. Plugging in
the average latency between two nodes on the Internet
and considering factors such as congestion, our study
shows that starting from any member node, the mas-
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Figure 2. Malnet diameter evaluations.

ter of a malnode army could disseminate a 1-megabyte
exploit to 1 million malnodes in less than six minutes
[11].

3.2. Small-world malnet

Using methods and formulas from Comellas et
al. [12], we have calculated the diameters of some de-
terministic small-world-based malnets. These deter-
ministic small-world graphs are created by start-
ing with a “circulant” graph where nodes are arranged
in a ring topology with edges to the closest r neigh-
bors, half in the clockwise direction and half in
the counter-clockwise direction. For a network of
8,192 nodes arranged in a circulant graph where ev-
ery node has degree 6, the diameter is 1,366. A
hub graph can then be overlaid on top of the circu-
lant graph to create shortcuts between distant clus-
ters of nodes. If we overlay a complete hub graph with
265 nodes (3.2% of the total) on top of the above cir-
culant graph, the diameter is reduced to 11. Since it is
not reasonable to have each hub node connect to ev-
ery other hub node, we recalculated the diameter when
a double loop graph is used as the hub graph. This re-
sults in a larger diameter of 21 when applied to the
above circulant graph, but only increases the de-
gree of hub nodes by 4 as opposed to 264 (265 — 1)
when using a complete graph.

We also introduced random factors in our simulation
to study the diameters of small-world malnets. We fol-
lowed the methods described by Watts and Strogatz
[5] in forming small-world graphs in the simulation.
First, a circulant graph is created with each node con-
nected to its r closest neighbors, the same as above.
Then a node is chosen, and the edge that connects to

its nearest clockwise neighbor is considered. This edge
has probability p of being reconnected to any random
node in the ring, as long as the new connection would
not be a duplicate. This process continues on for the
rest of the nodes in a clockwise manner, then repeats
for the second closest neighbor, and so forth. This pro-
cess is done until each edge has been considered once.
For our small-world simulations we set p = 0.03.

Figure 2(b) shows the average and maximum diame-
ter of small-world malnets from the simulation. Here, if
the trend reported in the figure continues, when there
are 1 million malnodes and every node has four neigh-
bors on average, the maximal distance between any
two nodes would be 90, while the average maximal dis-
tance from one node to another would be 39.

3.3. Gnutella-like malnet

A malnet could be built using Gnutella-like peer-
to-peer techniques. To analyze the diameter of such a
malnet, we studied the measurement results of the real
Gnutella. As reported in [13], which contains the most
recent Gnutella measurements, Gnutella has grown to
have around 800,000 peers with a network diameter of
11. However, the vast majority of peers are reachable
within 6 hops or less. Such short paths stem from the
use of the two-level hierarchy. In current implementa-
tions of Gnutella, every ultrapeer tends to have around
30 ultrapeer neighbors, and every leaf node connects to
a small number of ultrapeers (around 3).

Figure 2(c) shows the average and maximum diam-
eters of the ultrapeer level of Gnutella-like malnets,
where we evaluated random graphs as the ultrapeer-
level connection graphs and each ultrapeer had an av-
erage of 30 neighbors. Note that the distance between



two leaf nodes is the distance between their ultrapeer
nodes, plus two. If the trend is taken out to 1 mil-
lion nodes with 1—14 being ultrapeers, and if every leaf
has one ultrapeer, the total number of links will be ap-
proximately the same as that in a 1-million-node ran-
dom malnet where the average node degree is 4. The
maximum diameter will be 4.8 between ultrapeers or
6.8 between leaf nodes. This is consistent with the re-
sults reported by previous researchers: in [13], 99.5% of
the ultrapeer nodes were within 5 hops of each other.

4. Resiliency Analysis of Malnets

Do we really have to monitor malnets closely to learn
their structures and properties in order to effectively
disrupt them? While it is clear that any achievable de-
gree of disinfection should reduce the damage a mal-
net can do, can we just randomly disinfect malnodes or
convert some of them into firewalls or filters to effec-
tively disrupt the malnet, at least with a high proba-
bility? For example, the trinoo network, often used for
DDoS attacks, does not offer much resiliency. With two
masters and five daemons, for instance, randomly drop-
ping two nodes has a 52.4% probability of dropping a
master node.

We have designed a simulation to study the re-
siliency of random malnets, small-world malnets and
Gnutella-like malnets, aiming to answer two questions:
(1) For a given malnet, if z nodes are randomly dis-
infected, what percentage of remaining nodes will re-
main connected? (2) What is the impact of a malnet’s
size on its resiliency?

Here, we assume that a malnet does not attempt to
reconnect any nodes after the disinfection. Also, since
disinfection is often about cleaning up malnodes, not
links between malnodes, our resiliency study will focus
on dropping nodes, not links, from a malnet.

We first define a resiliency metric, the mazimal
reachability of a graph, which is the percentage of nodes
that belong to the largest partition of the graph. It in-
dicates the percentage of malnodes that are reachable
by the attacker if the exploit injection point is from the
largest partition.

4.1. Random malnet

Despite the lack of directed organization, a random
malnet can have good connectivity. For different values
of node degree r, we tested twenty 10,000-node mal-
nets; for each network, we tested different values of x;
and ten different random cuts were measured for each
value of . Figure 3(a) shows the maximum reachabil-
ities for those 10,000-node graphs with z nodes cut.

For example, when 1,024 nodes are randomly cut and
r = 2, the maximum reachability will decrease from
100% to roughly 43.30%; but if r = 4, the maximum
reachability will only drop from 100% to 99.80%. Fur-
thermore, while a higher value of r clearly leads to a
higher maximum reachability, Figure 3 shows that a
small value of r can already lead to high reachabil-
ity, and thus high resiliency. With r = 10, even if 80%
of the malnodes were disinfected, 70% of the remain-
der would remain connected and ready to receive new
exploits.

4.2. Small-world malnet

As in Section 3.2, we first conduct a deterministic
analysis of small-world malnets to calculate the num-
ber of nodes that must be removed to disconnect small-
world graphs. Recall that in small-world graphs as con-
sidered by Comellas et. al [14], when a node has r neigh-
bors there will be 5 in either direction around the cir-
culant graph, and a hub graph is overlaid on top of
the circulant graph. Assuming that nodes have degree
r, it is easy to see that if § nodes on both sides of a
given node v are removed then v will become discon-
nected. If v is part of the hub graph, another r;, nodes
must be removed (7, is the degree of nodes in the hub
graph). So to disconnect a single node, either r or r+rj,
nodes must be removed. As an upper bound, suppose
we want to ensure there are no connected components
larger than the distance between nodes which make up
the hub graph. We can simply take out blocks of 3
nodes, with each block centered around a hub. Tak-
ing our example from Section 3.2 with 8,192 nodes of
degree 6 and a hub graph consisting of 265 nodes, we
should remove 3 x 265 = 795 nodes to create discon-
nected networks of size [%-‘ = 28. It is impor-
tant to remember that we are assuming the removal of
nodes is focused, rather than being random.

To compare this analysis with our statistics on
random malnets, we also ran simulations. We again
adopted the Watts and Strogatz model for the simu-
lation, as in Section 3.2. Figure 3(b) shows the small-
world malnet reachability results, where each malnet
has 10k nodes but r varies. Note that for the small-
world malnet we cannot consider graphs with r = 2,
since otherwise there could be no clustering while main-
taining connectivity. A graph must have a high level of
clustering to be considered small-world, so our simula-
tions start with r = 4 as a minimum. The figure shows
that in general, the maximal reachability begins to de-
crease when 1,000 nodes, or 10% of the total nodes in
a malnet, are dropped. Dropping around 7,000-8,000
nodes will almost completely partition the malnet, in
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contrast to only needing to drop 795 carefully selected
nodes from the 8,192-node deterministic small-world
malnet.

4.3. Gnutella-like malnet

A previous study [15] found the Gnutella overlay to
be very robust, requiring an estimated 60% of the over-
lay’s nodes to be randomly dropped before the network
fragments. More interestingly, the study also found
that the Gnutella network fragments rapidly when the
highest-degree nodes were removed (as opposed to ran-
dom node failures). This can be attributed to earlier
observations that the degree of Gnutella nodes exhibits
a power-law distribution. However, more recent stud-
ies of modern Gnutella do not show a power-law dis-
tribution [13], suggesting that the current overlay has
a higher resiliency.

Our simulation also shows that Gnutella-like mal-
nets stay very well connected even after a high percent-
age of nodes is randomly dropped. For example, Fig-
ure 3(c) shows that even dropping 75% of the nodes
will still leave the remainder unpartitioned, and drop-
ping 87.5% will leave about 97% still connected.

4.4. Malnet size impact on resiliency

We also studied the impact of the size of a malnet
on its resiliency and found that it is minimal. Figure
3(c) shows the results for malnets with a constant value
of r (r = 6 for small-world and random networks and
r = 30 for Gnutella-like malnets) but different sizes
of N, where N = 1,024 to 16,384 in powers of two.
Clearly, with the same percentage of nodes cut, the
maximal reachability will be approximately the same

for malnets of different sizes. This implies that even
malnets with a relatively modest number of nodes, say
1,000, can still be very well connected.

5. Discussion

We have presented results for three different types
of malnets. Section 3 shows that for the same num-
ber of malnodes and the same average node degree,
small-world malnets have larger diameters than those
of random malnets, whereas small-world malnets tend
to be easier to form. This is largely due to the cluster-
ing feature of small-world graphs. The diameter and
amount of clustering present in a small-world graph
varies with the probability p that an edge will be re-
connected to a random node. When p = 0 there is no
reconnection and the graph remains a regular circu-
lant graph with a high amount of clustering and large
diameter. As p increases, the clustering and diameter
decrease; when p = 1, the graph becomes a random
graph.

As N increases, Gnutella-like malnets achieve even
smaller diameters than random malnets by exploring
more sophisticated formation procedures, even when
the same number of links is used. By having a more
densely connected core, malnodes can in general get
even closer to one another.

The resiliency evaluation in Section 4 further shows
that randomly dropping nodes will typically not be able
to effectively partition a malnet. Selective dropping, on
the other hand, can be much more effective, as shown
in Sections 4.2 and 4.3.

Moreover, even though small-world malnets are less
resilient and efficient compared to the other two types
of malnets, note that they are already fast in that the



master of a malnode army could still disseminate a 1-
megabyte exploit or upgrade to a million malnodes,
starting from any member node, in less than 30 min-
utes. They are also resilient in that randomly disinfect-
ing malnodes cannot effectively disconnect the remain-
ing nodes in a small-world malnet.

Although it is true that Gnutella-like malnets may
be hard for attackers to code, the chance of such mal-
nets happening is non-trivial. In addition, malnodes
could use the existing Gnutella network for covert com-
munications, rather than creating their own Gnutella-
like overlay. In the latter case the malnet overlay would
be composed of mostly neutral nodes, which means
that instead of “dropping” malicious nodes, we would
have to filter or block them at the neutral points, which
must be able to handle both the second-wave attack
traffic and the legitimate Gnutella traffic.

Superficially, some of the results presented so far
would seem to suggest that disconnecting a malnet is a
hopeless task. However, we must emphasize that these
results address the question of random malnode disin-
fections. Rather than proving the task impossible, our
results indicate that disconnection may be possible, but
that extremely naive approaches will not suffice. Mean-
while, as discussed in Section 3, there is a very real and
serious threat from malnets because of the speed with
which new attacks can be disseminated. Thus, it is crit-
ical that we find ways to combat these networks.

6. Related Work

Studies focusing on malicious networks have been
rare. In terms of distributing information to a large
number of recipients, malnets share some features with
legitimate distribution mechanisms, such as broad-
casting, multicasting, content-delivery networks, etc.
Malnets are especially similar to legitimate delivery
services based on overlay networks. There are tree-
structured overlays for delivery service that are often
regarded as application-level multicast [16, 17, 18, 19,
20, 21]. There are also non-tree-structured overlays; for
example, Bullet [22] provides high-bandwidth data dis-
semination through an overlay mesh, and Revere [23]
supports large-scale security update delivery through
resilient self-organized overlay networks. A malnet can
in principle have the same form as any of above. The es-
sential difference is that a malnet program often tries to
infect unprotected and uninfected machines to form or
expand its network, without any prior agreement. This
difference makes it possible to design solutions such as
honeypots that can lure malnet programs and even join
malnets to disrupt their operations, or at least gather
information on them [7].

There has also been significantly related research on
graph-theoretical models. One is the rich area of the
structure of interconnection networks, including those
evolving in a fairly random manner [24, 25, 26, 5],
and those exhibiting controlled growth patterns [12].
Some researchers have also conducted studies on the
resiliency of small world networks, but these are not
directly applicable to our research. For example, re-
search in [27] created networks of degree 20 and com-
pared the resiliency of small-world networks to that of
random networks; but in investigating disconnection,
they considered the removal of graph edges, whereas
we remove nodes.

7. Conclusions

Our paper addresses a major problem in the modern
Internet: the threat of malicious “armies” of co-opted
computers being used for illegal or even warlike activ-
ities. Many different types of malnets have appeared,
and more sophisticated ones can be expected in the fu-
ture. In fact, some highly sophisticated malnets are al-
ready feasible today and could be designed by an at-
tacker of no more than moderate sophistication. Most
component parts of such malnets have already been
observed in released worms or other malicious code.
The remaining parts resemble other popular and well-
known programs (such as peer-to-peer file-sharing net-
works) and are not tremendously challenging to imple-
ment.

Prior work in the area has not developed effective
methods for disabling these armies, partly due to the
lack of understanding of the resiliency and efficiency
features a malnet can have, and partly due to the lack
of proper countermeasures to deal with these features.
As an important step in addressing this deficiency, we
have combined theoretical analysis and simulation to
characterize the resiliency and speed of three repre-
sentative types of malnets, corresponding to different
paradigms of forming malnets. We have shown that
it is not feasible to counteract such malnets by sim-
ply randomly dropping nodes, even if a large percent-
age of malnodes is dropped from the network, i.e., dis-
infected or even converted to a firewall or filter node.
Instead, the malnodes to be dropped need to be se-
lected in a sophisticated way. Moreover, since second-
wave attacks of malnets can be launched quickly, an
effective defense must either happen very quickly dur-
ing a second-wave attack, or take effect prior to the at-
tack.

Future work on malnets must combine both the-
ory and practice to address the problem at the source.
A radically new approach must be designed to defend



against malicious network intruders so that they can
be shut down in an effective and efficient manner. To
use a military analogy, rather than building tall walls
around our city and trying to withstand a long siege,
we need to locate the enemy commander and cut the
lines of communication between him and his troops.
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