
 
 
 
 
 
 

Modern Buffer Overflow Prevention 
Techniques: 

How they work and why they don’t 
 
 
 
 
 
 
 
 
 

Russ Osborn 
 

CS182 JT 
 

4/13/2006 
 

 1



 In the past 10 years, computer viruses have been a growing problem. In 1995, 

there were approximately 2,400 known viruses. This number increased to 82,000 by 

20021. These viruses have caused tremendous damage and stress for computer users 

everywhere. With the development of ubiquitous computing, the virus has spread from 

servers and desktops to cell phones and handheld personal organizers. Computer viruses 

have evolved from an annoyance to a threat which can disrupt the functioning of our 

daily lives. 

Traditionally, a buffer overflow used an unprotected or unbounded copy with 

attacker controlled data to overwrite a buffer on the stack. The attacker’s data would be 

copied down the stack until the return address of the overflowing function was 

overwritten. At this point, the attacker can gain execution control at a location of his 

choosing. The majority of viruses use this method of attack; however, many new types of 

attacks are just as effective as traditional methods. 

Modern buffer overflow techniques have become increasingly clever and 

complicated. Most new methods involve leveraging the same type of unbounded copy 

mistake as in a traditional attack; however, they accomplish their exploit in a different 

manner2. Modern attacks may simply modify data on the stack (not overwriting the return 

address), and, in doing so, change the course of program execution to an attacker chosen 

path. An example might be overwriting a pointer stored on the stack so that it points at an 

attacker controlled input buffer instead of its original target. Another type of attack 

involves supplying unexpected data as program input. For example, an attacker can put a 

                                                 
1 “Intel XD Bit,” < http://www.intel.com/business/bss/infrastructure/security/flash.htm > 
2 Baker, Brendan and Pincus, Jonathan. “Beyond Stack Smashing: Recent Advances in Exploiting Buffer 
Overruns,” IEEE Security and Privacy, 2004 p. 20-27 
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sequence of control characters in an input string, which will then be processed by the 

program as if they were trusted commands. As a final example, it has recently been 

discovered that heap buffers may also be overflowed to the attacker’s advantage. Heap 

allocated blocks have header data before the actual block of allocated memory. When 

overflowing a buffer on the heap, these header values are overwritten. Most commonly, 

the attacker is able to use this to cause a wild pointer write to an arbitrary location. While 

these types of attacks may be the most common of the new breed of attacks, there are 

undoubtedly many more, clever attacks which take advantage of insecure coding 

practices. 

Not surprisingly, software developers have exerted tremendous effort to avoid 

coding errors leading to viruses. During Microsoft’s security push, they suspended 

development until all of their programmers took secure coding courses. Many companies 

have extensive code reviews and red team efforts (internal teams that try to attack the 

developer’s code to find exploitable errors). Certainly, secure coding practice has become 

much more important for all production software. 

In addition to the emphasis on writing secure code, there have been a number of 

measures developed by both software and hardware vendors to enhance the security of 

their products. There are two general classes of mechanisms for enhanced security3. The 

first involves modifying compilers to change the structure of data in memory. The second 

involves additional protection (usually through hardware) of memory, commonly in the 

form of write or execute prevention.  

                                                 
3 Crispan Cowan et al. “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow 
Attacks,” 7th USENIX Security Symposium Proceedings, 1998. 
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The common type of compiler modification is presented by Cowan et al. in their 

paper, “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow 

Attacks,” (called either the StackGuard or stack canary system). Here, the authors present 

a technique for protecting the return address from being overwritten in a standard buffer 

overflow. Note that, as the name suggests, this approach protects only the stack. The idea 

could be expanded to the heap, but this has not been done yet. The key to the StackGuard 

system is that a randomly generated value, called a canary, is placed on the stack just 

above the return address. When a function prepares to return, it compares this random 

value with a saved copy located elsewhere (on the heap). If the values do not match, the 

return address is considered to be invalid and the system does not use this corrupted 

value.  

This method introduces relatively little overhead. It involves only two extra steps. 

First, the canary must be pushed onto the stack immediately after the return address. 

Second, the canary value must be checked against the saved value. This can take 

somewhat longer, as it requires calling a checking function and reading a word from 

memory. Cowan et al. ran a series of tests with canaries in place and determined that for a 

simple function that took a single argument, incremented it, and returned, that the runtime 

was increased by about 70%. However, for longer functions, the overhead is the same, so 

true system runtime increase would be less. Additionally, the canaries need only be put in 

functions with potential overflows, meaning that not every function is subject to the 

increase in runtime. The StackGuard system is currently incorporated into some versions 

of GCC. Microsoft has adopted a similar system in to their latest Visual Studio Compiler, 
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and has recompiled their entire Internet Information Services (IIS) module with this 

protection mechanism.  

The StackGuard mechanism certainly protects against many existing viruses. This 

success is because nearly all viruses depend on overwriting the return address to gain 

execution control. Consider, however, the other types of attacks discussed above. The 

StackGuard system (as described in Cowan’s paper) does not protect any local variables 

or pointers. This leaves the system vulnerable to these types of attacks, despite the stack 

canary. Microsoft has addressed this issue in their latest version of the Visual Studio 

C/C++ compiler. In Microsoft compiled code, all local variables and pointers are stored 

after the return address (and therefore after the stack canary). Thus, to overwrite any 

variables used by the program, the stack canary must also be overwritten. It seems as 

though the StackGuard system can be modified to protect from all types of stack based 

attacks. 

David Litchfield presents a novel attack to defeat the StackGuard-style protection 

mechanism4. First, assume that we have a buffer overflow attack which can overwrite a 

return address, but also overwrites the stack canary in doing so. After the program 

determines that the canary has been overwritten, it invokes the exception handler. This 

handler is called and deals with the exception as any other software exception would be 

handled. However, the exception handling is maintained by a series of structures on the 

stack (the exact format varies depending on the operating system, and may be very 

different for Linux). Included in this structure is a function pointer to the current 

exception handler. This function pointer is called when an exception is raised. Now, we 

                                                 
4 Litchfield, David. “Defeating the Stack Based Buffer Overflow Protection Mechanism of Windows 
Server 2003,” Proceedings of Black Hat, September 8th 2003. 
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can gain control of a system with stack canaries by overwriting the stack to such a large 

degree that we overwrite an exception handler function pointer, and have an address of 

our choosing called instead of the true exception handler. Gaining control in a process 

with stack canaries certainly requires more effort. However, the attacker can still gain 

control of the process, despite the StackGuard mechanism. 

The StackGuard system of stack canaries provides only a limited set of 

protections. The only situation in which they prevent a buffer overflow style attack is 

when there is no exception handler structure on the stack (no ‘try… catch’ blocks are 

used), or where this structure is so far away on the stack that trying to overwrite by such a 

long length generates an exception before the handler can be overwritten. The stack 

canary system is far from reaching its stated goal of preventing future buffer overflow 

attacks. 

The stack canary system makes the mistake of trying to allow recovery from an 

attacked process. To remedy the problems with the current stack canary system, only a 

few changes need to be made. Successfully implementing these changes would make 

traditional buffer overflows very difficult in the future. The safest thing to do once a 

buffer overflow has been detected is to exit the process immediately. Clearly, something 

has gone very wrong. Since the basic assumption about the safety of data on the stack has 

been violated, an attacked process should just exit. In the case of stack canaries, failure to 

do so results in an unsuccessful protection system. Additionally, canaries should be 

placed at the end of every buffer that serves as a copy destination (including heap 

buffers), and should be checked after every copy. This way, if a buffer is overflowed, the 

program can halt immediately, avoiding execution of any instructions after the program 
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enters an unsafe state. This solution, however, becomes increasingly time consuming and 

begins to resemble a rudimentary version of bounds checking that is already available in 

other programming languages. 

 The second common avenue for protection against buffer overflows (including 

heap overflows) is additional forms of memory protection. This can be done both at the 

software and hardware level. Cowan et al. address the software level implementation of 

this idea with their MemGuard protection mechanism5. The idea is that every standard 

memory operation is replaced with a safe, bounds checked alternative. Effectively, this is 

adding a bounds checking layer to C/C++. Runtime test of the system reveal that it is 

impractical, with standard runtimes increasing by a factor of 50 to 100.  

 If bounds checking during runtime at the software level were a desired feature for 

developers, several modern languages (Java, Ada, etc.) are available to do so. It seems as 

though modern developers do not feel that the performance penalty brought using these 

other languages is worth it, leaving such memory protections to the hardware 

manufacturers. Both Intel and AMD have implemented enhanced versions of memory 

protection with buffer overflow protection in mind (called XD and NX, respectively)67. 

While the specifics of the hardware implementation differ, the protections they offer do 

not. Each mechanism provides another entry in the page tables specifying whether or not 

a given page is executable. By doing this, the stack can be marked as non-executable, so 

                                                 
5 Crispan Cowan et al. “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow 
Attacks,” 7th USENIX Security Symposium Proceedings, 1998. 
 
6 Zeichick, Alan. “Security Ahoy! Flying the NX Flag on Windows and AMD64 To Stop Attacks,” 
<http://www.devx.com/amd/Article/27809>, March 31, 2005 
 
7 “Intel Execute Disable bit and Windows XP SP2,” <http://www.intel.com/business/bss/ 
infrastructure/security/flash.htm> 
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attackers can no longer specify a return address which is a buffer they control on the 

stack.  

 This protection mechanism does prevent some types of attacks. However, all an 

attacker needs to do is locate a series of bytes which can be interpreted as useful 

instructions and then be used to gain control in a loaded library (there are many libraries 

loaded at any given time). For instance, it may be possible to return to a procedure like 

Winexec or some similar library function which could be subverted to spawn another 

process or perform some task enabling further exploitation (there is a class of exploits of 

this type known as ‘return to libc’ attacks). With a large number of executable libraries to 

choose, and much of the data on the stack controlled due to the overflow, the attacker 

may be able to select the arguments to whatever function he can find. Some exploits may 

be made impossible by the addition of these execution controls in the page tables. 

However, it is unlikely that system managers would consider their system to be safe 

when a hacker would have the opportunity to still execute any code in the attacked 

process’ memory space with arguments of the attacker’s choice. As long as an attacker 

can modify data that is needed by the program to continue its normal function, simply 

preventing the types of attacks that already exist does not solve the security issues raised 

by unbounded copies.  

 An effective memory protection mechanism would require frequent updates of 

permissions for commonly used memory, and permissions on a word level. This would 

allow protection of return addresses during a function’s duration until return is invoked, 

when the area on the stack occupied by the return address could legally be overwritten. 

This solution, however, is rather unfeasible as it would require a tremendous amount of 
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overhead due to checking and reassigning protection bits on individual words in memory. 

If we only wanted to add 3 bits of protection (read, write, execute) for every word, this 

introduces nearly a 10 percent storage overhead on 32 bit processors. Such protection is 

likely too costly to be implemented. In general, memory protection mechanisms do not 

provide an ultimate solution to the buffer overflow problem. They act only as another 

hurdle for an attacker to overcome in order to gain control.  

 The current state of the art methods for preventing attacks based on buffer 

overflows are unsuccessful in their goal of preventing future unbounded copy based 

attacks. Both compiler based changes to rearrange memory structure and memory 

protection mechanisms are merely responses to the types of attacks seen previously. As 

they currently stand, these security mechanisms stop old viruses but do nothing to prevent 

a clever (or simply well-read) hacker from developing an attack to circumvent the latest 

protection efforts. Ultimately, the flaw of these security measures lies in their reactionary 

approach to handling viruses and their lack vision about the alternatives to the classic 

buffer overflow attack.  

The real solutions to the problems these measures try to address are costly, but 

certainly within reach. Writing secure code seems to be the most straightforward 

approach. However, time and time again, it has proven difficult to do in its entirety for a 

whole project. Switching to a secure, bounds checked programming language is certainly 

viable. Java development is a promising option for those desiring security. Each of the 

mechanisms discussed here can be modified to deal with the various attacks currently 

employed, however the performance hit may well be worse than changing to a secure 

language (and in the case of stack canaries, making the mechanism more effective ends 
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up adding a bounds checking level to current C/C++ code). It is certainly possible to 

develop secure code without extraordinary innovation, and hopefully no great catastrophe 

is needed to prove to developers that virus-safe code is worth the effort. 
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