
CS 134
Operating Systems

January 23, 2019

 
Overview

Brief Introduction to JOS and xv6

Instructor: Neil Rhodes

Introduction

What will you be learning?
What an operating system is

– Various capabilities provided by an OS
Distinction between an OS/Kernel and the rest of the system
How an operating system is written
The spectrum of services provided by an OS

– Lightweight/small/fast
– More capable/larger/slower

Why?
All programmers interact with an OS
Care about what’s happening internally
Remove black-box
Need to write high-performance programs
Need to diagnose bugs or security problems

Some programmers must write an OS (or modify)
What is the structure?

Combination of theory and practice
 2

Operating System

 3

Hardware

OS (Kernel)

User Programs

A level of software between programs and the raw hardware

What an Operating System Does
(view number 1)

Manages resources needed by various programs

Time multiplexing

Space multiplexing

 4

Hardware

OS (Kernel)

Prog1 Prog2 Prog3

What an Operating System Does
(view number 2)

Operating system as extended machine
The operating system provides an interface higher than that of the raw
machine

– Level 1: write to the floppy disk controller directly
- Start motor spinning
- Move the disk arm
- …
- Stop motor spinning

– Level 2: write to floppy disk sector-by-sector
- Impose your own structure on the floppy.

– Level 3: Open/close files.
- use file system

Provide abstractions
– Same low-level functions to write to IDE drive as SATA drive as USB drive
– Same high-level functions to write to a file on disk as to a network connection

 5

Hardware

OS (Kernel)

User Programs

What an Operating System Does
(view number 2)

 6

Actual processor
Actual memory
Hardware

Program 1

Virtual processor
Virtual memory

OS

Program 2

Virtual processor
Virtual memory

OS

Program 3

Virtual processor
Virtual memory

OS

The Kernel

Uses supervisor mode of the CPU
Certain operations only available if processor is running in supervisor
mode

– Enable/Disable interrupts
– Change memory map
– Change supervisor mode 

Normal applications run in user mode
Hardware disallows some operations
How to call to kernel?
Make System call

– Put system call number and parameters in special location (registers?)
– Issue special TRAP instruction
– Causes execution to switch to kernel’s trap handler (now in supervisor mode)
– Makes call to appropriate system call handler
– Returns to user mode with special instruction

 7

The Kernel

Handling input
I/O device generates an interrupt
Causes execution to switch to kernel’s interrupt handler (now in supervisor
mode)
Deals with that particular interrupt
Returns to where it was interrupted from with special instruction

 8

The Kernel

Services
Processes
Memory allocation
File system

– Directories/filenames
– File contents
– Attributes about files
Security
Networking
…

 9

Operating System Abstractions

• System calls
• A function that exists in the kernel, called by the application

• For example:

 10

int fd = open(‘myfile.txt’, 1);  
write(fd, “hello, world!\n”, 14);  
 
int pid = fork();

API – System Call – OS Relationship

 11

Standard C Library Example

 12

Why is Operating System design hard?

• Difficult environment

• Want efficiency, but also portability

• Want powerful, but also simple

• Interactions between different calls
• Example:

 13

Lecture format

• Operating System ideas

• Detailed inspection of xv6, a traditional OS

• xv6 programming homework will motivate lectures

 14

Labs

• You’ll be building up JOS, a small OS for x86
(exokernel style)

• Kernel interface: expose, but protect

• Unprivileged user-level library:
• fork
• exec
• pipe
• …

• Dev environment
• GCC
• qemu

 15

Lab 1 is out now!

Homeworks

• Almost all using xv6

• Dev environment
• GCC
• qemu

• Lions’ commentary
• Unix v6 allowed classroom use of source code
• Unix v7+ did not
• Lions book provided commentary + source code
• Very widely copied (samizdat style)

• xv6: v6 for x86

 16

xv6 vs. JOS

• Two different small x86 OSes
• xv6: traditional, similar in spirit to Unix v6
• JOS: exokernel style (much work done in user mode)
• Neither one as complicated as modern Linux

 17

From: torv...@klaava.Helsinki.FI (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

 Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all I have :-(.

Labs

Six programming labs
First five are solo
Last one can be done solo or in groups of up to 3
Modifying an existing operating system: Jos

– Jos is written in C. You’ll modify/extend the OS by writing Java code
– Jos runs on x86. Rather than running on bare metal, we’ll run on a Virtual

Machine: QEMU

 18

Resources

Webpage (including announcements, schedules, etc.)
http://cs.hmc.edu/~rhodes/cs134

Discussion board
https://piazza.com/hmc/spring2019/cs134

 19

Our focus

• System calls

• Unix-like systems:
• Linux/Posix/Mac OS

 20

Shell

• User-level program that is the command-line
interface

• Supports:
• redirection

– ls > output
– mail “neil@pobox.com" < my message
– ls | wc -l

• How does shell get control again after command
executes?
• Uses fork to run the command in a child process

– Copies user memory
– Copies kernel data structures (e.g., open file descriptors)
– Child is now a clone of parent (with different process ID)
– Both are now running the same program!

- How make them act different?

 21

Shell: executing a command

 22

Shell process fork wait

exec exit

Shell process

Shell: implementing Pipeline

 23

Shell fork wait

close(1)

Shellpipe fork

dup(1,
pipe write

fd)

exec( 
“/bin/ls)

wait

close(0)
dup(0,

pipe read
fd)

exec( 
“/bin/wc”)

ls | wc -l

close(pipe
read fd

close(pipe
read fd)

close(pipe
write fd)

close(pipe
write fd

