CS 152-Notes on Backpropagation (Rev. 1)

Neil Rhodes

October 7, 2019

1 Backpropagation

Once the forward pass is complete, we have computed the loss, $L(\hat{y}, y)$. Along the way, we've computed $z^{[i]}$ and $a^{[i]}$ for each i from 1 to the number of levels.

Our final goal is to compute $\frac{\partial L}{\partial W^{[i]}}$ and $\frac{\partial L}{\partial b^{i]}}$ for each i from 1 to the number of levels.

We know the partial derivatives of each step along the way:

$$
\begin{aligned}
& \frac{\partial L}{\partial \hat{y}} \\
& \frac{\partial a^{[i]}}{\partial z^{[i]}}=\left(g^{[i]}\right)^{\prime}\left(z^{[i]}\right) \\
& \frac{\partial z^{[i]}}{\partial a^{[i-1]}}=\left(W^{[i]}\right)^{T} \\
& \frac{\partial z_{j}^{[i]}}{\partial W_{k j}^{[i]}}=a_{j}^{[i-1]} \\
& \frac{\partial z^{[i]}}{\partial b^{[i]}}=1
\end{aligned}
$$

We could use the above formulae to compute any desired $\frac{\partial L}{\partial W^{[i]}}$ or $\frac{\partial L}{\partial b^{[i]}}$. However, there would be much recomputation.

To avoid the recomputations, we use dynamic programming to compute the derivatives in a back-to-front manner (thus the term backpropagation).

One piece of notation may be new to you: the Hademard product, $M \odot N$ is the point-wise multiplication of matrices M, and N (of the same dimensions). For example, $\left[\begin{array}{ll}10 & 3\end{array}\right] \odot\left[\begin{array}{ll}1 & 5\end{array}\right]=\left[\begin{array}{ll}10 & 15\end{array}\right]$.

Let's say we have K layers.
Remember that we've defined $\hat{y}=a^{[K]}$, the output of the last layer, and $a^{[0]}=x$, the input.

Here's the order that we'll be computing:

$$
\begin{aligned}
\frac{\partial L}{\partial a^{[K]}} & =\frac{\partial L}{\partial \hat{y}} \\
\frac{\partial L}{\partial z^{[K]}} & =\frac{\partial L}{\partial a^{[K]}} \odot\left(g^{[K]}\right)^{\prime}\left(z^{[K]}\right) \\
\frac{\partial L}{\partial W^{[K]}} & =\left(a^{[K-1]}\right)^{T} \frac{\partial L}{\partial z^{[K]}} \\
\frac{\partial L}{\partial b^{[K]}} & =\frac{\partial L}{\partial z^{[K]}} \\
\frac{\partial L}{\partial a^{[K-1]}} & =\frac{\partial L}{\partial z^{[K]}}\left(W^{[K]}\right)^{T} \\
\frac{\partial L}{\partial z^{[K-1]}} & =\frac{\partial L}{\partial a^{[K-1]}} \odot\left(g^{[K-1]}\right)^{\prime}\left(z^{[K-1]}\right) \\
\frac{\partial L}{\partial W^{[K-1]}} & =\left(a^{[K-2]}\right)^{T} \frac{\partial L}{\partial z^{[K-1]}} \\
\frac{\partial L}{\partial b^{[K-1]}} & =\frac{\partial L}{\partial z^{[K-1]}} \\
\vdots & \\
\frac{\partial L}{\partial a^{[1]}} & =\frac{\partial L}{\partial z^{[2]}}\left(W^{[2]}\right)^{T} \\
\frac{\partial L}{\partial z^{[1]}} & =\frac{\partial L}{\partial a^{[1]}} \odot\left(g^{[1]}\right)^{\prime}\left(z^{[1]}\right) \\
\frac{\partial L}{\partial W^{[1]}} & =\left(a^{[0]}\right)^{T} \frac{\partial L}{\partial z^{[1]}} \\
\frac{\partial L}{\partial b^{[1]}} & =\frac{\partial L}{\partial z^{[1]}}
\end{aligned}
$$

