
CS 152—Notes on Backpropagation (Rev. 1)

Neil Rhodes

October 7, 2019

1 Backpropagation

Once the forward pass is complete, we have computed the loss, L(ŷ, y). Along
the way, we’ve computed z[i] and a[i] for each i from 1 to the number of levels.

Our final goal is to compute ∂L
∂W [i] and ∂L

∂b[i]
for each i from 1 to the number

of levels.
We know the partial derivatives of each step along the way:

∂L

∂ŷ

∂a[i]

∂z[i]
= (g[i])′(z[i])

∂z[i]

∂a[i−1]
= (W [i])T

∂z
[i]
j

∂W
[i]
kj

= a
[i−1]
j

∂z[i]

∂b[i]
= 1

We could use the above formulae to compute any desired ∂L
∂W [i] or ∂L

∂b[i]
.

However, there would be much recomputation.
To avoid the recomputations, we use dynamic programming to compute

the derivatives in a back-to-front manner (thus the term backpropagation).
One piece of notation may be new to you: the Hademard product, M�N

is the point-wise multiplication of matrices M , and N (of the same dimen-
sions). For example,

[
10 3

]
�
[
1 5

]
=

[
10 15

]
.

1

Let’s say we have K layers.
Remember that we’ve defined ŷ = a[K], the output of the last layer, and

a[0] = x, the input.
Here’s the order that we’ll be computing:

∂L

∂a[K]
=

∂L

∂ŷ
∂L

∂z[K]
=

∂L

∂a[K]
� (g[K])′(z[K])

∂L

∂W [K]
= (a[K−1])T

∂L

∂z[K]

∂L

∂b[K]
=

∂L

∂z[K]

∂L

∂a[K−1]
=

∂L

∂z[K]
(W [K])T

∂L

∂z[K−1]
=

∂L

∂a[K−1]
� (g[K−1])′(z[K−1])

∂L

∂W [K−1] = (a[K−2])T
∂L

∂z[K−1]

∂L

∂b[K−1]
=

∂L

∂z[K−1]
...

∂L

∂a[1]
=

∂L

∂z[2]
(W [2])T

∂L

∂z[1]
=

∂L

∂a[1]
� (g[1])′(z[1])

∂L

∂W [1]
= (a[0])T

∂L

∂z[1]

∂L

∂b[1]
=

∂L

∂z[1]

2

