
CS 152—Notes on Optimization Algorithms

(Rev. 2)

Neil Rhodes

September 30, 2019

1 Optimization Algorithms

The loss function, L, is a function of x, y, and, conceputally, Θ. We can think of
L as taking note only x and y as parameters, but Θ as well, and can represent an
evaluation of L as L(Θ;x, y) where I separate Θ from x and y with a semicolon
because it seems like a different type of parameter than x and y.

The partial derivative ∂L
∂Θi

is also a function that takes Θ, x, and y as param-

eters. We can similarly represent an evaluation of that function as ∂L
∂Θi

(Θ;x, y).
I’ll use a notation of Vt to represent the value of V at time t. I’ll use Θt to

represent the value of Θ at time t. (Θt)i will represent the i’th parameter from
Θt. For partial derivatives, though, which don’t need to represent time, we’ll
use ∂L

∂Θi
to represent the partial derivative of L with respect to the ith parameter

Θi (that is, the subscript will refer to the parameter, not to the timestep).

1.1 Standard optimization

(Θt)i = (Θt−1)i − λ
∂L

∂Θi
(Θt−1;x, y)

1.2 Momentum

(Vt)i = β(Vt−1)i + (1 − β)
∂L

∂Θi
(Θt−1;x, y)

(Θt)i = (Θt−1)i − λVt

Equivalently, we can compute all the elements of the vectors Θt and Vt in
parallel:

Vt = βVt−1 + (1 − β)
∂L

∂Θ
(Θt−1;x, y)

Θt = Θt−1 − λVt

1

1.3 Nesterov Momentum

The only difference with Nesterov Momentum from regular Momentum is the
values we use when evaluating the partial derivative. We evaluate not at the
location of the previous Θ, but instead at the value of the previous Θ adjusted
by the previous V , since that’s our best guess at this point as to where we’ll
end up. (We’ll be moving by a previous V amount anyway, so we evaluate as
if we had made that movement). Note that we must subtract the previous V
from the current Θ since we always move the parameters in a direction that is
negative to the gradient. We evaluate at that best guess since it should be a
more accurate picture of the actual gradient value.

Vt = βVt−1 + (1 − β)
∂L

∂Θi
(Θt−1 − Vt−1;x, y)

Θt = Θt−1 − λVt

1.4 Adagrad

With Adaptive Gradient, we step away from momentum and look at adjusting
learning rates on a parameter-by-parameter basis. We define an overall max
learning rate λ, and then calculate a learning rate for each timestep t, and
parameter i:

(λt)i =
λ√

ε+
∑t

k=1(∂L
∂Θi

(Θk;x, y))2

(Θt)i = (Θt−1)i − (λt)i
∂L

∂Θi
(Θt−1;x, y)

In the above formula, ε of 1 may be a good choice (it’ll limit the resulting
parameter-specific learning rate to be between 0 and λ). β is a hyperparameter
(often around 0.9).

The denominator increases as there are many and/or large gradients. Thus,
many and/or large gradients for a parameter reduce the learning rate for that
parameter.

One disadvantage of Adagrad is that for a given parameter i, the sequence of
learning rates (λ1)i, (λ2)i, ... is monotonic decreasing. Thus, a parameter i can
be doomed with a low learning rate even once it has paid its debt to society:)

1.5 RMSProp

With RMSProp, we adjust Adagrad to forget about old learning rates by us-
ing an exponential moving average of squared gradients rather than a sum-of-
squared gradients for all timesteps.

We define Et to represent the exponential moving squared gradient with a
decay factor of γ (between 0 and 1):

2

(Et)i = γ(Et−1)i + (1 − γ)

(
∂L

∂Θi
(Θt−1;x, y)

)2

(λt)i =
λ√

ε+ (Et)i

(Θt)i = (Θt−1)i − (λt)i
∂L

∂Θi
(Θt−1;x, y)

γ is a hyperparameter (often around 0.9).

1.6 Adam

Adam (adapative moment estimation) is a combination of RMSProp with Mo-
mentum (with a slight twist where Vt and Et are scaled to V̂t and Êt):

Vt = βVt−1 + (1 − β)
∂L

∂Θ
(Θt−1;x, y)

V̂t =
Vt

1 − βt

Et = γEt−1 + (1 − γ)

(
∂L

∂Θ
(Θt−1;x, y)

)2

Êt =
Et

1 − γt

(λt)i =
λ√

ε+ (Êt)i

(Θt)i = (Θt−1)i − (λt)i(V̂t)i

3

