
2000 East Central Regional Contest 13

Problem G: BSP Trees

When rendering a scene with multiple objects onto a screen, the order in which the objects are drawn
is very important. In general, the farther an object is from the screen, the earlier it should be drawn
allowing later, closer objects to be drawn on top of them. If two objects do not overlap, the order
of drawing is immaterial. A binary space-partitioning (BSP) tree is one type of data structure which
attempts to simplify the determination of the ordering of objects. It works as follows. Assume that the
screen lies in the xy-plane centered on the z-axis and that the z-axis points away from the user looking
at the screen. (For our purposes, assume the user lies near �1 on the z-axis.) We also assume that
all the objects lie on the opposite side of the screen (z > 0). The BSP tree is built by placing a series
of planes parallel to the y-axis. The �rst plane divides space into two regions: a region containing the
viewer and a region not containing the viewer. We partition all objects in space according to which of
these two regions they lie in, and observe that all objects in the region containing the viewer should be
drawn after all the objects in the other region. The BSP tree can be viewed at this point as a root with
only two children, each child containing one of the partitions. We can now add a second plane, which
subdivides the space again. We split each of the two partitions from the �rst plane in two, making a total
of 4 partitions, and the resulting BSP tree now has three levels, with the partitions in the leaves (note
that some of these partitions may contain several objects and some may contain none). This process
is continued until each partition has at most one object in it, or until some predetermined number of
planes has been used. The diagram below gives an example of using 1, 2 and 3 planes (looking down
along the y-axis). For simplicity we assume that all objects lie parallel to the z-axis, so we need only
deal this 2-d image to determine the BSP tree.

Assuming you have split the partitions correctly, a simple traversal of the BSP tree will give you an
appropriate ordering for which to render the objects in the scene. Note in the example above that once
a node contains just one object it need not be split as additional planes are added.

Input

Input will consist of one problem instance. The �rst line will contain a positive integer n � 20 indicating
the number of objects in the scene. The next n lines will contain a description of these objects using
the formatm x1 z1 x2 z2 : : :xm zm, where m is the number of vertices in the object and the remaining
values are the vertices of the intersection of the object with the xz-plane. All objects will have between
3 and 6 vertices. Objects are assumed to be labeled \A", \B", \C", ... in the order they are de�ned.
Next in the input �le will be a positive integer p � 10 indicating the number of planes used to create
the BSP tree. The last p input lines will contain a description of each plane of the form x1 z1 x2 z2
representing two points on the intersection line of the plane and the xz-plane. You may assume that no
line will intersect any object (including edges and vertices) and that no plane is parallel to the z-axis.
All coordinates will be integers.



2000 East Central Regional Contest 14

Output

Output will consist of a single line containing the names of the objects in the order that they should

be rendered for the speci�ed BSP tree. In the case when some partition contains two or more objects,

you should list the objects in alphabetical order.

Sample Input

10

3 65 5 66 5 65 6

3 65 123 66 123 65 124

3 122 176 123 176 122 177

3 56 23 57 23 56 24

3 11 49 12 49 11 50

3 167 111 168 111 167 112

3 57 123 58 123 57 124

3 130 6 131 6 130 7

3 100 85 101 85 100 86

3 11 28 12 28 11 29

10

159 165 -131 -177

-153 -192 -197 158

-77 -86 -98 30

-177 59 146 63

192 -117 92 43

121 -67 -62 -134

41 -81 130 196

95 -185 -89 154

-163 -179 93 175

113 41 -92 -28

Sample Output

BCGEJFIHDA


