Problem F Find Problem

Input: solution.in
Output: standard output

Normally for a given problem you are asked to find the solution. Here you are required to write a program to find the problem for which the solution is given.

Let f =m/n be a proper fraction and $F=\{f_1,\ f_2,\ ...,\ f_k\}$ be a set of k distinct unit fractions $f_i=1/n_i,\ i=1,\ 2,...,\ k$, where n_i (not equal to 1 or n) is a factor of n and k is a suitable integer. Recall that a proper fraction f is a number of the form α/β , where the numerator α and the denominator β are positive integers and $1 \le \alpha < \beta$. A unit fraction is a proper fraction with $\alpha=1$ and $\beta>1$. Since the numerator of each element of F is 1, the set F may be identified also by the set $D=\{n_1,\ n_2,\ ...,\ n_k\}$ of denominators appearing in the elements of F.

Consider the problem: given the set F, find the sum of elements of F and its solution: the sum f, where k is a nonnegative integer as large as possible.

Given a solution f you are required to write a program to find F or equivalently find D. It should be noted that for a given solution there may exist no problem, exactly one problem or more than one distinct problem. Let p be the total number of distinct problems for a given solution.

For example if $f = \frac{13}{24}$ then p=2, $F = \{\frac{1}{3}, \frac{1}{8}, \frac{1}{12}\}$ or $\{\frac{1}{4}, \frac{1}{6}, \frac{1}{8}\}$ and D={3, 8, 12} or {4, 6, 8}. Again if $f = \frac{13}{18}$ then p=0 since no F or D exists for the given f.

Input

The input may contain multiple test cases.

For each test case there are two input lines. The first line contains the case number c and the second line gives the numerator m and the denominator n.

The input terminates with an input 0 for c. The input is illustrated in sample input.

Output

For each test case print c, k and p in one line, where c is the test case number, k is the largest possible number of distinct unit fractions in F and p is the total number of distinct problems.

In each of the next p lines, print a problem represented by k elements of D. The elements of D are printed in increasing order of magnitude. The problems are to be arranged in lexicographic order of the elements of D.

Print a blank line between two successive test cases.

Sample Input

Sample Output

1 13	18	1	0	0
2		2	3	2
13	24	3	8	12
0		4	6	8