Welcome

Harbin (dream)!

Waiting for the snow enveloping

you on Route 5 N to melt

Harbin (reality)!
—

Driving N on the Dalton Highway... (though it feels like it!)

Programming Practicum

the C into CS"/'

Pittsburgh

Victorville, for
DARPA's Urban
Granc Challenge St Petersburg

DC for the
inauguration

University of

East Berlm

On the 405, in traffic, being chased
by police (and TV) helicopters.

exploring
maman soil

On fire just g—
W of here!!

Traveling
through time

and space on
the Tardis

4

Teaching Honors
English for Janice
Barbee at Pomona

High School

Mailing something at the
Claremont Post Office

You aren ’ 7‘ here

Denver, CO or
Minneapolis, MN

> Worldcom

/7 7

writing clinic
reports

/

|4
installing
Debian 3.1

Massey University

Palmerston North, NZ

=

0}

rebooting
knuth (or
turing

)

A
coding
chunky
strings

\

v
clinic liaison
phone call

77

the dumpster

/]

Headquarters

Krispy

Kreme’ s drive-

through . =~ .
Not waiting in line in
a FL themepark...

Waiting in line to
vote in the Florida
primaries. ..

in Sharm-el-
Sheikh, Egypt!

Being dragged off-course
18 miles into a marathon
race by a crazed spectator

Leading a Gray Davis /
Gary Coleman / Arnold
“T-800” Schwarzenegger
gubernatorial fundraiser

Introductions...! fan of low-level Al
taker of low-quality photos

Zach Dodds Starbucks triumph-er!

Office Olin Bl1l63
Email dodds@cs.hmec.edu

and not good at selfies...

How I spent my summer vacation...

programming robots visiting important landmarks!

Or, more precisely, cheering for many other folks programming robots! . R
’ P v = ’ prog ° My selfie-taking has gotten worse over the past couple of months!

What 1s this course about?

practicing algorithmic/programming sKkills

first half... until early November

trying out technologies/projects of interest

second half...
after early November, if you'd like

trying out technologies/projects of interest

after early November, if you'd like

Alums: What do you feel you didn't get (@ HMC CS?

Paul Scott

Josh Klontz

Karen Gragg

trying out technologies/projects of interest

after early November, if you'd like

Alums: Wha@3 do you feel you didn't get (@ HMC CS?
S .
oc®

Karen Gragg

What is the first 72> about?

practicing algorithmic/programming sKkills

S "l 80 TN

; 2% e X
je] SRS
Bessie! gaeCENaRtN

elevator.py

Example elevator.java

elevator.cc

Space Elevator

The cows are going to space! They plan to achieve orbit by building
a sort of space elevator: a giant tower of blocks. They have K (1
<= K <= 400) different types of blocks with which to build the
tower. Each block of type i has height h_i (1 <= h_i <= 100) and
is available in guantity c_i (1 <= c_i <= 10). Due to possible
damage caused by cosmic rays, no part of a block of type i can
exceed a maximum altitude a_i (1 <= a_i <= 40000).

Help the cows build the tallest space elevator possible by stacking
blocks on top of each other according to the rules.

PROBLEM NAME: elevator.X

elevator.py

Example elevator.java

elevator.cc

Space Elevator

The cows are going to space! They plan to achieve orbit by building
a sort of space elevator: a giant tower of blocks. They have K (1
<= K <= 400) different types of blocks with which to build the
tower. Each block of type i has height h_i (1 <= h_i <= 100) and
is available in gquantity c_i (1 <= c_i <= 10). Due to possible
damage caused by cosmic rays, no part of a block of type i can
exceed a maximum altitude a_i (1 <= a_i <= 40000).

Help the cows build the tallest space elevator possible by stacking
blocks on top of each other according to the rules.

PROBLEM NAME: elevator.X

of blocktypes
Input

: 3 of them
3 7
7 40 3
5 23 8 | 5|} 8ofthem
2 52 6 6 ofthem

PN N
quantity

block

height ~ max (count

altitude

elevator.py

Examp l e elevator.java OUtpLIt

elevator.cc The height of the
48 .
Space Elevator tallest tower possible

The cows are going to space! They plan to achieve orbit by building
a sort of space elevator: a giant tower of blocks. They have K (1
<= K <= 400) different types of blocks with which to build the .
tower. Each block of type i has height h_i (1 <= h_i <= 100) and WMatg
is available in guantity c_i (1 <= c_i <= 10). Due to possible V”?ngW“h
damage caused by cosmic rays, no part of a block of type i can this tower?
exceed a maximum altitude a_i (1 <= a_i <= 40000). =
Help the cows build the tallest space elevator possible by stacking ES]‘ N7
blocks on top of each other according to the rules. Zlf;

PROBLEM NAME: elevator.X

of blocktypes

Input

3 7
7 40 3
5 23 8 SH
2 52 6 l."
FAN

block ntity
height ~ max (count

altitude

8 of them

6 of them

practicing algorithmic/programming sKkills

What Algorithm analysis and insight optimizing coding time,
Program design and implementation as well as running time
ACM programming contest
Hands-on practice with algorithms and techniques
Familiarizing with your choice of language/libraries

Why "reasonable”

Research/prototype programming

Technical interview questions...

Unofficial course name: CS -70

rg,

Class Meetings

boagy
alternating format

discussion sessions lab sessions

* more extended team problem-

e problem and program analysis : . .
solving practice: coming to the

» discussion of strategy and coding tips problems "cold"

* deciding on functional decomposition,

data structures, language facilities, and « these problems count for each
algorithms to use in teams of 2-3 member of the group

* short time to work on at least 1 problem

« sometimes new problems, other times with known ones

« ~5-6 problems given out per week...

Sep 10
Sep 17
Sep 24
Oct 1

Oct 8

Oct 16
Oct 22
Oct 29
Nov S
Nov 9

Rest of the term: Projects or problems

Course Organization

Welcome discussion! and DP problems ~ 5 problems

Lab session ~ 5 problems

Discussion session on graph problems ~ 5 problems

Lab session on graph problems ~ 5 problems

Guest speaker Don Chamberlin, author/inventor of SQL = 2 problems
Discussion session on geometry problems ~ 5 problems

Lab & ACM qualifying contest ~ 6 problems

Discussion session on something new!! ~ 5 problems

Final meeting: project opportunities

(approximate) ACM Regional contest (in Riverside...)

> 42 problems total

You may submit problems

-- you choose --
Y until the end of exams...

part — but only part — of the motivation for CS 189:

ACM programming contest

Updated 2013-07-26 06:12:442

Southern California Region

\\\I///

\i/ International Collegiate
H acm Programming Contest

2012 Contest: 10-Nov at Riverside Community College
Registration opens 12-Sep-2012.

2012-13 Final Standings

Rank

Team ID
acml70

acml07

acml51
acml2?2
acml24

acml2l
acmlés
acml52
acmls7

acml23
acml09
acmll9
acml54
acml0é6
acml58
acmlll
acmll?
acml(08
acmlls
acml29

Team Name
USC Trojans

Caltech A

UCLA Flyaway
UCSD Load, Spin, Pull
UCSD kamehb

HMC Sqguared

USC Cardinal
UCLA HeroesIII
UCI constructors

UCSD bumaga
Caltech D

HMC J

UCSB alpha
Caltech 1

UCI instances
CSUF-B

CSULB Undeclared Identifiers
Caltech C

HMC Escher
UCR Raphael

Solved
9

8

(= A=)

[SLRNE NS RS

L S O L =

Penalties Score
11 24:59:34
3 17:25:48
2 7:23:47
0 10:31:29
5 11:49:16
0 €«— 9 g
2 100 .o, DO
2 11:38:56 .~
3 11:54:00
1 5:20:39
3 7:43:22
4 8:02:39
2 8:47:20
3 9:05:09
2 9:27:40
1 9:40:47
2 10:22:22
3 10:39:47
1 10:46:15
0 11:37:09

USC advanced to the finals in 2011 and 2012...

i &

l.{i’i\\“

\

!

1l

il

active
watching!

active
watching!

active
watching!

M Inbox (28) - x \. CS Submis: W Autonomc: * " \/ Autonomo \@ Google get: » '-\ Basic prog: » | [l Programm > ‘
C' [www.cshmcedu/ACM/
BH 5 BH cs60 Ef home §§ csHours [HSV [7] Summer

21 HARVEY MUDD
= G Course webpage

'l Computer Science
Harvey Mudd College

. A few references
Computer Science Department
Programming Practicum //

&
Reference Links HMC ACM Page C++ & STL Java 1.6 API

ST
cahmcedu

Congratulations! to the HMC teams in the 2018 Southern California regionals. The standings out of 78
participating teams:

¢ 4th place -- HMC Hammer -- Ryan Brewster, Richard Porczak, and Jackson Newhouse
o 8th place -- HMC Squared -- Andrew Carter, Daniel Lubarov, and Kevin Black

¢ 10th place -- HMC 42 -- Emily Myers-Stanhope, Eric Aleshire, and Benson Khau

¢ 21st place -- HMC Escher -- Fiona Tay, Jacob Bandes-Storch, and Tum Chaturapruek

Problems and progress / problem statements and sample data

Imru-:s \ problemsl|0-solder“0-forgot||0-cowg1_|eue||0-cowlnhabet||0-c@“0—bﬁre“'[otal“ Name |

1
dodds Not Yet || Not Yet Sep @ ﬁ"‘ a Not Yet Not vat|| 1.0 tOtal !

20:31:00 e
oY

problems you’ ve solved

Lecture Slides and Starting Code... S|IdeS, Code, admlnlstratlve Info
e Lecture 1, Fall 2012 matenials (zip)

Grading

CS 189 1s graded by default ... (it’ s possible to take it P/F, too)

though not for CS elective credit...

Coding Guidelines

* problems can be done any time during the
semester

e discussion of algorithms always OK
e coding should be within teams of 1-3

® yOou may use any references except others'
solutions or partial solutions...

e use /cs/ACM/acmSubmit <file> to submit
on knuth

Solved
(out of 42)

43+
28-42
23-27
20-22
17-19
14-16
9-13
<=9

Assessment

pretty much impossible!
A
A-
B+
B
B-
C range

< D range or less

Details

Problems are worth 150% if you can work in teams
of up to 3 people

* You solve them during the 4:15 - 5:30 lab sessions
» ... which extend to about 1/pm at night.

Any reasonable language is
. 0 OK; keep in mind that the
Language Choice? ACM competition allows only

Java, C, and C++.

Other "standard" languages for CS189 (so far):
C#, Python, Ruby, Perl, PHP, Haskell, Lua, Clojure, Lisp

additions will also be considered...

This week's problems

Notes, starting code, slides, etc. ...

e Lecture 1, cowgueue code examples (zip)
e Fall'l3 Lecture 1 slides

Problems and progress

NAMES \ problems||0-smount||0-lazy||0-elevator|(0-cowgqueune|(0-cowcash|(0-ave|[Total|| Name
1.5
dodds Not Yt Not Yet Not Yt Sep 9 Not Yet Not Y 1.5 dodds
16:19:24
-py
N

New to CS189? Start with this problem!

Part of the challenge is deciding which problem to tackle...

Some of this week's problems have a "dynamic programming" theme...

. Max, Max, and Carl ~
dynamic programmers

Dynamic Programming

~

"

Many problems can be solved recursively...

... but with lots of repeated recursive calls!

/

These problems can be solved quickly with

(1) Memoization, or

(2) Dynamic programming

[Idea: just don't repeat the repeated calls! }

The cowqueue

Input

ABACB
AABC

Cow label sequence #1 (s1)

Cow label sequence #2 (s2)

problem

Output

3

The number of the longest
common subsequence
bewteen s1 and s2.

In this case, the longest
common subsequence is
ABC or AAB
though the problem doesn't
require knowing these.

LCS problem

sl = "ABACR" Input s2 = "AABRC"
) :
i1 i2
Output LCS(i1,i2) = length of longest common subseguence
of sluptoilands2uptoi2

(1) Write a solution recursively.
(2) Then, don't make any call more than once!

Strategy

LCS problem

sl = "ABACB" [pput s2 = "AABC"
0 0
i1 12

length of longest common subsequence
of sl up toil and s2 up to i2

LCS(i1, i2):

if s1[i1l] ==s2[i2]: return 1+ LCS(i1-1,i2-1)

if the same character, count it!

else: return max(LCS(il1-1,i2), LCS(i1,i2-1))

otherwise, lose both ends and take the better result

LCS code

sl = "ABACB" Input s2

i1

= "AABC"

A
12

® O O cowqueue_recursive.py - /Users/zdodds/Desktop/cowqueue_recursive.py

import sys
sys.setrecursionlimit (100000)

def LCS(i1, i2):
"nn ~lagssic LCS """

if 11 < 0 or i2 € 0: return O

if s8l1l[il] == s2[i2]:

return 1 + LCS(il - 1, i2 - 1)
else:

return max(LCS(il - 1, i2), LCS(i1l,

if _name_ == "_main_ ":
sl = raw _input(); L1 = len(sl)
82 = raw_input(); L2 = len(s2)

result = LCS(L1-1, L2-1)

print result

iz - 1))

LCS 1dea

sl = "ABACB" [pput s2 = "AABC"
i1
string2 s2[:i2]
O A AA AABC
N
— A
-
I AB
o0
o0 ABA
=
i)
“» ABAC
ABACB LCS(4,3)

LCS 1dea

sl = "ABACB" [pput s2 = AAB%
il 12
string2 s2[:i2]
S A AR AAB AABC
Y
— A
-
I AB
"D
o0 ABA
[
i)
“» ABAC LCS(3,3)
?
ABACB LCS(4,2) < LCS(4,3)

LCS 1dea

sl = "ABACB"

Input s2 = "AABC"
t <
il 12
string2 s2[:i2]
© A AA AAB AABC
O
— A
-
T AB
—{
éo ABA LCS(2,2)
-E ‘-\
“» ABAC LCS(3,1) LCS(3,3)
A
ABACB LCS(4,2) < LCS(4,3)

LCS 1dea

sl = "ABACB" [pput s2 = "AABC"
t
il 12
string2 s2[:i2]
S A AR AAB AABC
Y
— A
-
— BB LCS(1,2)
. 4
o0 ABA LCS(2,1)<+ LCS(2,2)
.: A
2 l i
“» ABAC LCS(3,0) < LCS(3,1) LCS(3,3)
?
ABACB LCS(4,2) < LCS(4,3)

LCS 1dea

sl = "ABACB" [pput s2 = "AABC"
t <
i1 12
string2 s2[:i2]
S A AA AAB AABC
N LCS(-1,-1) | LCS(-1,0)
2 8
—_ A LCS(0,0) | Lcs(0,1)
— A
.. |
= AB LCS(1,-1)<~ LCS(1,0) LCS(1,2)
v S A
— i |
ed ABA LCS(2,0) | LCS(2,1)<F LCS(2,2)
= | |
“ ABAC | LCS(3,-1)<- LCS(3,0) < LCS(3,1) LCS(3,3)
:?
ABACB LCS(4,2) < LCS(4,3)

LCS 1dea

s1 = "ABACB" [nput s2 = AABET‘:
i1 i2 <
string2 s2[:i2]
Q A AR AAB AABC
N LCS(-1,-1) | LCS(-1,0)
S -
—_ A LCSIn N\ 1 ~eln 4\
& C lli1s10ns!
E AB LCS(16<} O S,
N
Eo ABA N LC5(2,0) L(C/;:-\LCS(Z 2)
E | ‘.\
» ABAC | LCS(3,-1)<- LCS(3,0) < LCS LCS(3,3)
l?
ABACB LCS(4,2) <~ LCS(4,3)

L C S . d Put results in a dictionary.
, memolze Look up instead of recomputing.
This is the "memoizing" dictionary of all distinct calls.
Each distinct call is made only once and stored here.
D = {}

def LCS(i1, i2):
" ~lagsic LCS "Uv

if i1 < 0 or 12 < 0: return O # base cases
if (11,i2) in D: return D[(il1,i2)] # already done!
if s8l1l[il] == s2[i2]:

result = 1 + LCS(il-1, i2-1)

else:
result = max(LCS(il-1, i2), LCS(il, i2-1))

D[(il1,i2)] = result # memo-ize it!
return result # before returning
if __name_ == " main_":

sl = raw_input(); Ll = len(sl)

82 = raw_input(); L2 = len(s2)

result = LCS(Ll1-1, L2-1)

print result

Python function decorators

import sys; sys.setrecursionlimit(100000)

class memoize:
def init (self, function):

self.function = function
self .memoized = {}

def call (self, *args):
try:
return self.memoized[args]
except KeyError:
self memoized[args] = self.function(*args)
return self .memoized[args]

] Python's "function decorator" syntax!
@memoize

def LCS(il, i2): # slow, recursive f'n here

L C S , D P ’ed Compute the table of results, bottom-up!

sl = "ABACB" Input s2 = "AABRC"
1T‘
i1 i2

string2 s2[:i2]

\ A AA AAB AABC
O

— A
-
\am
~ AB
"D
o aBA
=
)
A ABAC

ABACB

L C S , D P ’ed Compute the table of results, bottom-up!

sl = "ABACB" [pput s2 = AABET‘:
i1 12

string2 s2[:i2]

result = DP[L1-1] [L2-1]

S ‘ A AA ‘ AAB ‘ AABC
69 if __name_ == " main_ ":
sl = raw_input(); L1 = len(sl) |
A 82 = raw input(); L2 = len(s2)
— -
"r— DP = [[0]*(L2+2) for il in range(L1l+2)] —
[
— AB for il in range(Ll):
v for i2 in range(L2):
if s1[il] == s2[i2]: DP[il][i2] = 1 + DP[il-1][i2-1] |
?D ABA else: DP[il][i2] = max(DP[il][i2-1], DP[il-1]([i2])
-
=
$ot
-~
9]

ABAC #for row in DP:

print row

print result

ABACB

A word-guessing game
J OttO ! similar to mastermind...

Sophs JRs SRs Pg&ﬁ'}ﬂzc' other
diner ? diner ? diner ? diner ? diner 2

This term'’s first class to guess another's word earns 1 problem...
This term's last class to have its word guessed earns 1 problem...

Recent-past Jotto finale:

/| Win

—~

Sophs
icily 0
strep 2

spork 1
spend 2
peeps 2
furls 1

Ghost 2

Tanks 2
Gecko 2

Jrs
icily 0
strep 2

spork 3

spend 2
peeps 1
furls 1
Ghost 1

Tanks 1
Gecko 1

Srs
icily 1
strep 2

spork 0
spend 2
peeps 2
furls 0
Ghost 1

Tanks 2
Gecko 1

Others
icily 1
strep 1
spork 0

spend 2

peeps 1
furls 1

Ghost 0
Tanks 1

Try 1-2 of these tonight!

Notes, starting code, slides, etc. ...

e Lecture 1, cowgueue code examples (zip)
e Fall'l3 Lecture 1 slides

Problems and progress

NAMES \ problems||0-smount||0-lazy||0-elevator|(0-cowgqueune|(0-cowcash|(0-ave|[Total|| Name
1.5

dodds Not Yt Not Yet Not Yt l:?‘))g?-t Not Yet Not Yet 1,5 dodds
Py

t Poster time!

0

