

Introductions...!

Zach Dodds

Office Olin B163 Email dodds@cs.hmc.edu

not afraid of stuffed animals!

fan of *low-level* AI taker of *low-quality* photos Starbucks triumph-er!

and not good at selfies...

Introductions...

Image size: 246 × 293

No other sizes of this image found.

Visually similar images - Report images

Zach Dodds Olin B163 dodds@cs.hmc.edu

fan of low-level AI taker of low-quality pictures consumer of high-quantity coffee!

and not talented at selfies, either...

Introductions...

Image size: 246 × 293

No other sizes of this image found.

Visually similar images - Report images

Zach Dodds Olin B163 dodds@cs.hmc.edu

fan of low-level AI taker of low-quality pictures consumer of high-quantity coffee!

and not talented at selfies, either...

Winter break...

Zach Dodds Olin B163 dodds@cs.hmc.edu

fan of low-level AI

taker of low-quality pictures

consumer of high-quantity coffee! and Ethiopian cuisine...

Winter break...

Zach Dodds Olin B163 dodds@cs.hmc.edu

fan of low-level AI

taker of low-quality pictures consumer of high-quantity coffee! and Ethiopian cuisine...

trying out technologies/projects of interest

after early November, *if you'd like*

Alums: What do you feel you *didn't get* @ HMC CS?

Optional open-ended project

- worth up to +10 problems ~ also, an opportunity...
- ... to try out / get familiar with / learn about a technology, domain, library, or project

that might be one of your answers to the question, *What do you feel you didn't learn @ HMC?*

Optional open-ended project

- worth up to +10 problems ~ also, an opportunity...
- ... to try out / get familiar with / learn about a technology, domain, library, or project

(0) decide what you'd like to learn...

(1) find a reasonable resource for it...

(2) create a project and a write-up...

(3) time expectation: 3 hours per week

that might be one of your answers to the question, What do you feel you didn't learn @ HMC?

Optional open-ended project

- worth up to +10 problems ~ also, an opportunity...
- ... to try out / get familiar with / learn about a technology, domain, library, or project

that might be one of your answers to the question, *What do you feel you didn't learn @ HMC?*

Drawbacks?

• specific technologies should be avoided in the CS curriculum

I agree. Yet this one-unit course is too small to shift that balance...

• there's not enough support to make it work

True! I'm no expert at what you're working on, but here the goal's not expertise, but the "working on" ...

• too much time is required...!

3 good-faith hours per week + write-up == 12 problems

Drawbacks?

• specific technologies should be avoided in the CS curriculum

I agree. Yet this one-unit course is too small to shift that balance...

• there's not enough support to make it work

True! I'm no expert at what you're working on, but here the goal's not expertise, but the "working on" ...

• too much time is required...!

3 good-faith hours per week + write-up == 12 problems

Benefits?

• it never hurts to have an on-line portfolio of one or more of your projects...

John Grasel, Cris Cecka

• curricular support vs. expertise support

 helps the limitations of *DWIC* letters, because it's *unique + personalized*

"did well in class"

• sometimes the benefits *don't outweigh* the drawbacks

one unit!

Interested? To do by Feb. 3...

project proposal due 2-3 paragraphs:

- (0) Use the CS wiki (at least as a starting link)
- (1) Describe your overall project idea(s)
- (2) Describe your plan/resources
 - online tutorial or course?
 - do you have a "Hello, World!" version?
- (3) Document your time-spent
- (4) Check-in with me on Feb. 3 (or before...)

First project deliverable/demo:

then we'll repeat the process...

Due Tuesday, March 4.

Project Grading

Projects are graded in units of "problems"...

You can earn up to 10 problems for each project Here is the breakdown:

4 problems	good-faith 3 hrs/week	1-3 if less time of more intermitte	or nt
3 problems	weekly progress log, e.g.,	on CS wiki	1-2 if more sporadic
3 problems	results! ~ a reasonable de	eliverable	1-2 if it didn't come together

...exceptional results are welcome & recognized!

Examples from last term....

M (P (8) 🔤		
← → C 🔒 https://v	www.cs.hmc.edu/twiki/bin/view/Robotics/ProjectsPageForCS189Fall2013	@☆ =
Apps 📴 home 📴 cs5	🎬 cs60 🞬 ACM 🗋 RGBtoHSV 🚺 RPSLS 🗋 Summer2013 🎬 MyCS 🗋 RecDraw 🔱 ArrowEvader 🥐 PyVis 👔 DataNitro 🄞 importIO	» 📋 Other bookmarks
Robotics Web Robotics Web Home Changes Index	You are here: TWiki > Robotics Web > LinksToCheckInOn > ProjectsPageForCS189Fall2013 r14 - 11 Dec 2013 - 1 Projects: CS189 Fall 2013 Projects: CS189 Fall 2013	0:22:19 - EmmaDavis
Search	 Jean Sung: Django + create web application LinkToJeansProjectPageFall2013 May Lynn Forssen: Latex classes and packages LinkToMayLynnsProjectPageFall2013 Sidra Hussain: Evolvel Sidra SProjectPageFall2013 Justin Lim and Michael Fox : Machine Learning on Yelp Data set challenge JimMfoxProjectPageFall2013 Justin Lim and Michael Fox : Machine Learning on Yelp Data set challenge JimMfoxProjectPageFall2013 Alex Meliville : Socialite Web App Alex Meliville : Socialite Web App Alex Meliville : Socialite Web App AMelyilleProjectPageFall2013 Kevin Choi Project Page Mari Bennett: Apertium and Helsinki Finite-State Transducer Exploration/Extension MBennett: Apertium and Helsinki Finite-State Transducer Exploration/Extension Mtb://www.cs.hmc.edu/-cpruce/pp/projproposal.pdf Andrew Michaud: OpenGL platformer demo http://www.cs.hmc.edu/-cpruce/pp/projproposal.pdf Andy Russell, Renan Greca and Mauricio Molina: Project Page Wai Sing Wong : Reddit Bot Wai Sing Wong : Reddit Bot MaisingRedditBot2013 Jacob Bandes-Storch: Music practice application JBandesStorchProjectPageFall2013 	

Problems!

practicing algorithmic/programming skills

The **cowqueue** problem

Input

ABACB AABC Cow label sequence #1 (s1) Cow label sequence #2 (s2)

Output

3

The number of the *longest common subsequence* bewteen s1 and s2.

> In this case, the longest common subsequence is **ABC** or **AAB** though the problem doesn't require knowing these.

LCS problem

$$s1 = "ABACB"$$
 Input $s2 = "AABC"$
 \uparrow
 $i1$ $i2$

(1) Write a solution recursively.(2) Then, don't make any call more than once!

LCS problem

$$s1 = "ABACB"$$
 Input $s2 = "AABC"$
 \uparrow
 $i1$ $i2$

length of longest common subsequence of s1 up to i1 and s2 up to i2

LCS(i1, i2):

else: return max(LCS(i1-1,i2), LCS(i1,i2-1))

otherwise, lose both ends and take the better result

LCS code

```
s1 = "ABACB" Input s2 = "AABC"

\uparrow

i1 i2
```

```
O cowqueue_recursive.py - /Users/zdodds/Desktop/cowqueue_recursive.py
```

```
import sys
sys.setrecursionlimit(100000)
def LCS( i1, i2 ):
 """ classic LCS """
 if i1 < 0 or i2 < 0: return 0
 if s1[i1] == s2[i2]:
     return 1 + LCS(i1 - 1, i2 - 1)
 else:
     return max(LCS(i1 - 1, i2), LCS(i1, i2 - 1))
if name == " main ":
 s1 = raw input(); L1 = len(s1)
 s2 = raw input(); L2 = len(s2)
 result = LCS(L1-1, L2-1)
 print result
```

practicing algorithmic/programming skills

What

Algorithm analysis and insight Program design and implementation

optimizing *coding* time, as well as *running* time

ACM programming contest

Hands-on practice with algorithms and techniques

Familiarizing with your choice of language/libraries

Why

Research/prototype programming

Technical interview questions...

Unofficial course name: CS -70

part – but only *part* – of the motivation for CS 189:

ACM programming contest

Southern California Region

TERADATA. | additional support

IC2NET | additional support

2013 Contest: 09-Nov at Riverside Community College Registration opens 12-Sep-2013.

Scoreboard SoCal 2013 Contest

final standings

#	TEAM	S	CORE	PENALTIES	1 🔵	2 🔴	3 🔿	4 🔘	5 😑	6 💛	7 🔴	8 🔘	9 🔵	10 〇
1	USC Trojans	8	19:40:07	1	1 (00:27:25)	1 (03:13:40)	0	1 (02:26:11)	1 (01:11:15)	2 (04:50:02 + 00:20:00)	1 (04:38:29)	1 (01:48:00)	0	1 (00:45:05)
2	UCI constructors	7	16:22:17	1	1 (00:43:36)	0	0	1 (01:37:46)	1 (00:56:43)	1 (03:32:50)	1 (03:09:14)	1 (02:44:40)	0	2 (03:17:28 + 00:20:00)
3	Caltech A	6	09:54:23	1	1 (00:18:25)	1	0	1 (00:50:10)	1 (01:30:57)	5	2 (03:51:22 + 00:20:00)	1 (01:11:33)	0	1 (01:51:56)
4	Caltech B	6	13:13:25	3	1 (00:25:20)	1	0	1 (02:28:28)	1 (01:34:11)	2 (01:38:16 + 00:20:00)	1	1 (02:09:09)	0	3 (03:58:01 + 00:40:00)
5	CPSLO - The NULL Terminators	6	17:29:06	2	1 (02:11:34)	0	0	1 (00:54:31)	1 (01:02:29)	3 (04:27:51 + 00:40:00)	1 (04:43:29)	0	0	1 (03:29:12)
6	UCLA Bruins	5	07:19:42	0	1 (02:06:22)	0	0	1 (01:08:30)	1 (00:37:04)	1 (02:39:49)	0	1	0	1 (00:47:57)
7	USC Cardinal	5	09:01:56	2	1 (01:11:44)	0	0	1 (00:25:23)	1 (01:09:48)	3 (04:17:21 + 00:40:00)	0	1	0	1 (01:17:40)
8	UCSD - Load, Spin, Pull	5	09:52:08	1	1 (02:06:50)	0	0	1 (00:52:11)	1 (01:11:15)	0	2 (04:54:43 + 00:20:00)	0	0	1 (00:27:09)
9	HMC Escher	5	10:25:49	0	1 (02:47:54)	0	0	1 (01:01:56)	1 (00:50:06)	0	1	1 (03:21:52)	0	1 (02:24:01)
10	HMC Hayden	5	11:06:09	2	1 (02:16:54)	0	0	1 (00:37:02)	1 (01:09:38)	3 (03:46:47 + 00:40:00)	0	1	0	1 (02:35:48)
11	UCLA Gold	4	06:06:13	1	2 (00:50:33 + 00:20:00)	0	0	1 (01:38:46)	1 (02:06:20)	2	0	1	0	1 (01:10:34)
12	Pomona 47	4	07:57:36	2	1 (01:06:45)	0	0	1 (00:52:49)	3 (02:51:40 + 00:40:00)	0	0	0	0	1 (02:26:22)
13	UCSD - scissors	4	08:14:54	0	1 (02:41:37)	0	0	1 (01:22:46)	1 (01:44:18)	0	0	1	0	1 (02:26:13)
14	SBCC One	4	09:17:46	1	1 (00:56:40)	0	0	1 (01:01:08)	1 (03:25:27)	1	0	2	0	2 (03:34:31 + 00:20:00)
15	UCSB - Alpha	4	09:18:05	1	1 (00:47:35)	0	0	1 (01:24:05)	1 (02:07:21)	1	1	2	0	2 (04:39:04 + 00:20:00)
16	Caltech C	4	10:43:46	2	1 (02:19:00)	2	0	1 (01:25:08)	1 (02:02:30)	0	0	0	0	3 (04:17:08 + 00:40:00)
17	HMC Hammer	4	11:13:16	0	1 (01:38:38)	0	0	1 (02:16:10)	2	1 (03:28:49)	0	0	0	1 (03:49:39)
18	USC Gold	4	11:27:02	2	1 (00:27:02)	0	0	1 (04:54:31)	1 (01:21:19)	0	0	0	0	3 (04:04:10 + 00:40:00)

2012-13 Final Standings

Rank	Team ID	Team Name	Solved	Penalties	Score
1	acm170	USC Trojans	9	11	24:59:34
2	acm107	Caltech A	8	3	17:25:48
3 4 5	acm151 acm122 acm124	UCLA Flyaway UCSD Load, Spin, Pu UCSD kamehb	ull 6 6	2 0 5	7:23:47 10:31:29 11:49:16
6 7 8 9	acm121 acm168 acm152 acm157	HMC Squared USC Cardinal UCLA HeroesIII UCI constructors	5 5 5 5	0 < 2 2 3	9 I approve of this name! 10.25.07 11:38:56 11:54:00
10	acm123	UCSD bumaga	4	1	5:20:39
11	acm109	Caltech D	4	3	7:43:22
12	acm119	HMC J	4	4	8:02:39
13	acm154	UCSB alpha	4	2	8:47:20
14	acm106	Caltech 1	4	3	9:05:09
15	acm158	UCI instances	4	2	9:27:40
16	acm111	CSUF-B	dentifiers 4	1	9:40:47
17	acm117	CSULB Undeclared Ic	4	2	10:22:22
18	acm108	Caltech C	4	3	10:39:47
19	acm118	HMC Escher	4	1	10:46:15
20	acm129	UCR Raphael	4	0	11:37:09

USC advanced to the finals in 2011, 2012, and 2013...

 9
 HRC Hammer
 2
 3
 3:54:36
 CLU Every Consistence
 0
 0
 0:00000

 10
 UC Tirebiters
 2
 2
 3:56:32
 CPP Furloughs:
 0
 0
 0:00000

 11
 UCLA True Bruins
 2
 0
 3:56:32
 CPP Furloughs:
 0
 0
 0:00000

 12
 HRC Eacher
 2
 2
 4:001:26
 CSUP
 0
 0
 0:00000

 13
 HRC Alien
 2
 3
 5:24:14
 CSUDH Torol
 0
 0
 0:00000

 14
 URLV Bailmer Peak
 2
 7
 16:26:44
 CSULI
 0
 0
 0:00000

 15
 UCLA IDK
 2
 2
 7:16:13
 CSUCI
 1
 0
 0
 0:00000

 16
 USC Cardinal
 2
 5
 7:29:132
 CSUCI
 0
 0
 0:00000

 19
 UCSS GoedelEscherBach
 1
 0
 0:23:42
 MtsacRed
 0
 0
 0:00000

 20
 CFP HiMi++
 1
 0
 0:35:12
 NESACPola
 0
 0</

CUP

1000

1 1 1 1 4 1

7

and the second se

active watching!

Details

Problems are worth 150% if

• You solve them during the week they are assigned

• ... which extends to the start of the next ACM class

Language Choice?

Any *reasonable* language is OK; keep in mind that the ACM competition allows only Java, C, and C++.

Other "standard" languages for CS189 (so far):

C#, Python, Ruby, Perl, PHP, Haskell, Lua, Clojure, Lisp

you can work in teams of up to 3 people ~ must share the work equally

additions will also be considered...

Grading

CS 189 is graded by default ... (it's possible to take it P/F, too)

though not for CS elective credit...

Coding Guidelines

- problems can be done *any time* during the semester; projects have deadlines...
- discussion of algorithms always OK
- coding should be *within teams of 1-3*
- you may use any references *except* others' solutions or partial solutions...
- use /cs/ACM/acmSubmit <file> to submit on knuth

# Solved (out of 42)	Assessment
43+	pretty much impossible!
28-42	A
23-27	A -
20-22	в+
17-19	в
14-16	В-
9-13	C range
≤ 9	< D range or less

Max, Max, and Carl ~ *dynamic programmers*

Dynamic Programming

Many problems can be solved recursively...

... but with lots of *repeated* recursive calls!

These problems can be solved *quickly* with

- (1) Memoization, or
- (2) **Dynamic programming**

Idea: *just don't repeat the repeated calls!*

The **cowqueue** problem

Input

ABACB AABC Cow label sequence #1 (s1) Cow label sequence #2 (s2)

Output

3

The number of the *longest common subsequence* bewteen s1 and s2.

> In this case, the longest common subsequence is **ABC** or **AAB** though the problem doesn't require knowing these.

LCS problem

$$s1 = "ABACB"$$
 Input $s2 = "AABC"$
 \uparrow
 $i1$ $i2$

(1) Write a solution recursively.(2) Then, don't make any call more than once!

LCS problem

$$s1 = "ABACB"$$
 Input $s2 = "AABC"$
 \uparrow
 $i1$ $i2$

length of longest common subsequence of s1 up to i1 and s2 up to i2

LCS(i1, i2):

else: return max(LCS(i1-1,i2), LCS(i1,i2-1))

otherwise, lose both ends and take the better result

LCS code

```
s1 = "ABACB" Input s2 = "AABC"

\uparrow

i1 i2
```

```
O cowqueue_recursive.py - /Users/zdodds/Desktop/cowqueue_recursive.py
```

```
import sys
sys.setrecursionlimit(100000)
def LCS( i1, i2 ):
 """ classic LCS """
 if i1 < 0 or i2 < 0: return 0
 if s1[i1] == s2[i2]:
     return 1 + LCS(i1 - 1, i2 - 1)
 else:
     return max(LCS(i1 - 1, i2), LCS(i1, i2 - 1))
if name == " main ":
 s1 = raw input(); L1 = len(s1)
 s2 = raw input(); L2 = len(s2)
 result = LCS(L1-1, L2-1)
 print result
```

s1 = "ABACB"	Input	s2 = "AABC"
1	P ••••	\uparrow
i1		i2

		string2 s2[:i2]								
		\otimes	A	AA	AAB	AABC				
string1 s1[:i1]	\otimes									
	A									
	AB									
	ABA									
	ABAC									
	ABACB					LCS(4,3)				

s1 = "ABACB"	Input	s2 = "AABC"
\uparrow	p ••••	\uparrow
i1		i2

		string2 s2[:i2]								
		\otimes	A	AA	AAB	AABC				
	\otimes									
[1]	A									
s1[:	AB									
string1	ABA									
	ABAC					LCS(3,3)				
	ABACB				LCS(4,2) <	– LCS(4,3)				

s1 = "ABACB" Input s2 = "AABC" \uparrow i1 i2 \leftarrow

		string2 s2[:i2]								
		\otimes	A	AA	AAB	AABC				
	\otimes									
i1]	A									
s1[:	AB									
string1	ABA				LCS(2,2)					
	ABAC			LCS(3,1)		<pre> LCS(3,3) </pre>				
	ABACB				` LCS(4,2) ←	– LCS(4,3)				

s1 = "ABACB" Input s2 = "AABC" \uparrow i1 i2 \leftarrow

		string2 s2[:i2]								
		\otimes	A	AA	AAB	AABC				
	\otimes									
i1]	A									
s1[:	AB				LCS(1,2) ↑					
string1	ABA			LCS(2,1)← ↑	- LCS(2,2)					
	ABAC		LCS(3,0) <	– LCS(3,1)		`LCS(3,3)				
	ABACB				` LCS(4,2) ←	– LCS(4,3)				

s1 = "ABACB" Input s2 = "AABC" \uparrow i1 i2 \leftarrow

	string2 s2[:i2]							
		\otimes	A	AA	AAB	AABC		
	\otimes	LCS(-1,-1)	LCS(-1,0)	_				
i1]	A		、 LCS(0,0) ^	`LCS(0,1) ⊼				
s1[:	AB	LCS(1,-1)←	- LCS(1,0)		、 LCS(1,2) ↑			
string1	ABA		` LCS(2,0) ↑	` 	- LCS(2,2)			
	ABAC	LCS(3,-1)←	– LCS(3,0) <	– LCS(3,1)		LCS(3,3)		
	ABACB				` LCS(4,2) ←	– LCS(4,3)		

Put results in a dictionary. Look up instead of recomputing.

```
# This is the "memoizing" dictionary of all distinct calls.
# Each distinct call is made only once and stored here.
D = \{\}
def LCS( i1, i2 ):
 """ classic LCS """
 if i1 < 0 or i2 < 0: return 0
                                        # base cases
 if (i1,i2) in D: return D[ (i1,i2) ] # already done!
 if s1[i1] == s2[i2]:
    result = 1 + LCS(i1-1, i2-1)
 else:
     result = \max(LCS(i1-1, i2), LCS(i1, i2-1))
                                        # memo-ize it!
 D[(i1,i2)] = result
                                        # before returning
 return result
if name == " main ":
 s1 = raw input(); L1 = len(s1)
 s2 = raw input(); L2 = len(s2)
 result = LCS(L1-1, L2-1)
print result
```

Python *function decorators*

import sys; sys.setrecursionlimit(100000)

```
class memoize:
    def __init__(self, function):
        self.function = function
        self.memoized = {}
    def __call__(self, *args):
        try:
        return self.memoized[args]
    except KeyError:
        self.memoized[args] = self.function(*args)
        return self.memoized[args]
```

Python's "function decorator" syntax!def LCS(i1, i2): # slow, recursive f'n here

LCS, DP'ed Compute the table of results, bottom-up!

		s1 = "A	BACB" Iı ↑ i1	nput s	2 = "AABC' ↑ i2	T		
	string2 s2[:i2]							
	\otimes	\otimes	A	AA	AAB	AABC		
[]]	A							
s1[:j	AB							
ing1	ABA							
stri	ABAC							
	ABACB							

LCS, DP'ed Compute the table of results, bottom-up!

"AABC" s1 = "ABACB"s2 = Input i2 i1 string2 s2[:i2] \bigcirc Α AA AAB AABC \bigcirc main ": if == " name s1 = raw input(); L1 = len(s1)s2 = raw input(); L2 = len(s2)Α DP = [0] * (L2+2) for i1 in range (L1+2)] AB for i1 in range(L1): for i2 in range(L2): if s1[i1] == s2[i2]: DP[i1][i2] = 1 + DP[i1-1][i2-1] else: DP[i1][i2] = max(DP[i1][i2-1], DP[i1-1][i2]) ABA result = DP[L1-1][L2-1]ABAC #for row in DP: # print row print result ABACB

string1 s1[:i1]

This week's problems

Notes, starting code, slides, etc. ...

• Lecture 1, cowqueue code examples (zip)

Problems and progress

		NAMES \ problems	0-smount	0-lazy	0-elevator	0-cowqueue	0-cowcash	0-ave	Total	Name	
		dodds	Not Yet	Not Yet	Not Yet	1.5 Sep 9 16:19:24 .py	Not Yet	Not Yet	1.5	dodds	
N	New to CS189?		Start w	ith thi	is proble	m!					

Part of the challenge is deciding *which* problem to tackle...

Some of this week's problems have a "dynamic programming" theme...

Guest lectures...

count as 1.5 problems

Joshua Eckroth

PhD candidate majoring in Artificial Intelligence, minoring in Cognitive Science and Mathematical Logic, at The Ohio State University, Department of Computer Science and Engineering.

Research Interests

My major advisor is Dr. John R. Josephson.

My minor advisors are Prof. Neil Tennant (Cognitive Science) and Prof. Harvey Friedman (Mathematical Logic).

My research addresses the question, how can bounded, situated, autonomous cognitive agents enhance their performance, i.e., think faster and smarter? My approach is to explore how a self-reflective metareasoning component can enable the agent to "think fast and loose" in the usual case, while monitoring its performance, but when confused, focus in on possible mistakes and determine the appropriate corrections.

We have a guest lecture next week by Joshua Eckroth of Ohio State. Join in & sign in!

many job candidates...

diner ?	diner ?	diner ?	diner ?	diner 2
Sophs	JRs	SRs	POM-CMC- SCR-PTZ	other
Jotto!		A word-g similar to		

This term's first class to guess another's word earns 1 problem... This term's last class to have its word guessed earns 1 problem...