
Welcome to Programming Practicum

“Putting the C into CS”

You aren’t here

writing clinic

reports

clinic liaison

phone call

coding

chunky

strings

rebooting

knuth (or

turing

or…)

installing

Debian 3.1

the dumpster

University of

St. Petersburg

On the 405, in traffic, being chased

by police (and TV) helicopters.

Mailing something at the

Claremont Post Office

Waiting for the snow enveloping

you on Route 5 N to melt

Krispy

Kreme’s drive-

through

Teaching Honors

English for Janice

Barbee at Pomona

High School

Worldcom

Headquarters

Leading a Gray Davis /

Gary Coleman / Arnold “T-800”
Schwarzenegger

gubernatorial fundraiser

exploring

martian soil

Being dragged off-course

18 miles into a marathon

race by a crazed spectator

Massey University

Palmerston North, NZ

Pittsburgh

Driving N on the Dalton Highway… (though it feels like it!)

Victorville, for

DARPA's Urban

Granc Challenge

Waiting in line to

vote in the Florida

primaries…

Denver, CO or

Minneapolis, MN

DC for the

inauguration

On fire just

W of here!!

Harbin (dream)!

Harbin (reality)!

in Sharm-el-

Sheikh, Egypt!

Not waiting in line in

a FL themepark...

East Berlin

Traveling

through time

and space on

the Tardis

The MLK memorial

Introductions…!

Zach Dodds

dodds@cs.hmc.edu

Office Olin B163

Email

taker of low-quality photos

fan of low-level AI

not afraid of stuffed animals!

Starbucks triumph-er!

and not good at selfies…

Introductions...

and not talented at selfies, either…

dodds@cs.hmc.edu

Olin B163

Zach Dodds

consumer of high-quantity coffee!

fan of low-level AI

taker of low-quality pictures

Introductions...

dodds@cs.hmc.edu

Olin B163

Zach Dodds

consumer of high-quantity coffee!

fan of low-level AI

taker of low-quality pictures

and not talented at selfies, either…

Winter break…

dodds@cs.hmc.edu

Olin B163

Zach Dodds

consumer of high-quantity coffee!

fan of low-level AI

taker of low-quality pictures

and Ethiopian cuisine…

tattoo-matching

Winter break…

dodds@cs.hmc.edu

Olin B163

Zach Dodds

consumer of high-quantity coffee!

fan of low-level AI

taker of low-quality pictures

and Ethiopian cuisine…

tattoo-matching

What is this course about?

practicing algorithmic/programming skills

trying out technologies/projects of interest

~ 80-90%

~ 80-90%

problems part

projects part

the balance is up to you…

guest talks on cutting-edge research

presentations part

ditto

~ 42%

Paul Scott

Josh Klontz

Josh Ehrlich Moira Tagle

Will Scott

trying out technologies/projects of interest

after early November, if you'd like

Karen Gragg

Alums: What do you feel you didn't get @ HMC CS?

Paul Scott

Josh Klontz

Josh Ehrlich Moira Tagle

Karen Gragg
Will Scott

trying out technologies/projects of interest

Alums: What do you feel you didn't get @ HMC CS?

Optional open-ended project

• worth up to +10 problems ~ also, an opportunity…

• … to try out / get familiar with / learn about a

technology, domain, library, or project

that might be one of your answers to the question,

What do you feel you didn't learn @ HMC?

Optional open-ended project

• worth up to +10 problems ~ also, an opportunity…

• … to try out / get familiar with / learn about a

technology, domain, library, or project

that might be one of your answers to the question,

What do you feel you didn't learn @ HMC?

(0) decide what you'd like to learn…

(1) find a reasonable resource for it…

(2) create a project and a write-up…

(3) time expectation: 3 hours per week

Plan:

Optional open-ended project

that might be one of your answers to the question,

What do you feel you didn't learn @ HMC?

OpenCV

Qt

other UI library

game dev. library

console library?

hardware project

requiring programming

something you've

wanted to do but

you wouldn't

otherwise get to

web basics:

HTML/CSS/Jav

ascript/JQuery

"Minecraft"

technology?

framework,

e.g., web

framework

(Django et al.)

en.wikipedia.org/wiki/

Comparison_of_web_

application_frameworks

• worth up to +10 problems ~ also, an opportunity…

• … to try out / get familiar with / learn about a

technology, domain, library, or project

Drawbacks?

• specific technologies should be

avoided in the CS curriculum

I agree. Yet this one-unit

course is too small to shift

that balance...

• there's not enough support to

make it work

True! I'm no expert at what

you're working on, but here

the goal's not expertise, but

the "working on" …

• too much time is required…!

3 good-faith hours per week +

write-up == 12 problems

Drawbacks? Benefits?

• it never hurts to have an

on-line portfolio of one or

more of your projects...

• helps the limitations of

DWIC letters, because it's

unique + personalized

• curricular support vs.

expertise support

• sometimes the benefits don't

outweigh the drawbacks

one unit!

John Grasel, Cris Cecka

"did well in class"

• specific technologies should be

avoided in the CS curriculum

I agree. Yet this one-unit

course is too small to shift

that balance...

• there's not enough support to

make it work

True! I'm no expert at what

you're working on, but here

the goal's not expertise, but

the "working on" …

• too much time is required…!

3 good-faith hours per week +

write-up == 12 problems

Interested? To do by Feb. 3…

project proposal due

2-3 paragraphs:

(0) Use the CS wiki (at least as a starting link)

(1) Describe your overall project idea(s)

(2) Describe your plan/resources

• online tutorial or course?

• do you have a "Hello, World!" version?

(3) Document your time-spent

(4) Check-in with me on Feb. 3 (or before…)

First project deliverable/demo:

Due Tuesday, March 4.

Project Grading

Projects are graded in units of "problems"…

You can earn up to 10 problems for each project

Here is the breakdown:

good-faith 3 hrs/week

weekly progress log, e.g., on CS wiki

results! ~ a reasonable deliverable

4 problems

3 problems
1-2 if more

sporadic

1-3 if less time or

more intermittent

3 problems
1-2 if it didn't

come together

…exceptional results are welcome & recognized!

Examples from last term….

What is this course about?

practicing algorithmic/programming skills

trying out technologies/projects of interest

~ 80-90%

~ 80-90%

problems part

projects part

the balance is up to you…

guest talks on cutting-edge research

presentations part

ditto

~ 42%

Problems!

Bessie!

practicing algorithmic/programming skills

The cowqueue problem

ABACB

AABC
The number of the longest

common subsequence

bewteen s1 and s2.

Input

Cow label sequence #2 (s2)

3

Output

Cow label sequence #1 (s1)

In this case, the longest

common subsequence is

ABC or AAB

though the problem doesn't

require knowing these.

Output LCS(i1, i2) = length of longest common subsequence

of s1 up to i1 and s2 up to i2

(1) Write a solution recursively.

(2) Then, don't make any call more than once!
Strategy

LCS problem

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS problem

LCS(i1, i2):
length of longest common subsequence

of s1 up to i1 and s2 up to i2

if s1[i1] == s2[i2]: return 1 + LCS(i1-1, i2-1)

else: return max(LCS(i1-1, i2), LCS(i1, i2-1))

if the same character, count it!

otherwise, lose both ends and take the better result

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS code

s2 = "AABC"s1 = "ABACB"

i2i1

Input

Algorithm analysis and insight

Program design and implementation

optimizing coding time,

as well as running time

ACM programming contest

What

Why

Research/prototype programming

Hands-on practice with algorithms and techniques

Unofficial course name: CS -70

Familiarizing with your choice of language/libraries
"reasonable"

Technical interview questions…

practicing algorithmic/programming skills

ACM programming contest

part – but only part – of the motivation for CS 189:

USC advanced to the finals in 2011, 2012, and 2013...

I approve of

this name!

Fluxx…

active

watching!

active

watching!

active

watching!

Course webpage

A few references

slides, code, administrative info

problem statements and sample data

problems you’ve solved

total!

Details

Problems are worth 150% if

• You solve them during the week they are assigned

• … which extends to the start of the next ACM class

Other "standard" languages for CS189 (so far):

you can work in teams

of up to 3 people ~ must

share the work equally

additions will also be considered…

C#, Python, Ruby, Perl, PHP, Haskell, Lua, Clojure, Lisp

Language Choice?

Any reasonable language is OK; keep

in mind that the ACM competition

allows only Java, C, and C++.

Grading

CS 189 is graded by default ... (it's possible to take it P/F, too)

Coding Guidelines

• problems can be done any time during the

semester; projects have deadlines…

• discussion of algorithms always OK

• coding should be within teams of 1-3

• you may use any references except others'

solutions or partial solutions…

• use /cs/ACM/acmSubmit <file> to submit

on knuth

though not for CS elective credit…

Max, Max, and Carl ~

dynamic programmers

Dynamic Programming

Many problems can be solved recursively...

These problems can be solved quickly with

(1) Memoization, or

(2) Dynamic programming

… but with lots of repeated recursive calls!

Idea: just don't repeat the repeated calls!

The cowqueue problem

ABACB

AABC
The number of the longest

common subsequence

bewteen s1 and s2.

Input

Cow label sequence #2 (s2)

3

Output

Cow label sequence #1 (s1)

In this case, the longest

common subsequence is

ABC or AAB

though the problem doesn't

require knowing these.

Output LCS(i1, i2) = length of longest common subsequence

of s1 up to i1 and s2 up to i2

(1) Write a solution recursively.

(2) Then, don't make any call more than once!
Strategy

LCS problem

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS problem

LCS(i1, i2):
length of longest common subsequence

of s1 up to i1 and s2 up to i2

if s1[i1] == s2[i2]: return 1 + LCS(i1-1, i2-1)

else: return max(LCS(i1-1, i2), LCS(i1, i2-1))

if the same character, count it!

otherwise, lose both ends and take the better result

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS code

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

ABACB

string2 s2[:i2]

LCS(4,3)

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS(4,3)ABACB

LCS(3,3)

LCS(4,2)

string2 s2[:i2]

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS(4,3)ABACB

LCS(3,3)

LCS(4,2)

string2 s2[:i2]

LCS(2,2)

LCS(3,1)

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS(4,3)ABACB

LCS(3,3)

LCS(4,2)

string2 s2[:i2]

LCS(2,2)

LCS(3,1)

LCS(1,2)

LCS(2,1)

LCS(3,0)

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS(4,3)ABACB

LCS(3,3)

LCS(4,2)

string2 s2[:i2]

LCS(2,2)

LCS(3,1)

LCS(1,2)

LCS(2,1)

LCS(3,0)

LCS(0,1)

LCS(1,0)

LCS(2,0)

LCS(3,-1)

LCS(0,0)

LCS(-1,-1) LCS(-1,0)

LCS(1,-1)

LCS idea

AABCAABAAA����

A

AB

����

ABA

ABACst
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

LCS(4,3)ABACB

LCS(3,3)

LCS(4,2)

string2 s2[:i2]

LCS(2,2)

LCS(3,1)

LCS(1,2)

LCS(2,1)

LCS(3,0)

LCS(0,1)

LCS(1,0)

LCS(2,0)

LCS(3,-1)

LCS(0,0)

LCS(-1,-1) LCS(-1,0)

LCS(1,-1)
Collisions!

LCS, memoized
Put results in a dictionary.

Look up instead of recomputing.

Python function decorators

import sys; sys.setrecursionlimit(100000)

class memoize:

def __init__(self, function):

self.function = function

self.memoized = {}

def __call__(self, *args):

try:

return self.memoized[args]

except KeyError:

self.memoized[args] = self.function(*args)

return self.memoized[args]

@memoize

def LCS(i1, i2): # slow, recursive f'n here

Python's "function decorator" syntax!

LCS, DP'ed Compute the table of results, bottom-up!

AABCAABAAA����

A

AB

����

ABA

ABAC

string2 s2[:i2]

st
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

ABACB

LCS, DP'ed Compute the table of results, bottom-up!

AABCAABAAA����

A

AB

����

ABA

ABAC

string2 s2[:i2]

st
ri

n
g

1

s1
[:

i1
]

s2 = "AABC"s1 = "ABACB"

i2i1

Input

ABACB

This week's problems

Some of this week's problems have a "dynamic programming" theme...

Part of the challenge is deciding which problem to tackle...

New to CS189? Start with this problem!

What is this course about?

practicing algorithmic/programming skills

trying out technologies/projects of interest

~ 80-90%

~ 80-90%

problems part

projects part

the balance is up to you…

guest talks on cutting-edge research

presentations part

ditto

~ 42%

Guest lectures…

We have a guest lecture next week by Joshua

Eckroth of Ohio State. Join in & sign in!

count as 1.5 problems

Jotto!

JRs SRs other

A word-guessing game

similar to mastermind…

diner ?

This term's first class to guess another's word earns 1 problem...

diner ? diner 2

This term's last class to have its word guessed earns 1 problem...

Sophs

diner ?

POM-CMC-

SCR-PTZ

diner ?

