
CS 189 today

Open-ended project option…

A few more problems… … and one more algorithm!

Jotto game finale?!

Rest of the term

This is our last meeting!

You may submit problems up until graduation…

Unless you're a senior – then you have until 5/9

JRs SRs other

diner 1

This term's first class to guess another's word earns 1 problem...

diner 0 diner 2

This term's last class to have its word guessed earns 1 problem...

Sophs

diner 1

POM-CMC-

SCR-PTZ

diner 1 12
1

bloat 0 bloat 1 bloat 1bloat 1
bloat 3

10

gumbo 0 gumbo 2 gumbo 0gumbo 0
gumbo 0

00

Jotto… so far!

Jotto so far!

This term's first class to guess another's word earns 1 problem...

This term's last class to have its word guessed earns 1 problem...

Last couple of weeks… (!)

presenting…

Stanford…
himself!?

CS tourism!

Google

Earlier conference ~ poster

session…

Earlier conference ~ poster

session…

Zooming

in…

Attending

posters…

I think it's the 28% of the time that the

instructor goes on irrelevant tangents about

recent travels!!

Optional open-ended project: April

(0) decide what you'd like to learn…

(1) find a reasonable resource for it…

(2) create a project and a write-up…

(3) time expectation: 3 hours per week

Plan:

• worth up to +8 problems ~ also, an opportunity…

• … to try out / get familiar with / learn about a

technology, domain, library, or project

Ford-Fulkerson algorithm

What's the maximum flow possible,

from src to sink?

s

B

E

D

C
13

t

16

10 4 9

12

14

7

20

4
source

capacity

Max Flow !

sink or target

s

B

E

D

C
13

s

B

C

D

E

FROM

s B C D E

t

- 16 13 - -

- - 10 12 -

- 4 - - 14

- - 9 - -

- - - 7 -

-

-

-

20

4

- - - - - -t

t

16

10 4 9

12

14

7

20

4

TO

Capacity Graph

source

sink

(Step #1) Use depth- or breadth-first

search to find any path from s to t.

Max Flow

What's left ?

s

B

E

D

C
13

s

B

C

D

E

s B C D E

t

- 16 13 - -

- - 10 12 -

- 4 - - 14

- - 9 - -

- - - 7 -

-

-

-

20

4

- - - - - -t

t

4/16

10 4 9

0/12

14

7

8/20

4
source

sink

(Step #2) Compute RESIDUAL graph

Max Flow

What's left… s

B

C

D

E

s B C D E

- 4 13 - -

12 - 10 0 -

- 4 - - 14

- 12 9 - -

- - - 7 -

-

-

-

8

4

- - - 12 - -t

t

Residual capacities.

and the red edges?

Backwards capacities!

12 12

12

s

B

E

D

C
13

s

B

C

D

E

s B C D E

t

- 16 13 - -

- - 10 12 -

- 4 - - 14

- - 9 - -

- - - 7 -

-

-

-

20

4

- - - - - -t

t

4

10 4 9

0

14

7

8

4
source

sink

(Step #3) Repeat until no path exists…

Max Flow

s

B

C

D

E

s B C D E

- 4 13 - -

12 - 10 0 -

- 4 - - 14

- 12 9 - -

- - - 7 -

-

-

-

8

4

- - - 12 - -t

t

12 12

12

Residual capacities.

Backwards capacities.

B

E

D

C
12/13

11/16

0/10 1/4 0/9

12/12

11/14

7/7

19/20

4/4

max flow: 23

Max Flow

s
source

t

sink

(Step #3) Repeat until no path exists…

(Step #2) Compute RESIDUAL graph

(Step #1) Use depth- or breadth-first search to find any path from s to t.

Python…

if __name__ == "__main__":

make a capacity graph

node A B C D E F

C = [[00, 16, 13, 00, 00, 00], # A

[00, 00, 10, 12, 00, 00], # B

[00, 04, 00, 00, 14, 00], # C

[00, 00, 9, 00, 00, 20], # D

[00, 00, 00, 7, 00, 4], # E

[00, 00, 00, 00, 00, 00]] # F

print "C is", C

source = 0 # A

sink = 5 # F

max_flow_value = max_flow(C, source, sink)

print "max_flow_value is", max_flow_value

Linked at the ACM website by the slides…

def max_flow(C, source, sink):

n = len(C) # C is the capacity matrix

F = [[0] * n for i in range(n)] # F is the flow matrix

residual capacity from u to v is C[u][v] - F[u][v]

while True:

path = BFS(C, F, source, sink)

if not path: break # no path - we're done!

find the path's flow, that is, the "bottleneck"

edges = [C[u][v]-F[u][v] for u,v in path]

path_flow = min(edges)

print "Augmenting by", path_flow

for u,v in path: # traverse path to update flow

F[u][v] += path_flow # forward edge up

F[v][u] -= path_flow # backward edge down

return sum([F[source][i] for i in range(n)]) # out from source

edmonds_karp algorithmPython…

def BFS(C, F, source, sink):

queue = [source] # the BFS queue

paths = {source: []} # stores 1 path per graph node

while queue:

u = queue.pop(0) # next node to explore (expand)

for v in range(len(C)): # for each possible next node

path from u to v? and not yet at v?

if C[u][v] - F[u][v] > 0 and v not in paths:

paths[v] = paths[u] + [(u,v)]

if v == sink:

return paths[v]

queue.append(v) # go from v in the future

return None

Python…

Is maxflow good

for anything else?

that is, beyond solving

maximum-flow problems...

we have four brides and six grooms

and some acceptable

possibilities ...

a bipartite graph

Matching!

we have four brides and six grooms

and some acceptable

possibilities ...

a maximal matching == no more matchings without rearrangement

Matching!

we have four brides and six grooms

Matching! and some acceptable

possibilities ...

a maximum matching == no rearrangements will yield more matchings

Maximum matching is max flow...

s
source

connect a source to

the left side...

all 1s

Maximum matching is max flow...

s
source

connect a source to

the left side...

make all

capacities = 1

1

1

1

1

1

1

all 1s

Maximum matching is max flow...

s
source

t

sink

connect a source to

the left side...

put a sink

on the right

make all

capacities = 1

1

1

1

1

1

1

all 1s
all 1s

what do the source and sink constraints ensure?

Max flow thought experiment...

s
source

t

sink

1

1

1

1

1

1

all 1s
all 1s

Suppose this is the flow so far (3 units):

Draw what happens in the next step of the max-flow algorithm!

how to get from maximal matching to maximum matching…

Max flow thought experiment...

s
source

t

sink

1

1

1

1

1

1

all 1s
all 1s

... the path it finds ...

What's going on here?

Max flow thought experiment...

s
source

t

sink

1

1

1

1

1

1

all 1s
all 1s

Done!

Maximum matching == 4

This week's problems…

dinner

dining

hardware

muddy

feeding

all can be done

with maxflow…

The challenge:

is often setting up the graph

Tools

4 4

42

189

10

1000

50 1 3

20 1 3

8 2

3 1 4

TasksHow do we use the results?

What is flowing?

There are four

tools available ~

at these costs

hammer

phone

coffee

laptop

There are four

tasks available ~

with these rewards

hammer

phone

coffee

PC

4 tools & 4 tasks

each task

requires

some tools

E4

PHP

coding

sleep

coding

hardware

Tools

4 4

42

189

10

1000

50 1 3

20 1 3

8 2

3 1 4

source

Tasks

sink

42

189

10

1000

costs

rewards

50

20

8

3

How do we use the results?

What is flowing?

There are four

tools available ~

at these costs

hammer

phone

coffee

laptop

There are four

tasks available ~

with these rewards

4 tools & 4 tasks

each task

requires

some tools

hammer

phone

coffee

PC

E4

PHP

coding

sleep

coding

hardware

Tools

4 4

42

189

10

1000

50 1 3

20 1 3

8 2

3 1 4

source

Tasks

sink

42

189

10

1000

costs

rewards

50

20

8

3

How do we use the results?

What is flowing?

hardware
There are four

tools available ~

at these costs

hammer

phone

coffee

laptop

There are four

tasks available ~

with these rewards

4 tools & 4 tasks

each task

requires

some tools

hammer

phone

coffee

PC

E4

PHP

coding

sleep

Netflix

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

4 5

4 5 3 5

3 5 2 6 4

4 5

4 5 3 5

3 5 2 6 3

0 0

number of teams Input

Output

number of tables

of people in

each team

can an assignment be

made without putting

teammates together?

1

0
capacity of

each table
again…

end…

3
5

2
6

4

tables with capacities

teams with sizes

5

3

4

5

seating assignments!

no teammates

dinner

s
source t

sink

How does maxflow help?

Team

Team

Team

Team

Table

Table

Table

Table

Table

4

3

6

5

2

5

5

3

4

fully

connected

with edge

weights of 1

How do these edge weights reflect the problem constraints?

dinner

What?!

Oddities from computer code…

original Wat talk…

PHP's

WAT!php > $x = "209";

php > $x++;

php > print($x); print("\n");

210

php –a

PHP's

WAT!php > $x = "209";

php > $x++;

php > print($x); print("\n");

210

php > $x = "may";

php > $x++;

php > print($x); print ("\n");

maz

php > $x++;

php > print($x); print ("\n");

mba

php –a

$x = "2d9";

Now, let's try it with…

Python's WAT! WAT?

1 == True

0 == False

(1==1)==1

0==(0==0)

0==0==0

1==1==1

(2==2)==2

Are these

or

?

0==(1==0)

April is the cruellest month…

T.S. EliotJotto guess!

Jotto so far!

This term's first class to guess another's word earns 1 problem...

This term's last class to have its word guessed earns 1 problem...

Guesses!?

