
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

DREAM: An Algorithm for Mitigating the Overhead of Robust Rescheduling

Jordan R. Abrahams, David A. Chu, Grace Diehl, Marina Knittel,
Judy Lin, William Lloyd, James C. Boerkoel Jr.

Harvey Mudd College
Claremont, California 91711

{jabrahams, dchulasso, gdiehl, mknittel, julin, wlloyd, boerkoel}@hmc.edu

Jeremy Frank
NASA Ames Research Center

Mountain View, California 94035
jeremy.d.frank@nasa.gov

Abstract
Generating and executing temporal plans is difficult in uncer-
tain environments. The current state-of-the-art algorithm for
probabilistic temporal networks maintains a high success rate
by rescheduling frequently as uncertain events are resolved,
but this approach involves substantial resource overhead due
to computing and communicating new schedules between
agents. Aggressive rescheduling could thus reduce overall
mission duration or success in situations where agents have
limited energy or computing power, and may not be feasible
when communication is limited. In this paper, we propose
new approaches for heuristically deciding when rescheduling
is most efficacious. We propose two compatible approaches,
Allowable Risk and Sufficient Change, that can be employed
in combination to compromise between the computation rate,
the communication rate, and success rate for new schedules.
We show empirically that both approaches allow us to grace-
fully trade success rate for lower computation and/or commu-
nication as compared to the state-of-the-art dynamic schedul-
ing algorithm.

Introduction
Computing and executing schedules in uncertain environ-
ments is an enabling technology for many applications,
such as cooperative teams of airborne, surface operating, or
underwater robots. For instance, unmanned aerial vehicles
(UAVs) have been used for missions ranging from collect-
ing data on wildlife to monitoring wildfires. More complex
missions have been proposed and, on small scales, demon-
strated using UAV teams that communicate with each other
over radio cross-link (e.g. Cesare et al.; Li et al. (2015;
2016)). Despite numerous advances in energy storage, bat-
tery life, and communication limitations can limit UAV mis-
sion duration and success (Quach et al. 2013). Conduct-
ing UAV missions, either independently or in teams, in the
presence of uncertainty, may require rescheduling. Comput-
ing and communicating these new schedules consumes en-
ergy and time, which could shorten the mission’s allowable
length.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper focuses on providing effective, resource-aware
control for applications involving uncertain environments
that may challenge the success of a mission. However, a pre-
defined schedule only uses the information that was avail-
able when it was created. As the mission progresses, uncer-
tain events (e.g. unexpectedly long task durations) may dis-
rupt the schedule. To exploit this new information, an algo-
rithm must reschedule in response to these uncertain events.

Dynamic execution algorithms reschedule in response to
new information to increase the chance that the mission suc-
ceeds. However, the current state of the art reschedules every
time an uncertain event is resolved, which means that agents
may frivolously compute and communicate a new sched-
ule despite minor performance gains. Frequent computation
and communication is problematic when agents may have
limited energy (e.g. batteries) or communication bandwidth,
and wise use of these resources is critical for mission suc-
cess. Unnecessary computation can waste energy, thereby
reducing the chance of mission success. Further, agent com-
munication can also be intermittent, slow, or unreliable; re-
ducing recomputation in such circumstances can increase
the risk that an agents’ constraints can’t be satisfied .

We address these challenges with two new strategies for
mitigating rescheduling overhead:

• Allowable Risk reschedules more often when schedules
are more risky, and less often when schedules are less
risky; and,

• Sufficient Change sends a new schedule only when it sig-
nificantly changes the predicted probability of success.

These strategies complement each other, and can be com-
bined into into a new algorithm we call the Dynamic Ro-
bust Execution Algorithm with Mitigation (DREAM). We
conduct an empirical evaluation of the trade-offs between
rescheduling frequency and success rate, showing that Suf-
ficient Change and Allowable Risk can gracefully trade re-
ductions in success rate for significant reductions in how of-
ten we need to compute and communicate new schedules.
These trade-offs are systematically demonstrated on two ex-
isting datasets with different characteristics.

3

Background
As a motivating example, consider a wildfire surveillance
coordination problem involving two UAVs, A and B. The
UAVs have a preliminary plan, and are controlled by a re-
mote base-station that can update the plan as the mission
proceeds. The agents must exchange infrared images that
they have already taken of the wildfire, but due to lim-
ited communication range, they must first travel from their
current respective locations to a pre-negotiated rendezvous
point. UAV A’s and UAV B’s navigation tasks take are nor-
mally distributed, and take on average 6 and 2 seconds, re-
spectively; the uncertainty is due to adverse flying condi-
tions and localization error. UAV B, which starts out closer
to the rendezvous point, must also take an image at the new
location before establishing a communication link. Acquir-
ing the image takes 2 seconds. Finally, to establish a suc-
cessful communication link, both UAVs have to be within
range of the same point within 2 seconds of each other. The
makespan constraint for this entire task is 10 seconds. As
shown in Figure 1, we can model and solve this problem
using Probabilistic Simple Temporal Networks (PSTNs),
which we define next.

Temporal Networks
A Simple Temporal Network (STN), S = (T,C), consists
of a set T = {t0, t1, . . . , tn}, where each timepoint ti rep-
resents the time at which a distinct event happens, and a set
C of binary constraints on events in T . These constraints are
of the form tj − ti ≤ bij , for some bij ∈ R (Dechter, Meiri,
and Pearl 1991). The two constraints between ti and tj can
be written concisely as tj − ti ∈ [−bji, bij]. STNs are often
encoded as directed graphs, where events are vertices and
constraints are edges. A schedule is an assignment of time
values to events such that all constraints are satisfied. An
STN is considered consistent if it has at least one schedule.
One drawback of STNs is that they cannot formally repre-
sent durational uncertainty between events. Since the physi-
cal world is inherently uncertain, accounting for uncertainty
in our representation allows it to better model reality.

Simple Temporal Network with Uncertainty (STNU) In
a Simple Temporal Network with Uncertainty (STNU) (Vidal
and Ghallab 1996), the set of constraints C is divided into
two disjoint subsets, called CR, the set of requirement con-
straints, and CC , the set of contingent constraints. Require-
ment constraints are identical to standard STN constraints.
A contingent constraint represents that the time that elapses
from ti to tj , given by βij ∈ [−bji, bij], is chosen by an
uncontrollable process and is unknown prior to execution.

An event whose incoming edges are all requirement edges
is known as an executable timepoint, because the agent exe-
cuting the schedule controls when it happens, or executes. A
timepoint with an incoming contingent edge is known as a
contingent timepoint, since it happens automatically some
time after the timepoint that initiates the contingent con-
straint. When a contingent timepoint happens it is said to be
received. We call the set of contingent timepoints TC , and
the set of executable timepoints TX .

t1
A

[0,10]

t2
A

t1
B

[0,10]

t2
B

[0,10]

[0,10]

t3
B

N(6,2)

N(2,1)
[2,2]

[-2,2] t4
B

[0,10]

[0,10]
[0,10]

t3
A

[0,10]

[0,10]

Figure 1: Our example problem illustrated as a PSTN.

Controllability Algorithms for STNUs STNUs are
strongly controllable if times can be selected for each exe-
cutable timepoint such that, for all possible contingent time-
point outcomes, all requirement constraints are satisfied. Not
all STNUs satisfy this restrictive property. STNUs are dy-
namically controllable if we can find a scheduling strat-
egy, where some decisions are contingent on the outcomes
of uncertain events during execution, that guarantees suc-
cess. Dynamic controllability is a less restrictive property
than strong controllability; the decision to execute a time-
point can be deferred until information about uncontrollable
timepoints is known (Vidal and Ghallab 1996; Vidal 2000;
Morris, Muscettola, and Vidal 2001; Morris and Muscettola
2005; Morris 2014; Akmal et al. 2019).

Probabilistic Simple Temporal Network (PSTN) A
Probabilistic Simple Temporal Network (PSTN) extends
an STNU by adding information about the uncertain pro-
cesses that govern contingent edges. For a PSTN’s con-
tingent edges, the time that elapses from ti to tj is cho-
sen by a random variable Xij , whose value is determined
at execution by some Probability Density Function (PDF)
Pij (Tsamardinos 2002; Fang, Yu, and Williams 2014;
Brooks et al. 2015). Since contingent edges in PSTNs are
governed by unbounded probability distributions, they can-
not be strongly controllable. However, as we will later dis-
cuss, some algorithms still use the idea of strong controlla-
bility to solve PSTNs.

Example Problem The PSTN representation of our run-
ning UAV example problem is shown graphically in Figure
1. Each vertex represents a timepoint. The agent (A or B)
to which a particular timepoint corresponds is indicated by
the superscript. Timepoints denote the start and end times
of an agent’s task (e.g. deciding when to start or stop mov-
ing). Directed edges represent temporal constraints and are
labeled with the range of time that is allowed to elapse be-
tween the occurrence of the events represented by the source
and target timepoints. Thick edges represent contingent con-
straints, and straight, slim edges represent requirement con-

4

straints. The notation N(µ, σ) in our example problem in-
dicates a normal probability density function with mean µ
and standard deviation σ. A’s navigation task is represented
by the edge between timepoints tA1 and tA2 , (and similarly
for B). B’s 2 second image acquisition task is represented
by the edge between tB3 and tB4 . The event where a commu-
nication link between A and B is established is represented
by the edge tA3 and tB4 . All tasks must be completed within
10 seconds, shown by the ‘self’ constraint [0,10] for each
timepoint.

Controllability Algorithms for PSTNs
Previous work in PSTNs (Tsamardinos 2002; Fang, Yu, and
Williams 2014; Santana et al. 2016) has focused primarily
on algorithms for generating a control policy up-front. Most
prior work in this area focuses on a variant of strong con-
trollability, that is, finding a schedule consisting of assign-
ments of controllable timepoints that satisfies requirement
constraints subject to some risk, or alternately, maximizes
robustness. Strong controllability is a more difficult to sat-
isfy property than dynamic controllability; a strong schedule
requires choosing a single time to execute every controllable
timepoint that works no matter what the outcome of the un-
controllable timepoints, while a dynamic strategy can react
to observations of the uncontrollable timepoints.

By contrast, this paper investigates algorithms that
reschedule actively during execution. While dynamic con-
trollable policies describe how to execute controllable time-
points in response to observed uncontrollables, rescheduling
can revise the entire schedule continuously. Rescheduling
algorithms are an improvement over strong controllability,
as noted previously. However, expensive rescheduling and
communication of schedules may inefficiently use resources
compared to the payoff in robustness.

Early Execution Early Execution is a naı̈ve algorithm for
deciding when to execute the timepoints in a PSTN. As its
name implies, it executes timepoints as soon as they can
be executed–when they are both live, meaning that they are
within their acceptable time range, and enabled, meaning
that all predecessor timepoints have been executed.

The Static Robust Execution Algorithm While algo-
rithms like Early Execution can be effective in practice, they
are agnostic as to the impact of uncertainty on performance.
In our UAV example problem, if both agents start navigat-
ing as soon as possible, it is highly likely that UAV B will
arrive at its destination more than 2 seconds before UAV A,
resulting in failure. To maximize the probability of success,
UAV B should wait before navigating. The Static Robust Ex-
ecution Algorithm (SREA) is motivated by this limitation
(Lund et al. 2017). SREA is an offline approach that tries to
address this limitation by maximizing robustness, the prob-
ability that for a given strategy, all events are executed with-
out violating constraints (Brooks et al. 2015). Robustness is
the complement of risk (Fang, Yu, and Williams 2014).

In order to maximize robustness, SREA transforms the
input PSTN into a strongly controllable STNU while ap-
proximately minimizing the probability of failure. SREA

sets a maximum probability α that each contingent time-
point in the original PSTN violates its contingent edge’s
bounds because it occurs too early or too late. (α is iden-
tical for all contingent constraints.) This makes 1 − α the
minimum probability mass of each contingent edge captured
by a corresponding interval in the STNU. To find the opti-
mally robust schedule, SREA does a binary search over α.
For each α, it uses a linear program (LP) to maximize the
probability mass captured by the interval over each contin-
gent timepoint. In a sense, SREA maximizes the probabil-
ity that uncertain events will occur during these intervals.
From this, SREA produces a schedule that guides an agent
on when it should execute the events to give uncertain events
the best chance of falling within these precomputed inter-
vals. In our running example, SREA would constrain UAV
B to wait before navigating to maximize the probability that
the arrival times of both agents overlap. SREA is similar to
the approach of Santana et al. (2016), which uses a piece-
wise constant approximation of the PDF, allowing the use
of a different LP formulation than that of SREA. A different
static approach due to Fang, Yu, and Williams (2014) uses
a nonlinear solver to allocate risk in a more globally opti-
mal way rather than rely on the heuristics employed by LP
approximations.

SREA is good at using information about uncertainty to
maximize the probability of success. However, it can fail
when uncertain timepoints fall outside of their designated
intervals during execution. In addition, like Strong Control-
lability, on which it is based, SREA is limited because it
cannot re-optimize risk on constraints or reschedule the ex-
ecution of controllable timepoints when new real-time in-
formation, such as the actual time of an uncertain event, is
gained. This is because SREA is a static algorithm, in that it
does not change the schedule in real-time.

The Dynamic Robust Execution Algorithm Dynami-
cally updating the guiding schedule can be beneficial in sit-
uations with uncertain events. The Dynamic Robust Execu-
tion Algorithm (DREA) is an online algorithm that builds
on SREA with the goal of maximizing robustness by adding
the ability to incorporate new information during execution
(Lund et al. 2017). It creates an initial schedule by running
SREA and uses it to guide execution. As contingent time-
points are received, DREA updates the PSTN with this new
information, and calls SREA to create a new schedule.

Related Approaches
In general, this class of problem can also be posed and
solved as a (Partially Observable) Markov Decision Prob-
lem ((PO)MDP). Large, hard to solve MDPs have been ad-
dressed by ‘on-line’ methods that partially solve the MDP at
each step (Dean et al. 1995; Kearns, Mansour, and Ng 2002;
Péret and Garcia 2004). These methods address the prob-
lem of trading computation time for solution quality. The
method of Wu, Zilberstein, and Chen (2011) considers how
to reschedule and communicate new schedules in the pres-
ence of restricted communication. For our work, we limit
the expressiveness of the problem under consideration to
PSTNs. While tractable, the PSTN framework still exposes

5

the fundamental problem of deciding when to reschedule
and communicate changes of schedules between agents.

Mitigating DREA’s Overhead
DREA has a significantly higher success rate than both
Early Execution and SREA on the set of randomly gen-
erated benchmark PSTNs in Lund et al. (2017). However,
this high success rate comes with the cost of large amounts
of rescheduling. In many scenarios, including our UAV ex-
ample, computing and sending new schedules is costly, so
DREA may have an undesirably high overhead.

With this in mind, we have investigated two possible
methods for limiting when DREA reschedules and commu-
nicates, without drastically diminishing success rate. The
first method, Allowable Risk, makes rescheduling (and thus
both computation and communication) frequency propor-
tional to the level of uncertainty that has been resolved in the
problem. Sufficient Change seeks to reduce communication
frequency by only communicating when the new schedule
has a significant change in the amount of risk. The two ap-
proaches complement each-other. We have combined them
into a new version of DREA with control parameters that
allow us to vary the trade-offs.

Algorithm 1: DREAM
Input : A PSTN, S
Input : A min success threshold, 0 ≤ mAR ≤ 1
Input : A min change threshold, 0 ≤ mSC ≤ 1
Var : Current time, now
Var : Next Timepoint Encountered, t
Var : A guide STN, G
Var : Risk of guide, α
Var : Contingent Edge Counter, k
(α,G)← SREA(S) ;
k ← 0 ;
while Consistent(S) and not AllExecuted(S)

do
// Next dispatched/received event
(now, t)← AdvanceToNextEvent(S) ;
if t ∈ TC then

S.update(t = now) ;
G.update(t = now) ;
k ← k + 1 ;
// Check Allowable Risk
if (1− α)k ≤ mAR then

(α′, G′)← SREA(S) ;
// Check Sufficient Change
if |α′ − α| ≥ mSC then

α← α′ ;
G← G′ ;
k ← 0 ;

else
S.update(t = now) G.update(t = now) ;

We present these algorithms combined as Dynamic Ro-
bust Execution Algorithm with Mitigation (DREAM). It acts

similar to DREA, except when a contingent timepoint is re-
ceived, DREAM more judiciously decides first whether or
not to reschedule, and then whether to communicate. Al-
lowable Risk and Sufficient Change use thresholdsmAR and
mSC respectively to make these decisions. The details of the
DREAM algorithm are shown in full in Algorithm 1.

Reducing Rescheduling: Allowable Risk
As risk accumulates during execution, the current execu-
tion guide STN has a lower chance of succeeding, and
so rescheduling becomes more valuable. Allowable Risk
(AR) decides how many uncertain events can occur before
rescheduling while maintaining an acceptably high overall
probability of success. Then, it dispatches events accord-
ing to the guide, updating the guide by rescheduling after
the previously computed number of uncertain events have
occurred. This strategy reduces the number of reschedules
while still guaranteeing the risk will not exceed a thresh-
old without rescheduling. Thus, AR reschedules less often
in cases of low risk, sparing excess computation.

AR is detailed in the first part of the DREAM algorithm.
It requires an input 0 ≤ mAR ≤ 1 to represent the minimum
robustness threshold. As a proxy for probability of failure, α
ties rescheduling to the riskiness of the guides generated by
SREA. AR first finds the smallest integer value of n such
that

(1− α)n+1 > mAR

which is equivalent to

n ≥ log(1−α) (mAR)− 1.

AR dispatches events until the received (uncontrollable)
event counter k exceeds n, then reschedules. When the algo-
rithm reschedules, AR resets k to 0. Rescheduling will also
produce a new α and guide STN G, leading to a new value
for n (if the schedule has a sufficient change in α, discussed
below). Thus, if SREA generates a schedule with high α,
AR will reschedule sooner than if SREA had generated a
schedule with low α.

Since mAR is the minimum probability of success al-
lowed without rescheduling, a higher threshold could lead
to frequent rescheduling, resembling DREA. However, a
lower threshold could lead to low success rate from too little
rescheduling, performing like SREA.

Reducing Communication: Sufficient Change
Sufficient Change (SC) determines whether the algorithm
will actually communicate the new guiding schedule to the
agents. The concept underlying Sufficient Change is to only
communicate a new guiding schedule G′ if it has a signifi-
cant change in the chances of success compared to the cur-
rent guide G. This SC determination prevents sending out
new guides that provide little change in robustness to the
agents. Note, SC does not reduce the amount of reschedul-
ing, since it requires the SREA algorithm to be run prior to
deciding whether or not to communicate the new schedule.

When DREAM runs SREA to generate a new guide G,
it assigns an interval to each uncertain edge that captures

6

some of the probability mass of that edge, and the remain-
ing probability mass uncaptured is α. SREA optimizes for
the smallest α across all contingent edges while still main-
taining consistency. Thus α acts as a proxy for the risk level
of the guide overall.

In Algorithm 1, G′ represents a new updated guide pro-
duced by DREAM. Since G′ is more recent than the cur-
rent guide G, G′ will take into account the assignment of
past contingent timepoints. Because of this, G′ will gener-
ally have lower risk than G since there is less uncertainty
remaining in the network. However, in cases where a con-
tingent timepoint is assigned early or late unexpectedly and
thus falls out of the SREA capture range, then there are cases
where α′ may be higher than α. It is crucial to reschedule in
these cases, as they may require large changes to the execu-
tion times to improve robustness.

If the absolute difference between α′ and α exceeds the
SC threshold mSC , then the new guide STN G′ will replace
the current guide STN G. α is also replaced with α′.

SC’s threshold influences how often the algorithm
reschedules. If the threshold is low, we expect the algorithm
will reschedule often, resembling DREA. Alternatively, if
the threshold is high, the algorithm will reschedule less of-
ten, performing like SREA. In between extreme values, we
expect to see a trade-off, where we reduce communication
but also reduce robustness as the threshold approaches 1.

DREAM Execution on Example Problem
To illustrate how the DREAM algorithm executes and the
influence of parameter settings, we step through a hypothet-
ical execution using the example problem introduced in Fig-
ure 1. First, SREA is applied to the original PSTN, resulting
in a guide STN and corresponding α. Next, the guide STN is
used to dispatch scheduling decisions. This would result in
UAV A and UAV B departing at the earliest times suggested
by the guide STN. Since both of these departures are exe-
cutable timepoints (not contingent) they have no impact on
DREAM’s decision to reschedule. Suppose UAV A arrived
earlier than expected, e.g. after 2 seconds instead of the ex-
pected 6 seconds. DREAM checks if (1 − α)1 < mAR.
For the sake of argument, suppose this condition is true (the
old schedule is now too risky given the early arrival time).
DREAM reschedules, and a new guide STN G′ and per-link
risk α′ are calculated; UAV B’s image acquisition and the
communication events are scheduled earlier to account for
A’s early arrival. The new schedule is communicated to the
UAVs if |α′−α| > mSC , which would be likely for reason-
ably low (and therefore sensitive) mSC values.

Empirical Evaluation
The ultimate goal of our analysis is to understand and
explore the trade-off between reschedules/communications
and success rate in our algorithms. To do this, we con-
structed an event-based Monte-Carlo simulator to empiri-
cally test the performance of DREAM1. The simulator uses
pre-generated PSTNs and draws contingent edge durations

1All simulator code and problem instances are available for
download from https://github.com/HEATlab/DREAM

DREA Characteristics
Robustness 33.64%± 1.5%
Runtime 3.68s± 0.49s per sim
Reschedule Rate 4.63± 0.09 per sim
Communication Rate 3.44± 0.12 per sim

Table 1: Characteristics of DREA on the problem set used in
this paper. Errors in this table are 1 standard error.

from normally distributed PDFs. To mimic real-world un-
certainty, the durations of contingent constraints are only re-
vealed to the scheduler once the respective contingent time-
point is received. Guide schedules tell an agent when it
should execute all remaining (unexecuted) timepoints. We
track the success rate, the total solve time per simulation, the
reschedule rate, and the communication rate on each STN
across all trials.

We tested DREAM on 540 PSTNs taken from Lund et
al. (2017)1, each containing 21 events and at least 2 agents.
100 simulations were run on each PSTN with a different ran-
dom seed. A simulation returns execution success or failure.
PSTNs which failed across all simulations for every algo-
rithm were omitted in further analysis. Of the 540 test prob-
lems, 436 were solved by at least one of the algorithms we
tested; all of the statistics below are averages over these 436
problems.

We tested a parameter sweep across combinations of
mAR and mSC , both ranging from 0 to 1 with log-
arithmic density (e.g. mAR = {1, 0.5, . . . , 0.0625, 0}).
By varying the thresholds, we gain more insight into the
trade-offs between how frequently schedules are recom-
puted/communicated and schedule success rate. We com-
pare the success rates and number of reschedules of our al-
gorithms to those of DREA and SREA, which both represent
the state-of-the-art dynamic and static robust scheduling ap-
proaches, and also the extreme versions of DREAM that al-
ways/never reschedule respectively. This analysis can help
determine which algorithm and threshold are most appropri-
ate for applications with various computational needs.

First, we compare the performance of AR and SC in iso-
lation, by fixing mSC = 0 while varying mAR, and fixing
mAR = 1 while varying mSC . In Figure 2, we show how
varying AR and SC affects robustness, runtime, and com-
munication frequency. Both of the plots show how DREAM
performs relative to the state of the art execution strategy,
DREA. Each data point in Figure 2 has a surrounding 95%
confidence interval, though runtimes lack these intervals for
plot clarity.

Since all data points in the following two plots are pro-
portional to DREA’s performance, Table 1 provides DREA’s
performance for reference. An important point to note is that
DREAM’s communication rate is consistently lower than
DREA’s from (Lund et al. 2017) because the SREA algo-
rithm will occasionally fail to find an acceptable α which
solves the internal LP, but the agent will continue to attempt
to reschedule until it reaches an invalid timepoint assign-
ment. This characteristic persists in DREAM as well.

7

(a) Allowable Risk (AR) threshold variation results (b) Sufficient Change (SC) threshold variation results

Figure 2: Simulated results for Allowable Risk (AR) and Sufficient Change (SC) on instances from (Lund et al. 2017). We plot
the success rate, the mean runtimes, reschedules (a proxy for both computation and communication for AR) and communica-
tions (for SC) relative to DREA. We also plot SREA’s robustness to show improvement over the baseline.

Impact of Allowable Risk
From Figure 2a, we make three significant observations.
The first is that at mAR = 1, DREAM achieves the high-
est robustness (success rate), but also the highest resched-
ule rate and runtime. Additionally, when mAR = 1 and
mSC = 0, we do reach nearly identical performance char-
acteristics as DREA. We also note that as mAR approaches
0, we see DREAM performs similarly to raw SREA. This
is expected, as an AR threshold of 0 would indicate that we
never reschedule beyond the start of the problem. Thus, both
of the endpoints match our expectations. The third observa-
tion is that there are several values of mAR > 0.25 where
DREAM has a large improvement in runtime and reschedule
rate with a minor robustness penalty. The improvement here
shows that DREA reschedules excessively, and that some
reschedules in DREA had negligible impact.

Impact of Sufficient Change
Figure 2b shows the same analysis, but instead now focusing
on SC threshold and communication rate. We fix mAR = 1
(the AR threshold with the highest reschedule rate); for
these runs, we reschedule at every received contingent time
point, as DREA normally would. The runtime in Figure 2b
matches DREA regardless of the value of mSC , because we
save nearly no computation. However, we see a steep de-
crease in communications at mSC = 0.0625, with only a
marginal drop in robustness. Similar to the pattern observed
for AR, Figure 2b’s endpoints line up with the DREA and
raw SREA execution strategies. However, the curve direc-
tion is reversed, as a lower SC threshold is more strict, i.e.
requiring more rescheduling, while a higher AR threshold is
more strict. With a low mSC , what we classify as a “suffi-
cient” change in α is more broad, leading to more sending
of guide schedules.

One unexpected result shown in this plot is the shape of
the robustness curve. Compared to the AR, we see a much
more gradual trade-off betweenmSC and robustness; chang-

ing mSC within the full range [0, 1] leads to significant
changes in success rate. This does not hold for the number
of communications, as mSC > 0.5 leads to only minor im-
provements here.

Exploring the Landscape of Trade-offs
While we have analyzed how both thresholds of DREAM
affect results in isolation, we are ignoring an important
feature of this algorithm. DREAM is able to use both
the AR and SC filters simultaneously. In order to prop-
erly evaluate DREAM’s performance, we must also an-
alyze how combinations of thresholds affect our met-
rics. To analyze these trade-offs, we conducted a param-
eter sweep over a logarithmic-like grid for (mAR,mSC)
values. Each threshold value was chosen from the set
{0, 0.0625, 0.125, 0.25, 0.5, 1}. From Figures 2a and 2b,
we expect DREAM to react similar to DREA when
(mAR,mSC) = (1, 0).

We show the results of this parameter sweep in Figure 3.
These plots are filled contour plots which focus on robust-
ness, communication, and runtime for each threshold combi-
nation. As with Figure 2, each dependent variable is plotted
proportional to DREA (100% indicates performing identi-
cally to DREA).

From these plots, we notice several important features of
this threshold landscape. From Figure 3a, we find that the
only threshold pair which has the same robustness perfor-
mance as DREA is when (mAR,mSC) = (1, 0), as ex-
pected. However, we find that when mAR > 0.25 and
mSC < 0.0625, DREAM can trade much substantially
lower schedule communications and computation runtimes
for only slightly lower robustness levels. For example, the
combination of (mAR,mSC) = (0.5, 0.0625) has a rela-
tive robustness of 98%, a relative communication frequency
of 47%, and a relative runtime of 81% compared to DREA
on the same data set. This demonstrates that DREAM can
trade a small loss in robustness for large performance gains

8

(a) Robustness contour plot. (b) Communication contour plot. (c) Runtime contour plot.

Figure 3: Contour plots showing how threshold values affect robustness, communication, and runtimes of DREAM on instances
from (Lund et al. 2017). Note we use a logarithmic scale to show more detail near smaller values. Also note that contour lines
are interpolated, and hence may not align perfectly with the raw data for each parameter combination.

in other metrics.
Another important insight we can gather from this vi-

sualization is how mAR and mSC combine to reduce the
need to communicate new schedules. mSC has diminish-
ing returns as it increases beyond 0.125, as robustness de-
clines steadily while maintaining similar communication
frequency. On the other hand, communication is much more
sensitive to changes in mAR, and small changes in Allow-
able Risk threshold below 0.0625 can lead to a rapid com-
munication reduction.

Finally, Figure 3c shows that mSC has minor (if any) ef-
fect on runtime, while runtime is quite sensitive to changes
in mAR for (especially for low values). These results match
our expectations, and reinforce the data shown in Figure 2.

Finding Optimal Threshold Values
From the data in Figure 2, we can find the threshold values
that provide the highest robustness while also minimizing
the amount of either reschedules or communications.

When we fix mSC to its most sensitive value (that is,
mSC = 0), we can identify an “optimal” value for mAR by
comparing robustness and reschedule rate over all mAR val-
ues. To achieve the most robustness for the least reschedul-
ing, we define the optimal mAR to be where we maxi-
mize the ratio between robustness improvement from a static
strategy (SREA) and the number of reschedules, since AR
controls rescheduling rate. If we denote the robustness of
SREA by RS , the robustness of DREAM with a specific
value of mAR by RD(mAR), and the number of resched-
ules achieved by DREAM for a specific value of mAR by
SD(mAR), then we seek

max
mAR

RD(mAR)−RS
SD(mAR)

.

Note, SREA never reschedules and so does not appear in
the denominator of this ratio. We know RS from Figure 2,
and the remaining components of this optimization from our
data. From the threshold values we tested, we found the best
performance to be mAR = 0.250, which only requires on
average 74% of the reschedules of DREA.

Similarly, we define the optimal mSC as the value where
we maximize the ratio between robustness improvement and
the number of communications given mAR = 1. We focus
on communication rate here because varying mSC does not
change the amount of computation an agent does. In this
case we denote the number of communications achieved by
DREAM for a specific value of mSC by CD(mSC), and we
seek

max
mSC

RD(mSC)−RS
CD(mSC)

.

From the threshold values we tested, we found the best per-
formance to be mSC = 0.250 when individually analyzed,
which sends just over 35% of the schedules that DREA does.

These combinations give robustness values of 98.1% of
DREA and 87.8% of DREA, respectively. We do note that
in the case of the AR threshold, any mAR value between
0.0625 and 0.5 seems to give metric values which are similar
enough to be within error. Therefore, there exists a plateau
in trade-off quality when varying the AR threshold which is
not present in SC threshold variation.

While we have found the optimal threshold settings in iso-
lation, for a complete description of DREAM, we must at-
tempt to find the combination of thresholds which provides
the most improvement on robustness for the least overhead.
To do this, we generated two scatter plots that show how
robustness is sacrificed as we reduce either the number of
reschedules (Figure 4a) or communications (Figure 4b). All
value presented here are relative to DREA (that is, normal-
ized relative to the original DREA performance). We prefer
trade-offs that lead to points that appear in the upper left
corner of the space. Thus, the points that appear on left/top
side of the convex hull formed by these points represent
various optimal trade-offs between reducing computational
overhead without sacrificing robustness.

Observe that most points in Figure 4a and all points in
Figure 4b appear above the curve f(x) = x, which would
represent a 1-for-1 trade-off. This is extremely encouraging,
since it means regardless of how we set mAR and mSC , the
relative reduction in computational overhead outpace the rel-

9

(a) Reschedules vs. Robustness, stratified by mAR values. (b) Communications vs. Robustness, stratified by mSC values.

Figure 4: Scatter plots showing robustness as a function of the reschedules (4a) and communications (4b) relative to DREA for
every point in our parameter sweep of mAR and mSC on instances from (Lund et al. 2017). Here, we want points that appear
in the upper (low robustness loss) left corner (high resource savings), so any point that appears above the curve f(x) = x
represents a net positive trade-off.

ative losses in robustness.
Further, we note that in Figure 4a, in some cases the

points appear to form “stacks”. This is because, for given
setting mAR, varying mSC will have no impact on how of-
ten DREAM reschedules. To illustrate this, plot points in
4a for the same value of mAR are plotted with the same
plot symbol. However, since new schedules are communi-
cated less often, varyingmSC will negatively impact robust-
ness. This behavior is evident in Figure 3c, and is replicated
in 4a. As expected, the points that optimally trade reduced
reschedules for robustness are those with high mSC values.
Figure 4b, on the hand, demonstrates that overall, DREAM
very gracefully trades reductions in communication for re-
ductions in robustness. In fact, most points are closer to ap-
pearing on the optimal face of the convex hull than they are
to the curve f(x) = x. We chose to use the same plot-point
symbol for identical values of mSC in Figure 4b to show
that mSC generally but not always predicts robustness.

Comparing the individual AR and SC threshold perfor-
mances also reveals how riskiness of a schedule changes
over time. Figure 4b shows that communications changes
greatly between mSC = 0 and mSC = 0.0625. This stark
difference indicates that roughly half of the schedules sent
by DREAM have only minor α changes. A small change
in α suggests that the new schedule produced by DREAM
was similar to the previous schedule (or at least the captured
probability was similar). However, we do notice a decrease
in robustness by removing half of those communications.
Therefore, even small updates are vital for maximizing the
success of an execution problem.

Evaluating DREAM on ROVERS Dataset
To show that DREAM provides similarly graceful trade-offs
on other problems, we conducted the same empirical eval-
uation on a subset of the ROVERS dataset from Santana et
al. (2016). The ROVERS problem set is a set of 4380 Prob-
abilistic Simple Temporal Networks with Uncertainty (PST-
NUs). PSTNUs augment the PSTN formulation by desig-
nating some contingent constraints as having only minimum

and maximum time bounds, but no underlying probability
distributions (as in STNUs). This is in contrast to PSTNs,
where all contingent edges have some underlying probabil-
ity distribution. Since DREAM only functions on PSTNs,
we convert each PSTNU to a PSTN by modeling the simple
temporal constraints with uncertainty as contingent edges
with uniform distributions.

With these modifications, we conducted an AR/SC thresh-
old grid search to match our results shown in Figure 3. Due
the size of the ROVERS PSTNs and simulation solve time
constraints, we were limited to the first 73 PSTNs (a small
subset) of the ROVERS dataset. These PSTNs range be-
tween 71 to 223 events, and about one quarter of edges in
each were contingent. We ran 50 simulations on each PSTN
to approximate the robustness associated with our tested
threshold settings, with same logarithmic grid pitch used
Figure 3.

The results of this grid search are shown the three con-
tour plots in Figure 5. We represent the number of com-
munications and reschedules with logarithmic scale, as at
(AR,SC) = (1, 0), the number of schedule sends and the
number of reschedules are about 40 times more than the
lowest counts. These plots highlight several crucial differ-
ences between the Lund et al. problems and the Santana
et al. ROVERS problems. The first major difference is that
SREA, with no reschedules at all, performs surprisingly well
in comparison to DREA on ROVERS. This is highlighted by
observing barely any increase in robustness for mAR < 1 in
Figure 5a: we can achieve just over 90% of DREA’s perfor-
mance on these problems with no rescheduling at all. We ob-
serve that many of ROVERS problems had every simulation
succeed, or every simulation fail. This hints that many of
the ROVERS problems are strongly controllable, and many
have no valid schedules or have very improbable schedules;
this is consistent with the results reported by Santana et
al. (2016) that 2840 of 4380 instances are strongly control-
lable, but in 911 of these cases, at least one probabilistic
duration squeezed to a single value.

We also see a lack of tunability in AR threshold in Figure

10

(a) Robustness contour plot for ROVER data. (b) Comm. contour plot for ROVER data. (c) Reschedule contour plot for ROVER data.

Figure 5: Contour plots showing how threshold combinations change performance on the ROVER dataset from Santana et
al. (2016). Again, our axes are not linearly scaled, and were sampled at the same density as Figure 3. We note however the stark
contrast which occurs at mAR = 1, which is the only location where we see comparable robustness values to DREA. Due to
the orders of magnitude difference between mAR = 1 and all other mAR settings, we show log10-scale plots for number of
communications and number of reschedules.

5a. Only atmAR = 1 do we see a significant improvement 2

in robustness over SREA. This is a suprising result, and sug-
gests two possible explanations. The first explanation is that
binary search conducted by SREA is unable to find a valid
schedule, which in turn means DREAM could not update
the agent with an improved schedule, causing more failures,
and a performance similar to SREA. The second explana-
tion is that because AR measures the accumulation of risk
as agents execute, the PSTNs lack notable accumulations of
risk. If the α of the current schedule is very small DREAM
will not reschedule even for high values of mAR. However,
as soon as mAR = 1, DREAM will reschedule at every con-
tingent timepoint regardless of a schedule’s α. This explains
why there are order-of-magnitude more reschedules when
mAR = 1, as shown in Figure 5c.

Despite the tiny tunable range of mAR threshold, we see
strong trade-offs with some mSC thresholds, as highlighted
in Figure 5b. As long asmAR = 1, and 0 < mSC < 0.5, we
see 97% to 99% performance of DREA with 3% to 5% the
number of schedule sends. This means that at least 95% of
the schedules sent by DREA had almost no effect on success
rate. This shows that DREAM provides a significant reduc-
tion on the amount of communication required with almost
identical success rate and also underscores the value in hav-
ing a tunable algorithm like DREAM that can help achieve
maximum robustness while minimizing computational and
communication overheard across problem domains with ex-
tremely different characteristics.

Conclusion and Future Work
In this paper, we augment DREA, a state-of-the-art dynamic
schedule execution algorithm, to maintain its high success
rate while simultaneously reducing its high amount of com-
munication and computation. To this end, we propose two

2While it may seem improvement occurs in the range 0.5 ≤
mAR ≤ 1 this is due to the graph package interpolation, not due to
the actual raw data.

techniques to mitigate these costs: Allowable Risk (AR) and
Sufficient Change (SC). Combined, these complementary
augmentations to DREA form our new approach: Dynamic
Robust Execution Algorithm with Mitigation (DREAM).

DREAM is a fully tunable hybrid between SREA and
DREA. Our exploration of DREAM shows a clear trade-
off between rescheduling and success. Robustness of sched-
ules generally degrades with higher mSC , which reduces
DREAM’s willingness to communicate novel schedules. For
fixed mSC , varying mAR, DREAM’s willingness to recom-
pute schedules given new information, usually does not im-
pact robustness. Individually optimizing for reduced com-
putation and reduced communication leads to different ideal
settings; while robustness can be gracefully traded for re-
duced communication, it is more difficult to trade robustness
and computation. Most importantly, DREAM improves over
DREA by gracefully trading lower communication and com-
putation for lower robustness.

Our approach generalizes beyond the LP formulation of
SREA in the generation of an SC schedule. The use of PSTN
approaches such as (Fang, Yu, and Williams 2014) or (San-
tana et al. 2016) are amenable to these techniques. More
generally, the techniques can be used to regenerate the opti-
mal policy of an MDP provided new information.

While we can attempt to set threshold values to optimize
communication or computation gains independently, the rel-
ative importance of computation and communication over-
head are application dependent. If communication is more
of a bottle-neck than computation, then setting a high mAR

and a high mSC makes sense. If computing a new schedule
is costly, e.g. when recomputing schedules on-board rather
than at a remote controller base station, then lowermAR and
a low mSC will provide a better execution strategy.

DREAM is a direct improvement over DREA in problems
where remote agents have limited resources (such as in our
UAV problem), or when computation is expensive. Clev-
erly choosing when to reschedule and communicate pre-

11

serves these resources. However, the current incarnation of
DREAM allows agents to decide when to communicate at
will. One area of future work is to adapt DREAM to handle
communication windows. Regardless of whether this can be
done entirely within the PSTN framework or not, preventing
communications will force an agent to reason about robust-
ness and the possible change in schedules when communica-
tions are possible; the resulting algorithm will produce less
robust schedules than DREAM, but be able to reason about
even more realistic communication limitations.

Another possible direction for future work is to test these
algorithms in other kinds of simulations or applications. For
instance, one could run tests in a time-based simulation, as
opposed to an event-based simulation. It would be interest-
ing to see how DREAM would perform in this context in
comparison to DREA. Finally, testing with physics-based
or real-world simulations currently considering the use of
-aware PSTN techniques (e.g., Vaquero et al. (2019)) would
yield results more directly relevant to practical situations.
These further empirical explorations would create a stronger
basis for justifying the value of SC and AR, and defining the
trade-off between success rate and communication.

Acknowledgments
Funding for this work was graciously provided by the Na-
tional Science Foundation under grant IIS-1651822, the
NASA Advanced Exploration Systems (AES) program, and
the Rose Hills Foundation. Thanks to the anonymous re-
viewers, HMC faculty, staff and fellow HEATlab members
for their support and constructive feedback, with a spe-
cial thanks to Brenner Ryan, DruAnn Thomas, and Zachary
Dodds for their extra efforts in supporting this work.

References
Akmal, S.; Ammons, S.; Li, H.; and Boerkoel, J. C. 2019.
Quantifying degrees of controllability in temporal networks
with uncertainty. In Proc. of the 29th International Confer-
ence on Automated Planning and Scheduling (ICAPS-19),
To appear.
Brooks, J.; Reed, E.; Gruver, A.; and Boerkoel, J. C. 2015.
Robustness in probabilistic temporal planning. In Proc.
of the 29th National Conference on Artificial Intelligence
(AAAI-15), 3239–3246.
Cesare, K.; Skeele, R.; Yoo, S.; Zhang, Y.; and Hollinger, G.
2015. Multi-UAV exploration with limited communication
and battery. In Proc. of the IEEE Conference on Robotics
and Automation (ICRA), 2230 – 2235.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic domains.
Artificial Intelligence 67(1-2):35–74.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. In Knowledge Representation, volume 49,
61–95.
Fang, C.; Yu, P.; and Williams, B. C. 2014. Chance-
constrained probabilistic simple temporal problems. In
Proc. of the 28th National Conference on Artificial Intelli-
gence (AAAI-16), 2264–2270.

Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning in large
markov decision processes. Machine Learning 49:193–208.
Li, B.; Jiang, Y.; Sun, J.; Cai, L.; and Wen, C.-Y. 2016. De-
velopment and testing of a two-UAV communication relay
system. Sensors 16(10).
Lund, K.; Dietrich, S.; Chow, S.; and Boerkoel, J. 2017.
Robust execution of probabilistic temporal plans. In Proc.
of the 31st National Conference on Artificial Intelligence
(AAAI-17), 3597–3604.
Morris, P., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In Proc. of the 20th National Con-
ference on Artificial Intelligence (AAAI-05), 1193–1198.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. of
IJCAI-01, 494–502.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proc. of the International Conference on AI
and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR-14), 464–479.
Péret, L., and Garcia, F. 2004. On-line search for solving
markov decision processes via heuristic sampling. In Proc.
of the 16th European Conference on Artificial Intelligence
(ECAI-04), 530–534.
Quach, C.; Bole, B.; Hogge, E.; Vazquez, S.; Daigle, M.;
Celaya, J.; Weber, A.; and Goebel, K. 2013. Battery charge
depletion prediction on an electric aircraft. In Proc. of the
Annual Conference of the Prognostics and Health Manage-
ment Society (PHM 2013)).
Santana, P.; Vaquero, T.; Toledo, C.; Wang, A.; Fang, C.;
and Williams, B. 2016. Paris: a polynomial-time, risk-
sensitive scheduling algorithm for probabilistic simple tem-
poral networks with uncertainty. In Proc. of the 26th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-16), 267–275.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence, 97–108.
Vaquero, T.; Chien, S.; Agrawal, J.; Chi, W.; and Hunts-
berger, T. 2019. Temporal brittleness analysis of task net-
works for planetary rovers. In Proc. 29th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS-2019), To appear.
Vidal, T., and Ghallab, M. 1996. Dealing with uncertain
durations in temporal constraint networks dedicated to plan-
ning. In Proc. of European Conference on Artificial Intelli-
gence (ECAI-96), 48–54.
Vidal, T. 2000. Controllability characterization and check-
ing in contingent temporal constraint networks. In Proc. of
the Principles of Knowledge Representation and Reasoning-
International Conference (KR-00), 559–570.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487 – 511.

12

