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Abstract

Controllability for Simple Temporal Networks with Uncer-
tainty (STNUs) has thus far been limited to three levels:
strong, dynamic, and weak. Because of this, there is currently
no systematic way for an agent to assess just how far from
being controllable an uncontrollable STNU is. We use a new
geometric interpretation of STNUs to introduce the degrees
of strong and dynamic controllability – continuous metrics
that measure how far a network is from being controllable.
We utilize these metrics to approximate the probabilities that
an STNU can be dispatched successfully offline and online
respectively. We introduce new methods for predicting the de-
grees of strong and dynamic controllability for uncontrollable
networks. In addition, we show empirically that both metrics
are good predictors of the actual dispatch success rate.

Introduction
When tasked with making a schedule, a planner would ide-
ally have the capability to pick exact times for every event
that could occur. In practice however, autonomous agents
rarely have control over all events affecting their plans.

For example, imagine a chemist named Dr. V running a
small experiment. She first combines 20 mL of chemical W
and chemical X in a beaker. The exact amount of time it
takes these chemicals to react is uncertain: all Dr. V knows
is that it will take between twenty and thirty-one minutes
for the reaction to finish (unfortunately, not much is known
about the reaction rates of chemicals W and X). Within ten
minutes of this reaction completing, she must add 20 mL of
chemical Y to the mixture, which catalyzes a new reaction
taking thirty to thirty-five minutes. Finally, Dr. V must col-
lect a product, precipitate Z, from the solution within ten
minutes of the reaction completing.

To run the experiment successfully, Dr. V needs to sched-
ule several different events. She is able to select times for
some events, such as the addition of chemical Y, but other
events, such as the completion times of the reactions, are not
under her control. There are multiple different strategies Dr.
V can use to deal with this uncertainty in timing and en-
sure the experiment’s success. The effectiveness of different
types of scheduling strategies is related to the scheduling
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problem’s controllability – how easily the experiment can
be successfully executed given its inherent uncertainty. Cur-
rently, all forms of controllability discussed in the literature
are discrete – they tell Dr. V whether her experiment is con-
trollable or not, but do not tell her “how” controllable or
uncontrollable the experiment is.

In this paper, we extend the notion of controllability by
introducing two new continuous metrics on temporal net-
works: the degrees of strong and dynamic controllability.
These metrics are motivated by a geometric interpretation of
STNUs as pairs of polytopes and characterize how far a net-
work is from being controllable given different types of exe-
cution strategies. These metrics naturally relate to the prob-
ability that a network can be successfully dispatched. In that
context, we define optimization problems for determining
the probability of successful dispatch given online/offline
plans, and offer approximate solutions to these problems.

Background
Simple Temporal Networks
A Simple Temporal Network (STN) is a tuple S = 〈T,C〉,
where T is the set of temporal events ti, and C is the set of
binary constraints on T . Each element in C is of the form
tj − ti ≤ cij , for some cij ∈ R (Deichter, Meiri, and Pearl
1991). By convention, the event t0 ∈ T in an STN always
represents a fixed reference point assigned time zero. Be-
cause of this, when we say that an STN has n temporal
events, we really mean that it has n time-points in addition to
this reference event. A solution to the STN is an assignment
of values to the timepoints ti that satisfies all constraints.

Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) is an
STN that explicitly models uncertainty. In an STNU, the set
of events T is partitioned into a set of controllable events T c

and a set of uncontrollable events Tu. An agent is allowed to
schedule specific times for the events in T c, but the times for
events in Tu are determined by “Nature,” a force external to
the agent. For every tj ∈ Tu, there exists a unique ti ∈ T c

forming a contingent constraint of the form tj−ti ∈ [`j , uj ].
We use Cc to denote the set of these contingent constraints,
and Cr to denote the remaining requirement constraints be-
tween events in T . Then an STNU is defined as a quadruple
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Figure 1: An STNU representation of Dr. V’s experiment.

〈T c, Tu, Cr, Cc〉 satisfying the aforementioned properties.
In an STNU, a decision is an assignment of time values to

each of the controllable events. A realization is a selection
of values for contingent edges (relative start times of the un-
controllable events) assigned by Nature. The set of all possi-
ble realizations forms the realization space Ω for the STNU.
If a decision does not violate any of the constraints between
pairs of controllable events, we say the decision is admis-
sible. A decision together with a realization determines a
schedule σ for the network. If σ satisfies all constraints in
the STNU, we call σ a valid schedule.

For example, Dr. V’s experiment from the introduction
can be modeled as an STNU. There are five events of inter-
est: the beginning of the first reaction, the conclusion of this
initial reaction, the addition of chemical Y, the completion of
the subsequent reaction, and the extraction of the precipitate.
If we measure time relative to the experiment’s start, we can
refer to these events as ti, where i ranges from 0 to 4 respec-
tively. Events t0, t2 and t4 are under Dr. V’s control, while
events t1 and t3 are uncontrollable. This STNU representa-
tion of the experiment is depicted in Figure 1. Events in the
network are drawn as nodes. Requirement and contingent
edges are drawn as straight and curvy arrows respectively.
The edges are labeled by intervals indicating the lower and
upper bounds of the STNU’s constraints.

Controllability
An STNU is controllable when an agent has a reasonable
way of working around the uncertainty in the network to
schedule events. Prior research has focused primarily on de-
tecting three types of controllability: strong, dynamic, and
weak. We focus on strong and dynamic controllability only,
since they are important for dispatch. We omit weak con-
trollability from our discussion because it is less relevant
to STNU execution (Vidal and Fargier 1999). Henceforth in
this paper, we use the term “uncontrollable STNU” to refer
to both STNUs that are not strongly controllable and those
that are not dynamically controllable.

An STNU is strongly controllable if there is a single fixed
decision the agent can make that guarantees success regard-
less of how Nature behaves. More formally, a network is
strongly controllable if there exists a decision δ such that
for all ω ∈ Ω, the schedule determined by δ and ω is valid
(Vidal and Fargier 1999). We call such a decision a strong
decision. Using the example from the introduction, one can
check that Dr. V’s experiment is not strongly controllable

because there is no fixed decision she could make to guaran-
tee the experiment’s success before it takes place.

An STNU is dynamically controllable if an agent can al-
ways make decisions in real-time to guarantee success. This
means that during execution, if the agent picks times for con-
trollable events while observing the values taken by all past
events, then there exists a strategy it can follow to find a valid
schedule. A formal definition is given by Hunsberger (2009).
For example, Dr. V’s experiment is dynamically control-
lable, because she could wait until each reaction finishes and
then proceed to the next step immediately. This corresponds
to scheduling t2 = t1 and t4 = t3, and involves “reacting”
dynamically to previously observed timepoints. This strat-
egy guarantees the experiment’s success.

Visualizing Controllability
An STN with n temporal events determines a region in Rn

as follows. Each axis corresponds to the value of a partic-
ular event, and every constraint in the STN is a linear in-
equality, which consequently defines a half-space. The so-
lution space of the STN is the intersection of these half-
spaces, and therefore a convex polytope. If the STN has a
finite makespan – time during which all its temporal events
must occur – then this polytope is bounded. Points within the
polytope correspond to valid schedules of the STN. Previous
research has leveraged this geometric perspective to deter-
mine ways of assessing a network’s flexibility (Huang et al.
2018) and detect weak controllability (Cimatti, Micheli, and
Roveri 2015). Motivated by this, we characterize STNUs as
geometric objects to inform our ideas on controllability.

Geometry of STNUs
An STNU with n controllable events and m uncontrollable
events can be represented geometrically by a pair of regions
P and P ′ in Rn+m, where P ′ ⊆ P . The larger region P is
the set of all schedules (including those outside the solution
space) that can arise from an admissible decision. These are
the situations the agent could find itself in. The smaller re-
gion P ′ is the set of all valid schedules: the situations the
agent desires to end up in.

t1

t2

t3

Figure 2: The polytopes associated with network S.
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Comparing the relative locations of P and P ′ (in particu-
lar, the amount of P that “sticks out” of P ′) gives a sense of
how difficult it is to control for the uncertainty present in the
STNU. This geometric perspective motivates our considera-
tion of volume as a way to measure uncertainty in scheduling
problems. Since P ′ is the shape we get if we treat the STNU
as if it were just an STN, by viewing each contingent edge
as if it were a requirement edge, P ′ is a convex polytope.
Similarly,P is the region formed by the inequalities if we ig-
nore all requirement constraints involving an uncontrollable
event, so it is also a convex polytope. As an example, con-
sider a network S with one uncontrollable event t3 and two
controllable events t1 and t2. This network has requirement
constraints t1−t0 ∈ [0, 8], t2−t0 ∈ [0, 12], t3−t0 ∈ [0, 16],
and t1 − t2 ∈ (−∞, 8], as well as one contingent constraint
t3−t2 ∈ [0, 6]. Using the method we just described, S deter-
mines two polytopes, shown in Figure 2. The entire polytope
is P , while the sub-region in the lower left is P ′.

Geometry of Uncertainty & Controllability
To supplement this geometric view, we associate polytopes
independently to the set of uncontrollable and controllable
events in the network. The regions for uncontrollables and
controllables provide information on the uncertainty and
controllability of the network respectively. Each uncontrol-
lable timepoint depends on a unique contingent edge, and
the possible values each contingent edge can take on form
the realization space Ω defined earlier. If we define U to be
the set of contingent intervals in the STNU, it follows that Ω
is just the Cartesian product of the intervals in U . Geometri-
cally then, Ω is an m-dimensional hyperrectangle.

The set of all strong decisions in an STNU can be deter-
mined in polynomial time (Vidal and Fargier 1999). This
region is determined by tightening each constraint in the
STNU by considering the “worst-case” values for the con-
tingent edges. For example, if τ is a controllable event and
t′ − t ∈ [lt, ut] is a contingent edge, then the original con-
straint τ − t′ ≤ c, involving the uncontrollable t′, would be
replaced with τ − t ≤ c+ lt, a constraint between two con-
trollables. The area determined by these tightened inequali-
ties is the strongly controllable region of the network. This
region is the set of strong decisions, and is a polytope in Rn

since it is described completely by inequalities on the con-
trollable events. The original STNU is strongly controllable
exactly when the strongly controllable region is nonempty.

Beyond Discrete Categories of Controllability
Currently, controllability is categorical—either a network is
strongly/dynamically controllable or it is not. This limited
categorization does not always yield sufficient information
for applications. Ideally, we would like to know the likeli-
hood of success using offline dispatch (in strong controlla-
bility) or online dispatch (in dynamic controllability) meth-
ods for a given temporal network. In practice, the problem
of finding dispatch techniques that maximize probability of
success is infeasible, so we focus on finding good approxi-
mations. We first investigate this idea in the context of strong
controllability. Our “degree of controllability” characteriza-
tion provides a new way to understand and evaluate existing

dispatch and approximate controllability approaches, partic-
ularly in the context of STNUs. Moreover, our geometric
framing offers new insights that allow us to improve pre-
vious approaches for working with STNUs and provides a
more rigorous definition of what it means to be “maximally
strongly controllable.”

Degree of Strong Controllability
In a strongly controllable STNU, execution is simple. The
agent can guarantee success simply by finding and commit-
ting to a single strong decision. This makes strong control-
lability a highly desirable property for STNUs. When a net-
work is not strongly controllable, the traditional approach
has been to check for dynamic controllability and, if this
check is successful, seek out a dynamic execution strategy
for dispatch. Any such strategy necessarily keeps track of
when uncontrollable events occur, and is thus more compli-
cated than pre-committing to one particular decision. Appli-
cations that require offline planning or low-overhead are not
amenable to these more involved strategies. In these cases,
it is useful to understand how controllable a network is, be-
cause it may be worthwhile to pre-commit to a single deci-
sion if the agent knows this will yield successful execution
most, even if not all, of the time.

For instance, we observed earlier that Dr. V could ensure
her experiment runs successfully by scheduling t2 and t4 as
soon as the times for t1 and t3 are realized. This plan re-
quires Dr. V to stay in the lab and monitor all reactions, so
she can act as soon as they terminate. Suppose however, that
Dr. V is busy the morning of the experiment. She would pre-
fer to pick fixed times beforehand to schedule t2 and t4, so
she could drop by the lab at only those specific times, and
attend to other tasks during the rest of the experiment. As
noted earlier, the experiment is not strongly controllable, so
there is no such fixed strategy Dr. V could employ to guar-
antee success. However, if Dr. V sets t2 = 30 and t4 = 65, it
turns out that the experiment has greater than a 90% chance
of success (this admissible decision guarantees success if the
first reaction does not take over thirty minutes). This proba-
bility might be high enough that, even though success is not
guaranteed, Dr. V will employ this simpler offline strategy.
Definition. Let S be an STNU with realization space Ω. For
a given subset Ω′ of Ω, we let S′ denote the network with
the same required constraints as S, but realization space Ω′.
Then the Degree of Strong Controllability (DSC) for S
is a continuous, 0-dimensional metric (i.e., value in [0, 1])
defined as the maximum possible value of

Vol (Ω′)

Vol (Ω)

taken over all axis-parallel hyperrectangles Ω′ ⊆ Ω such
that S′ is strongly controllable. Here, Vol (·) measures the
volume of a region.

If we interpret contingent constraints as representing uni-
form uncertainty, the DSC is intuitively the probability that
S “ends up” being controllable. In this way, the degree
measures the maximum proportion of the realization space
that an execution strategy could account for. Networks with
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lower degrees are “less controllable”, while networks with
degrees closer to 1 have a fixed decision that is likely to yield
successful execution. For example, a strongly controllable
STNU has DSC equal to 1. Because Ω′ is a hyperrectangle,
it is the Cartesian product of m intervals, each of which is
necessarily a subinterval of one of S’s contingent intervals
(otherwise Ω′ would not be a subset of Ω). We denote the
collection of these intervals by U ′, and observe that this col-
lection uniquely determines Ω′ (and vice-versa).

The DSC of an STNU is a lower bound on the maximum
probability of obtaining a valid schedule for the given net-
work by committing to an admissible decision before any
events have executed. This is because there always exists
a decision that can be paired with every realization in Ω′

(which is a subset of Ω) to create a valid schedule. So, by
comparing Ω′’s volume to Ω’s volume, we are calculating
the proportion of time that a random realization yields a
valid schedule when paired with an admissible decision.

Estimating DSC
To compute the DSC, it suffices to find an Ω′ of maximum
volume such that S′ is strongly controllable. The strong con-
trollability of S′ can be verified by checking whether a set
of linear constraints are satisfied (Vidal and Fargier 1999).
However, solving this general problem is difficult, since
maximizing a nonlinear polynomial over linear constraints
is NP-hard (Motzkin and Straus 1965). Thus we propose our
approximation method for finding the optimal Ω′.

Degree of Strong Controllability Linear Program (DSC-
LP): Our DSC-LP is adapted from the maximum subin-
terval problem discussed by Wilson et al. (2014). The goal
of DSC-LP is to find a set of contingent subintervals U ′ that
approximately maximize the volume of Ω′ and a fixed deci-
sion that ensures success in the associated STNU S′. Given
an STNU, S = 〈T c, Tu, Cr, Cc〉, a set of maximal subinter-
vals for S can be obtained by solving the following LP:

minimize:
∑
t∈Tu

ε−t + ε+t
ut − lt

subject to: t− ≤ t+ ∀t ∈ Tu (1)

t− = t+ ∀t ∈ T c (2)

t+ − t′− ≤ c ∀(t− t′ ≤ c) ∈ Cr (3)

t− − t′− = lt + ε−t ∀(t− t′ ≥ lt) ∈ Cr (4)

t+ − t′+ = ut − ε+t ∀(t− t′ ≤ ut) ∈ Cr (5)

ε−t , ε
+
t ≥ 0 ∀t ∈ Tu (6)

t−0 = t+0 = 0 (7)

Like Wilson et al., we introduce two variables t− and
t+ for each event t, representing the lower bound and up-
per bound of the time interval in which event t occurs and
constrain these variables so that they respect all requirement
constraints (lines 1-3,7). Our LP differs from (Wilson et al.
2014) in three key ways. First, it allows us to modify the
upper and lower bounds of contingent intervals by different
amounts (lines 4-6). We do this by introducing two variables

ε−t and ε+t for every contingent constraint t − t′ ∈ [lt, ut],
which represent the amount the lower and upper bounds of
the original contingent interval are tightened by to guaran-
tee strong controllability. The resulting contingent subinter-
val becomes t− t′ ∈ [lt + ε−t , ut− ε+t ]. Second, our LP sets
t− = t+ for all t ∈ T c. By doing this, we are guaranteed
to have a specific schedule returned by the LP. The third and
final way our LP differs from the original is that it uses a
new objective function, which sums the amount each con-
tingent interval is decreased by, normalized by its original
length. Let `t = ut − lt denote the uncontrollable timepoint
t’s contingent interval length, and let εt = ε+t + ε−t be the
amount that interval is shrunk by. Then, the objective func-
tion is equal to ∑

t∈Tu

εt
`t
.

This choice is motivated by considering the amount of vol-
ume lost

f(ε) =
∏
t∈Tu

`t −
∏
t∈Tu

(`t − εt)

in going from Ω to Ω′ as a function of the εt variables, and
setting the objective function equal to a constant multiple of
the gradient ∇f evaluated at ε = ~0. Thus, minimizing the
objective function corresponds to minimizing the first order
approximation of the amount of volume lost by shrinking the
contingent intervals.

Since Ω and Ω′ are the Cartesian products of elements in
U and U ′ in this case, the volumes of these regions are just
the product of lengths of the intervals in U and U ′ respec-
tively. Our LP yields a choice of U ′, so the solution to our
LP provides an approximate value for DSC. Moreover, the
values taken on by t+ variables, for t ∈ T c, in the optimal
solution of DSC-LP determine a decision for the network
that is a strong decision for the S′. We call a decision re-
turned by our LP in this way a strong-LP decision for the
network. If a network has high DSC, the strong-LP decision
is likely a good strategy for this network.

There are other natural choices of LPs one could use to
approximate DSC. For example, we could minimize the to-
tal amount of uncertainty removed (as Wilson et al. (2014)
does), minimize the maximum amount of uncertainty re-
moved from a single contingent interval, or maximize the
minimum length over all contingent subintervals. An em-
pirical comparison of these methods, not reproduced here,
shows that the DSC-LP provides better approximations than
these other approaches. In particular, the use of volume as
probability, motivated by the relationship between Ω and P
and P ′, seems more effective than looser heuristics and met-
rics like flexibility for estimating robustness.

Related Approaches
The DSC is related to previous work done on dispatch
rates of Probabilistic STNs (PSTNs) (Tsamardinos 2002;
Brooks et al. 2015). PSTNs augment the STNU framework
by providing probability distributions over the uncertain
duration of contingent edges, which allows evaluating ap-
proaches in terms of risk, the probability a dispatch strategy
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might fail to successfully execute, or robustness, the proba-
bility of execution success. Indeed, there are many existing
approximate approaches for minimizing risk, all of which
appeal to the idea of reducing the problem to a strongly con-
trollable STNU that maximizes likelihood of successful dis-
patch (Fang, Yu, and Williams 2014; Santana et al. 2016;
Lund et al. 2017). Thus, our DSC can be considered as the
‘robustness’ of a special case of PSTNs, where all contingent
constraints have a uniform distribution with a fixed interval.
However, our work is the first to characterize and empiri-
cally compare against (see the Empirical Evaluation section)
a theoretically optimal solution to this problem.

Degree of Dynamic Controllability
Although strong controllability is valuable because it allows
an agent to rely on a static schedule, dynamic controllability
applies to a wider range of STNUs (i.e., all strongly control-
lable networks are dynamically controllable, but not vice-
versa). In cases where an STNU is not dynamically con-
trollable, an agent may still wish to attempt to dispatch the
schedule. For, even when success is not guaranteed, if the
probability of successful execution is high enough, dispatch-
ing on an uncontrollable network may be worthwhile. To as-
sess how safe it is to attempt dispatch, the agent will need
some measure of how dynamically controllable the network
is. This motivates the following definition.
Definition. Let S be an STNU with realization space Ω. For
a given subset Ω′ of Ω, we let S′ denote the network with
the same required constraints as S, but realization space Ω′.
Then the Degree of Dynamic Controllability (DDC) for S
is defined to be the maximum possible value of

Vol (Ω′)

Vol (Ω)

taken over all Ω′ ⊆ Ω such that S′ is dynamically control-
lable and where Vol (·) measures the volume of a region.

The key distinction between the DDC and the DSC is that
Ω′ is allowed to be any measurable subset of Ω. In par-
ticular, Ω′ is not constrained to be an axis-parallel hyper-
rectangle. This means that the network S′ is not necessarily
an STNU (which always has a hyperrectangular realization
space) in the traditional sense, and instead is more accurately
described as an STN together with contingent edges and
a realization space. The values taken on by the contingent
edges of such a network are determined by randomly sam-
pling from the space Ω′ (so that in this more general setting,
the values taken by the contingent edges are not necessarily
independent). This notion can be formalized appropriately.
However, because it would lead us too far astray from the
main goals and results of this paper, we avoid describing a
complete definition of these “generalized STNUs.”

We first show how we can lower bound the DDC by solv-
ing a particular type of temporal relaxation problem. This
is done using Algorithm 1, which optimally relaxes a net-
work’s constraints until it is dynamically controllable. From
here, we compute Ω′’s volume simply by multiplying the
weights of the relaxed contingent intervals, as we did when
computing the DSC. This is equivalent to approximating the

volume of the optimal Ω′ using an inscribed hyperrectan-
gle. In general this method underestimates the true maxi-
mum volume, so in the second subsection we improve this
predicted probability via a normal approximation technique,
and then conclude by discussing related approaches.

Optimal Dynamic Controllability Relaxations
Dynamic controllability of STNUs can be checked in poly-
nomial time (Morris and Muscettola 2005). The fastest cur-
rent algorithms for determining DC search for a conflict: a
series of constraints that, when taken together, cannot simul-
taneously be satisfied by any dynamic execution strategy.
Previous work characterized conflicts as a special type of
negative cycle occurring in the labeled distance graph of an
STNU (Morris 2006).

Bhargava, Vaquero, and Williams (2017) built off this
work and introduced a cubic algorithm to extract conflicts
from networks. They identified conflicts with the aim of
solving temporal relaxation problems. A relaxation problem
involves taking an uncontrollable network and determining
how to relax the network’s constraints in a minimal fashion
to produce a new, controllable network.

In our context, where relaxing requirement constraints is
not permitted, an STNU conflict consists of a set of contin-
gent edges, together with a resolution constant κ that indi-
cates the total amount the contingent edges must be shrunk
by to resolve the conflict (the latter can be obtained from
an identified conflict). We now present a solution (presented
as Algorithm 1) to our version of the relaxation problem,
where only contingents can be relaxed (by shrinking their
intervals). If we have an STNU with only one single con-
flict, our solution is optimal in the sense that it shrinks inter-
vals to minimize the amount of volume of Ω lost while still
resolving the conflict.

Suppose the conflict consists of intervals I1, I2, . . . , Ip
with respective lengths `1 ≤ `2 ≤ · · · ≤ `p. We want to
shrink each interval Ij to an interval of length `′j such that
the sum of the `′js is less than or equal to the quantity

`′ =

 p∑
j=1

`j

− κ
since this is exactly what it means for the conflict to be re-
solved. Thus, resolving the conflict while maximizing the
volume of the reduced realization space is equivalent to find-
ing values `′j ∈ [0, `j ] with

∑p
j=1 `

′
j = `′ that maximize the

product
∏p

j=1 `
′
j . This optimization problem has an analytic

solution, which we now describe. Let q be the smallest index
such that

`′ ≤ `1 + `2 + · · ·+ `q−1 + (p− q + 1)`q. (8)

Then taking `′j = `j for j < q and

`′j =
`′ − `′1 − · · · − `′q−1

p− q + 1

for j ≥ q solves the maximization problem. In this solution,
the largest contingent intervals are all shrunk to the same
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size, while smaller intervals are left alone. Intuitively, the
solution reduces the realization space to make it look more
like a hypercube.

Algorithm 1: Optimal Relax (ODC-RELAX) Strategy
Input : conflicts, a sorted list of contingent intervals

in the detected STNU conflict
Input : κ, resolution constant
Var : p, length of conflicts
Var : `, a list in which `[j] is the length of the

contingent interval, conflicts[j]
Initialization :

1 relaxations← {};
2 S ← sum(`[1...p])− κ ;
3 q ← None;

OPTIMALRELAX
4 for j ← 1 to p do
5 s← sum(`[1..j]) + (p− j + 1) ∗ `[j];
6 if s ≥ S then
7 q = j;
8 break;

9 A← (S − sum(`[1..q]))/(p− q + 1);
10 for j ← 1 to p do
11 edge← conflicts[j];
12 relaxations[edge]← j < q? `[j] : A;
13 return relaxations;

We prove optimality by induction on q. When q = 1, all of
the `j are less than or equal to `′/p by definition of q. Now,
the AM-GM inequality asserts that for a list of nonnegative
reals with a fixed sum, the product is maximized when all
the numbers are equal. So, setting `′j = `′/p satisfies the
constraints and maximizes the product in this scenario.

Now take some fixed q > 1, and suppose the result is cor-
rect for all integers less than q. We claim there exists an op-
timal choice of the `′j with `′1 = `1. Suppose to the contrary
this were not true. Then, take an optimal selection of val-
ues `′1, `

′
2, . . . , `

′
p (this exists because the domain of the `js

is compact). If `′1 < `1 in this assignment, then (8) implies
that there must exist an index k with `′k ≥ `1. It follows that
there exists a small positive ε for which replacing `′1 with
`′1 + ε and `′k with `′k − ε preserves the sum of the `′j while
increasing their product. This contradicts the optimality of
our initial choice, so `′1 = `1 as claimed. Now the problem
the problem reduces to maximizing

∏p
j=2 `

′
j subject to the

constraint that
∑p

j=2 `
′
j = `′ − `1. Finally, using the induc-

tive hypothesis proves that our claimed solution is optimal.

Optimality is guaranteed only for networks with a single
conflict. In the case of multiple conflicts our algorithm is
unlikely to yield a globally optimal solution. However, our
“greedy” approach of minimizing volume lost at each step
remains a useful heuristic for resolving conflicts while min-
imizing probability mass lost through relaxation.

Estimating DDC

Although solving relaxation problems is useful, we are
also interested in accurately computing the probability of
successful dispatch with a dynamic execution strategy.
Previous research has attempted to measure this likeli-
hood (called “robustness” in the literature) by relaxing to
strongly/dynamically controllable networks. As noted in
(Cui et al. 2015) however, the volume of the realization
space in a relaxed network does not accurately estimate the
relevant probability, but instead bounds it below. The relax-
ation approach underestimates the probability too severely
to compute DDC.

a1

a2

Figure 3: The realization space for S ′. The inner box, the
realization space of the relaxed network, underestimates the
volume of realizations that lead to valid schedules.

For example, consider an STNU S ′ with two uncontrol-
lables t1 and t3, and one controllable event t2. This network
has requirement constraints t1 − t2 ≤ 0 and t3 − t0 ≤ 3,
along with contingent constraints t1 − t0 ∈ [0, 2] and
t3 − t2 ∈ [0, 2]. Network S ′ is not dynamically control-
lable, but by inspection we see that the optimal execution
strategy schedules t2 = t1. In this case, if a1 = t1 − t0 and
a2 = t3 − t0 denote the realized lengths of the contingent
edges, then as depicted in Figure 3 our schedule succeeds
exactly when a1 + a2 ≤ 3, which happens 87.5% of the
time. In contrast, if we wanted to relax S ′ to get a dynam-
ically controllable network while maximizing volume, both
intervals for the contingent edges would shrink from [0, 2]
to [0, 3/2]. This shrunk realization space takes up 56.25%
of the original volume, which is significantly smaller than
the true probability of succeeding during dispatch. As a side
note, this effect tends to be even more prominent in higher
dimensions – geometrically, this is because inscribed hyper-
rectangles are bad at approximating volumes of simplices.

Motivated by the above example, we leverage the notion
of conflicts to directly approximate the probability of suc-
cessful dispatch using the normal approximation to DDC.
Suppose we have an STNU with a single conflict prevent-
ing it from being dynamically controllable. Carry over the
notation from the previous section and additionally let aj
denote the difference between the realized value during dis-
patch and the lower bound of the contingent interval Ij for
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j = 1, 2, . . . , p. Then if the inequality
p∑

i=1

ai ≤ `′

holds, the conflict is “avoided” in the sense that the observed
realization could have come from a controllable STNU. This
idea, that dynamic execution strategies succeed if conflicts
are avoided during dispatch, is the crucial insight that al-
lows us to estimate the DDC. We may view each aj as an
independent random variable drawn from the uniform dis-
tribution on [0, `j ]. Then the Central Limit Theorem implies
that the sum of the aj (the left hand side of the above in-
equality) can be approximated as coming from a normal
distribution N (µ, σ2), where µ = (`1 + · · ·+ `p) /2 and
σ2 =

(
`21 + · · ·+ `2p

)
/12 are the sums of the means and

variances of the ajs respectively. Thus the probability the
above inequality holds can be computed using the standard
normal CDF Φ. For uncontrollable STNUs with a single
conflict, the normal approximation accurately estimates the
probability of successful dispatch. In the case of multiple
conflicts we use the normal approximation to estimate the
probabilities of avoiding each conflict separately, and then
multiply the obtained probabilities. Taking this product im-
plicitly treats each conflict as if it were independent of the
others (no sharing contingent edges among conflicts). Be-
cause conflicts are not generally independent, this technique
should behave worse in networks with multiple conflicts.
However, as detailed in our empirical evaluation, the normal
approximation is still useful in these cases.

Related Approaches
The ODC-RELAX algorithm builds on top of work done by
Cui et al. (2015). Those authors use a mixed integer LP to
solve a broad range of relaxation problems related to dy-
namic controllability. Our approach tackles a specific vari-
ant of their general formulation, but in this special case ob-
tains an analytic solution that is provably, locally optimal
and can be computed in O(p log p) time for an STN with p
conflicts. Moreover, ODC-RELAX can naturally be used as
a subroutine in the conflict-directed search methods in (Yu,
Fang, and Williams 2014) and the RELAXSEARCH method
of Bhargava, Vaquero, and Williams (2017) to augment ex-
isting algorithms.

Although work done by (Yu, Fang, and Williams 2015)
also evaluates the probability of successful dispatch in a
dynamic controllability setting, to the best of our knowl-
edge, our normal approximation for DDC is the first known
approach for estimating the rate of online dispatch with-
out appealing to relaxations and nonlinear solvers. Because
our definition of DDC does not constrain the shape of Ω′,
it effectively captures the notion of robustness geometri-
cally. Note that in our framework, we assume agents in net-
works are mandated to satisfy all requirement constraints,
so that violating any one constraint is just as bad as vio-
lating all constraints simultaneously. This is consistent with
the methodology of Yu, Fang, and Williams (2015), but con-
trasts with previous work (Cui et al. 2015; Yu, Fang, and
Williams 2014; Bhargava, Vaquero, and Williams 2017) that

allows both requirement and contingent constraints to be re-
laxed, and research (Rossi, Venable, and Yorke-Smith 2003)
that maximizes the number of constraints satisfied under
preference schemes.

Empirical Evaluation
To evaluate our approaches1 for assessing DSC and DDC,
we ran experiments on STNUs derived from the PSTNs pro-
vided in the publicly available ROVERS and CAR-SHARING
datasets (Santana et al. 2016). Each PSTN in the ROVERS
dataset was converted to an STNU by replacing contingent
edges drawn from N (µ, σ2) with intervals [µ − 2σ, µ +
2σ]. Uniformly distributed contingent edges were preserved.
STNUs derived from the ROVERS dataset were used to eval-
uate DSC. The PSTNs from CAR-SHARING were converted
to STNUs by preserving the network structure, but varying
the lengths of edges to keep the derived STNUs consistent
yet not dynamically controllable.

Success Rate of DSC-LP Decision
We examine how well our DSC metric actually measures
success rate for the strong-LP decision. For each STNU, we
solved the DSC-LP for that network. We took the decision
returned by the program and used it as a dispatch strategy.
After sampling uniformly from the contingent edges, we
picked random realizations 50, 000 times for each STNU.
Then, we recorded the success rate as the proportion of
the time the strong-LP decision, together with a random
realization, led to a valid schedule. This will determine if
the strong-LP decision produces better-than-average success
rates (compared to other decisions) when used during exe-
cution. In Figure 4a this success rate is plotted against the
approximate DSC value returned by the DSC-LP. The graph
displays a clear linear trend (r = 0.999), showing that the
LP-predicted DSC of an STNU closely matches the rate of
successfully executing the network using the strong-LP de-
cision. This also validates the notion that the strong-decision
produces better than average execution results when paired
with a realization. Next, we discuss how our LP-predicted
DSC compares with the true degree of strong controllability.

Optimality of LP-DSC
We now check how accurate our DSC-LP approximation is
by comparing it to the true optimization problem of maxi-
mizing volume. Selecting subintervals to maximize volume
is a nonlinear optimization problem. We solved these prob-
lems using Baron optimization software accessed through
the NEOS server (Dolan 2001; Tawarmalani and Sahinidis
2005) to compute the true DSC for all problem instances. We
compared this value against the approximate degree found
using the LP. 4b demonstrates the correlation between our
LP-predicted DSC approximation and the solution to the
optimization problem. It demonstrates that at low degrees
of strong controllability our LP may underestimate the de-
gree, but at values greater than 0.5 the LP approximation
is extremely accurate (r = 0.996). This result is consistent

1All code and problem instances available for download from
https://github.com/HEATlab/Prob-in-Ctrl
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(a) LP-Strong Decision vs. Predicted DSC (b) True DSC vs. DSC-LP. (c) Dispatch Success vs. Approximate DDC

Figure 4: Evaluation of approximate DSC and DDC metrics.

with our expectation that the approximation method works
best for STNUs with high DSC values. Although DSC-LP is
slightly less accurate at lower DSC values, when our approx-
imation method returns a low value for the DSC we expect
the true DSC to be low as well. In these cases where the DSC
is quite low, committing to a fixed decision is never a good
strategy to employ, so the lack of precision in these cases is
perhaps not so concerning. We are more interested in net-
works where we can pre-commit to a decision that yields
successful execution most of the time, and 4b shows that the
LP does give accurate approximations for those STNUs. We
note that DSC-LP seems to perform better on networks that
are dynamically controllable than those that are not. It is not
clear why this pattern holds, but it might be an artifact of
DSC-LP being more suited to STNUs with the structure of
networks from ROVERS rather than CAR-SHARING.

Success Rate of Approximate DDC
Finally, we examine how well our estimate of DDC mea-
sures the actual success rate of STNU dispatch. For each
STNU, we computed the estimate of DDC using the normal
approximation method. To measure the dispatch rate em-
pirically, we used the early-first dispatch strategy discussed
in (Nilsson, Kvarnström, and Doherty 2014) on all uncon-
trollable STNUs derived from the datasets. This strategy
is guaranteed to succeed on dynamically controllable net-
works, and thus was a natural choice for testing a network’s
DDC. In each trial, we simulated online dispatch 50, 000
times (with realizations chosen randomly). Success rate was
recorded as the proportion of the time we obtained a valid
schedule. In 4c, success rate is plotted against against the
approximate DDC. The graph displays a clear linear trend
(r = 0.952), indicating that the normal approximation to
DDC accurately tracks the actual success rate. The approach
also worked well for STNUs that had multiple separate con-
flicts, marked as darker points in the graph.

For two outliers in the bottom right corner of the plot, the
normal approximation seems to drastically overestimate the
success rate. In those two instances, after we employed a dif-
ferent dispatch strategy which waited longer before schedul-
ing certain events, the success rates for the two STNUs were
within 2% of the normal approximation. So even in these
cases, the predicted DDC matches the maximum success rate

achievable with dynamic strategies. In the few other cases
where the normal approximation method overestimated the
empirical success rate, it is possible that the variant of the
early first strategy we used was not the optimal choice.

Conclusion
In this paper, we applied a geometric view of STNUs and
expanded the notion of controllability to a continuous mea-
sure. These new degrees of strong and dynamic controllabil-
ity assess how far an STNU is from being controllable. We
used this definition in the cases of strong and dynamic con-
trollability to produce the Degree of Strong Controllability
(DSC) and the Degree of Dynamic Controllability (DDC)
metrics, which provide information on the maximum prob-
ability of success using certain types of offline and online
strategies respectively. In doing so, we found an efficient LP
for approximating DSC, presented a locally optimal solution
to a variant of the relaxation problem discussed by Bhar-
gava, Vaquero, and Williams (2017), and provided a normal
approximation method for estimating DDC. These contribu-
tions present a unified, geometric way of tracking the robust-
ness of networks in the context of controllability.

In the future, it would be interesting to define a continuous
metric that interpolates between strong, dynamic, and weak
controllability. Although these metrics extend the definition
of controllability in useful ways, they currently draw no di-
rect connection between strong and dynamic controllability.
That is, even though strong controllability implies dynamic
controllability, the DSC value does not provide any informa-
tion about whether a network is dynamically controllable.
This could yield an explicit way of classifying states inter-
mediate between dynamic and strong controllability and of-
fer a more refined way of comparing different networks. In
addition, the constructions presented in this paper can likely
be extended to apply to PSTNs. Currently, our work with
the DDC relies on the assumption that all contingent links
have uniform probability distributions. However, our nor-
mal approximation method is still applicable in cases where
uncertainty is drawn from non-uniform distributions, and it
would be interesting to modify the approach to work in more
general settings. Furthermore, while our LP returns a deci-
sion that tends to yield a successful execution for networks
with a high DSC, we have no way of generating such an on-
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line dispatch strategy for networks with a high DDC. Future
work in this subject could focus on developing an algorithm
that returns a good decision for a dynamic execution strat-
egy. Doing so would greatly improve the planner’s ability
to ensure successful dispatch. Lastly, our relaxation algo-
rithm and normal approximation for the DDC currently do
not handle STNUs with multiple conflicts well, as they over-
looks the possibility of conflicts sharing contingent edges.
Further work could attempt to figure out how to contend with
these dependencies between conflicts in a way that more ac-
curately assesses the probability of successful dispatch.
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