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Abstract

We introduce the Multiagent Disjunctive Temporal Prob-
lem (MaDTP), a new distributed formulation of the
widely-adopted Disjunctive Temporal Problem (DTP)
representation. An agent that generates a summary of all
viable schedules, rather than a single schedule, can be
more useful in dynamic environments. We show how a
(Ma)DTP with the properties of minimality and decom-
posability provides a particularly efficacious solution
space summary. However, in the multiagent case, these
properties sacrifice an agent’s strategic interests while
incurring significant computational overhead. We intro-
duce a new property called local decomposability that
exploits loose-coupling between agents’ problems, pro-
tects strategic interests, and supports typical queries. We
provide and evaluate a new distributed algorithm that
summarizes agents’ solution spaces in significantly less
time and space by using local, rather than full, decom-
posability.

1 Introduction
Computational scheduling agents can assist people in man-
aging and coordinating their activities in environments in
which tempo, a limited (local) view of the overall problem,
and complexity can outstrip people’s cognitive capacity. As
an example, imagine the scheduling operations at three man-
ufacturing plants whose scheduling considerations interact
due to a truck that must make deliveries to each location by a
predetermined deadline. Not only might each manufacturing
plan have complex internal scheduling considerations, but
the truck must also determine the order in which to visit the
three locations, where each order may have different implica-
tions on travel and processing time due to things like traffic
congestion and the overhead involved in reshuffling inventory
inside the truck.

Scheduling agents that dispatch advice based on a single
schedule, however, may be brittle to the dynamics involved in
the problem (due to durational uncertainty, exogenous events,
additional planning by other agents, etc.). A more robust ap-
proach for dealing with dynamism in scheduling applications
is to instead consider the set of all feasible schedules. As we
will show, a representation with the properties of minimality
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and decomposability helps an agent maintain the solution
space so as to efficiently answer queries. An agent using a
minimal representation can efficiently respond to queries of
the form “When can I start activity A?” or “How much time
do I have to complete activity B before I need to start activity
C?” with the exact set of feasible values. An agent using a de-
composable representation can efficiently respond to queries
involving sets of activities and also propagate newly arriving
dynamic constraints (e.g., that specify the actual start time
or duration of an activity) so that minimality, and thus the
integrity of the advice it dispatches, is retained.

Often, the schedules of multiple agents interact. For exam-
ple, the scheduling agent of the delivery truck may need to
coordinate with agents responsible for scheduling operations
at each location. Representing the set of all feasible joint
schedules becomes much more complex. Not only does the
number of joint schedules grow exponentially with each ad-
ditional agent, but generating joint schedules for every even-
tuality that could arise may also compromise the strategic
interests (privacy, autonomy, etc.) of individual scheduling
agents and introduce significant computational overhead.

In this paper, we define the Multiagent Disjunctive Tem-
poral Problem (MaDTP), which is a multiagent, distributed
generalization of the Disjunctive Temporal Problem (DTP)
(Stergiou and Koubarakis 2000), and is capable of capturing
general types of multiagent scheduling problems. We extend
the properties of minimality and decomposability to the more
general (Ma)DTP and introduce local decomposability, an
approximation of decomposability that exploits the idea that,
for many loosely-coupled problems, only an exponentially
small portion of an agent’s local solution space will affect the
global problem. We empirically show that our distributed al-
gorithm for computing locally decomposable solution spaces
yields significant speedup over centralized algorithms that
compute the globally decomposable solution space.

2 Background
In this section, we present a family of constraint-based
scheduling problem formulations from which our definition
of the Multiagent Disjunctive Temporal Problem inherits.
Dechter, Meiri, and Pearl (1991) defined the Simple Tem-
poral Problem (STP), S = 〈V,CS〉, as a set of timepoint
variables, V , and a set of temporal difference constraints, CS .
Each temporal difference constraint cij ∈ CS is of the form
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vj − vi ∈ [−bji, bij ], where vi and vj are distinct timepoints
and bji, bij ∈ R form real (possibly infinite) lower and upper
bounds on the difference between vj and vi. Each timepoint
variable, vi, represents an event, and has a continuous nu-
meric domain of times (e.g., clock times) formed implicitly
by a constraint between vi and z, a special zero timepoint
denoting the start of time. An STP instance is consistent if
it contains at least one solution, which is an assignment of
specific time values to all timepoint variables that respects
all constraints to form a schedule. To exploit extant graphical
algorithms and efficiently reason over the simple temporal
network (STN), each STP is associated with a distance graph,
where each variable, vi ∈ V , is represented by a vertex and
each constraint, cij ∈ CS , is represented by a directed edge
from vi to vj weighted by its associated constraint bounds.
The Multiagent Simple Temporal Problem (MaSTP) estab-
lishes how an STP representation can be distributed among n
agents using n local STP subproblems, one per agent, and a
set of external constraints that establish relationships between
subproblems of different agents (Boerkoel and Durfee 2010).

The Disjunctive Temporal Problem (DTP) (Stergiou and
Koubarakis 2000),D = 〈V,CD〉, specifies a more general set
of disjunctive constraints, CD, where cy ∈ CD takes the form
d1 ∨ d2 ∨ · · · ∨ dk, and each dz = vjz − viz ∈ [−bjiz , bijz ].
These constraints represent a disjunctive choice among k
possible temporal difference constraints, each with its own
bounds expressed over (possibly different) pairs of timepoints.
A labeling, `, of a DTP, is the component STP formed by
selecting a disjunct (temporal difference) for each disjunctive
constraint. A schedule s, then, is a solution to a consistent
DTP instance iff it is the solution to at least one of its compo-
nent STPs. For general DTPs with |CD| constraints of arity k,
there areO(k|CD|) possible labelings, each of which must be
explored in the worst case, which, as the number of disjunc-
tive constraints grows, makes the DTP an NP-hard problem.
Each component STP, however, can be evaluated in poly-
nomial time, putting the DTP in the class of NP-complete
problems. The Temporal Constraint Satisfaction Problem
(TCSP) (Dechter, Meiri, and Pearl 1991), T = 〈V,CT 〉, is a
well-studied special case of a DTP where all disjuncts of a
given constraint are expressed over the same pair of variables.
The STP is also a special case of the DTP (and TCSP) where
k = 1. Thus, CS ⊆ CT ⊆ CD and so, STP ⊆ TCSP ⊆ DTP.

All of these constraint-based scheduling representations
share the principle that consistent problem instances implic-
itly represent a space of solutions. There are two properties of
problems’ corresponding temporal constraint networks that
are particularly useful for representing spaces of solutions
explicitly. A minimal constraint cij is one whose interval(s)
exactly specify the set of all feasible values for the difference
vj − vi. A temporal network is minimal iff all of its con-
straints are minimal and establishes the exact space of values
for each timepoint and constraint that can lead to solutions.
An important complement to minimality, decomposability
facilitates the maintenance of minimality by capturing con-
straints that, if satisfied, will lead to global solutions. A tem-
poral network is decomposable if any assignment of values
to a subset of timepoint variables that is locally consistent
(satisfies all constraints involving only those variables) can

be extended to a solution (Dechter, Meiri, and Pearl 1991).
The STN represents a special case where both minimal-

ity and decomposability can be established efficiently (in
O(|V |3)) by applying an all-pairs-shortest-path algorithm,
such as Floyd-Warshall (1962), to the distance graph. This
finds the tightest possible path between every pair of time-
points, forming a fully-connected graph that explicitly rep-
resents the STP’s solution space. Partial path consistency
approximates decomposability by calculating minimality for
a subset of constraints that form a chordal (multiagent) tem-
poral network; this sparser representation is more efficient to
maintain, but contains less information and limits decompos-
ability to subsets of variables belonging to the same clique
(Xu and Choueiry 2003; Planken, de Weerdt, and van der
Krogt 2008; Boerkoel and Durfee 2010). Generally, estab-
lishing minimality and decomposability for the TCSP, and
thus DTP, is NP-hard (Dechter, Meiri, and Pearl 1991).

3 Multiagent Disjunctive Temporal Problem
While we could solve scheduling problems like the one intro-
duced in Section 1 as a single DTP, each business may have
computational and other strategic reasons for maintaining
and reasoning over its information independently such that
each location has its own scheduling agent to ensure sched-
uled delivery times align with internal operations. Next, we
define a variation of the DTP that captures the distributed,
multiagent nature of our example problem.

3.1 Problem Formulation
Our definition of the Multiagent Disjunctive Temporal
Problem (MaDTP) parallels the definition of the MaSTP
(Boerkoel and Durfee 2010). The MaDTP is informally com-
posed of n local DTP subproblems, one for each of n agents,
and a set of external constraints, CX , which are disjunctive
temporal constraints that relate the local subproblems of dif-
ferent agents. An agent i’s local DTP subproblem is defined
as DiL =

〈
V i
L, C

i
L

〉
, where V i

L is agent i’s set of local vari-
ables and partitions all timepoints into the subset assignable
by agent i (and may include agent i’s reference to z), and CiL
is agent i’s set of local constraints, where each cy ∈ CiL is
specified exclusively over local variables.

Agent i is also aware of its external constraints CiX ,
where each disjunctive temporal constraint c ∈ CiX is spec-
ified over at least one variable vi ∈ V i

L and one variable
vj ∈ V j

L , i 6= j, and of its external variables V i
X , where

each vj ∈ V i
X appears in at least one of agent i’s external

constraints, but is local to some other agent j 6= i. Agent i’s
set of known variables is V i =

{
V i
L ∪ V i

X

}
and agent i’s set

of known constraints is Ci =
{
CiL ∪ CiX

}
.

More formally, then, an MaDTP, D, is defined as the set
of agent DTP subproblems, D =

{⋃
iDi

}
, where Di =〈

V i, Ci
〉
. V =

{⋃
i V

i
L

}
is the set of all variables and C ={⋃

i

{
CiL ∪ CiX

}}
is the set of all constraints. A schedule

s is a solution to D iff it is a solution to the component
MaSTP corresponding to one of D’s labelings. There are
O(k|C|) (≈ O(ka·|CL|) where a is the number of agents)
possible labelings, each of which must be explored in the
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EST Deadline Min. Duration Nonconcurrency Transition (external)
Loc. A z − TA

ST ≤ −60; TA
ET − z ≤ 300; TA

ST − TA
ET ≤ −30; TA

ET −MA
ST ≤ 0 ∨ TA

ET − TB
ST ≤ −60 ∨

z −MA
ST ≤ 0; MA

ET − z ≤ 480; MA
ST −MA

ET ≤ −300; MA
ET − TA

ST ≤ 0; TB
ET − TA

ST ≤ −90;
Loc. B z − TB

ST ≤ −75; TB
ET − z ≤ 360; TB

ST − TB
ET ≤ −30; TB

ET −MB
ST ≤ 0 ∨ TB

ET − TC
ST ≤ −90 ∨

z −MB
ST ≤ 0; MB

ET − z ≤ 480; MB
ST −MB

ET ≤ −120; MB
ET − TB

ST ≤ 0; TC
ET − TB

ST ≤ −120;
Loc. C z − TC

ST ≤ −90; TC
ET − z ≤ 420; TC

ST − TC
ET ≤ −30; TC

ET −MC
ST ≤ 0 ∨ TA

ET − TC
ST ≤ −120 ∨

z −MC
ST ≤ 0; MC

ET − z ≤ 480; MC
ST −MC

ET ≤ −240; MC
ET − TC

ST ≤ 0; TC
ET − TA

ST ≤ −150

Table 1: Summary of the example logistics problem.

worst case. While each component MaSTP can be evaluated
in polynomial-time, the number of possible labelings grows
exponentially as the number of disjunctive constraints (or
agents with local constraints) grows, putting the MaDTP
in the class of NP-complete problems. Note, multi- (and
single-) agent versions of the STP and TCSP are special
cases of the MaDTP definition, making it a generalization of
the approaches discussed in Section 2.

3.2 Example Problem
We illustrate how to populate the MaDTP formulation with a
detailed version of the example problem introduced in Sec-
tion 1. We give the problem specification in Table 1, and its
graphical rendering in Figure 1. The problem involves trans-
portation activities (T ) involving a single truck that needs
to make deliveries to three locations, A,B, and C, each of
which also must perform some manufacturing activity M . In
addition to the zero timepoint z (where z = 0 represents the
start time of the journey), there are timepoint variables for
the start time (ST ) and end time (ET ) of each activity. As
represented in the EST and Deadline columns, each delivery
and manufacturing activity has constraints dictating an earli-
est start time and particular deadline, which is influenced by
the start and end of the work day and also transportation time
to and from the truck’s depot. The fourth column specifies
minimum duration constraints for all activities. We use dis-
junctive constraints (Nonconcurrency column) to enforce that
activities at a location do not overlap. Notice that because
each disjunct is specified over a different pair of variables,
these non-concurrency constraints cannot be represented in
the TCSP framework. Finally, note that the disjunctive con-
straints over the truck’s transition time (last column), which
include transportation time, are neither reflexive nor transitive
due to the directionality and traffic congestion of available
roads and overhead of reshuffling inventory on the truck.
Agent A, B, and C’s local timepoints and constraints in Ta-
ble 1 are in rows Loc. A, Loc. B, and Loc. C, respectively.
The external constraints are those appearing in the right sub-
table, while in Figure 1, external timepoints and constraints
are denoted with dashed lines, and local constraints are de-
noted with solid lines. This particular example problem has
26 = 64 possible labelings, but only two (Figure 1 (a) and
(b)) satisfy all scheduling constraints.

3.3 Representational Properties
The MaDTP formulation allows the distributed representa-
tion of scheduling problems that span multiple agents, which
potentially yields strategic (e.g., privacy) and computational

(e.g., concurrency) advantages. The extent of these advan-
tages relies, in large part, on the level of independence inher-
ent in the problem, where two timepoints are independent if
there is no path that connects them in the constraint network
corresponding to any labeling, and dependent otherwise. No-
tice that all dependencies between agents flow through the set
of external variables, VX = ∪iV i

X . In fact, we later formalize
this idea by defining agent i’s set of interface variables as the
set V i

I = {V i
L ∩ VX}, which encapsulate agent i’s influence

on other agents. The implication is that, outside its interface
variables, each agent i can independently (and thus concur-
rently, asynchronously, privately, autonomously, etc.) reason
over its local subproblem DiL.

As discussed in Section 2, a minimal, decomposable rep-
resentation avoids requiring that agents solve an NP-hard
problem to evaluate queries. For example, minimality allows
an agent to quickly and exactly answer queries like “At which
times can I start my manufacturing activity?” A scheduling
agent can use a decomposable representation to pose ‘what-
if’ queries involving subsets of variables, such as “If I start
manufacturing at 8:00, at what times can the truck arrive?”
Moreover, as new constraints arrive dynamically (e.g., the
actual start time or duration of an activity is determined),
an agent can use a decomposable representation to directly
compute how these constraints affect the domains of future
events so as to keep dispatching consistent scheduling advice.

Tsamardinos, Pollack, and Ganchev’s (2001) approach to
establishing and maintaining the solution space of a DTP sug-
gests that these properties can always be established. Their
approach calculates the minimal, decomposable STN asso-
ciated with each of the DTP’s (exponentially many) feasible
labelings ` ∈ L, and then as new constraints arise, it tightens
each STN accordingly, discarding all inconsistent STNs. We
exploit this observation to formally prove that minimal repre-
sentations of DTPs always exist, which follows as a corollary
of Dechter, Meiri, and Pearl’s Theorem 1 (1991).

Corollary 1. A minimal representation of a consistent DTP
always exists.

Proof Sketch. The minimal network,M, of a given DTP, D,
satisfiesM = ∪`∈LM`, where M` is the minimal network
of the STP defined by labeling `, and the union is over the
set of all possible labelings L. Thus, the minimal network of
D is the TCSP, T = 〈V,CM〉, where the set of constraints,
CM, is composed of constraints Cij ∈ CM defined as vj −
vi ∈ ∪`∈L(M`)ij , where (M`)ij corresponds to the bound
interval on the difference between vj and vi in the minimal
network of the STP corresponding to label `.

1744



Figure 1: The minimal STN distance graphs corresponding
to two feasible labelings of the problem in Table 1.

So, to generate a single, minimal temporal constraint net-
work, we can merge the set of all consistent, minimal STNs
(e.g., those in Figure 1) by labeling each edge with the union
over all bound intervals. Similarly, if each of the consistent
STNs is separately decomposable (the STNs in Figure 1
can be made decomposable trivially by adding explicitly the
implicit constraints between every pair of timepoints, e.g.,
TBST − TAST ∈ [90, 330]), then any assignment of variables
that is locally-consistent will lead to a global solution.
Theorem 2. A minimal, decomposable representation of a
consistent DTP always exists.

Proof Sketch. If a DTP is consistent, its set of solutions can
be represented as the set of minimal, decomposable STNs
for the feasible labelings, ` ∈ L. Given this representation,
any assignment to a set of variables that is locally consistent
with respect to at least one of these STNs is, by definition,
guaranteed to be extensible to a global solution.

Since an MaDTP can be centralized into a DTP and a
component MaSTP can be centralized into a component STP,
these theorems and corollaries hold, mutatis-mutandis, for
the MaDTP. Unfortunately, this remains an NP-hard problem
and relying on centralized approaches mitigates the potential
advantages of a distributed MaDTP representation (e.g., con-
currency, privacy, etc.). Next, we introduce an approximate
method that leads to increased concurrency, independence,
and efficiency in finding a compact summary of the joint
solution space by exploiting the limited interaction of agents
in multiagent problems.

4 Local Decomposability
In this section, we introduce a new property called local de-
composability that exploits loose-coupling between agents’
problems, protects their strategic interests, and supports typi-
cal queries all by compactly summarizing the impact an agent
has on others as an influence space. We provide and evaluate
a new distributed algorithm that summarizes agents’ solution
spaces in significantly less time and space by using local,
rather than full, decomposability.

4.1 Definition
Intuitively, a scheduling agent should be reasonably expected
to answer queries about combinations of timepoint variables
that it must know about (ones that it can assign, or ones in-
volved in known constraints with ones it can assign). We call
such queries typical. In contrast, it would be counter-intuitive
and unreasonable to ask an agent to answer queries concern-
ing variables and constraints that it does not know about;
such queries are atypical, and are generally unanswerable by
an agent. For example, the scheduling agent at location B
should support queries over any (subset) of the activities that
will occur at location B, but not over timing between A and
C’s manufacturing activities, the details of which companies
A and C would likely keep private.

Generally, an agent may have strategic reasons for keeping
the number of local variables involved in external constraints
(and thus known by other agents) to a minimum. Our idea is
to exploit this loosely-coupled structure of the network to effi-
ciently establish sufficient decomposability to answer typical
queries, rather than much more expensive (and privacy de-
stroying) full decomposability that can also answer additional
queries that may never arise. Local decomposability extends
the idea of partial path consistency, which approximates de-
composability by assuming only queries over the original
constraints will arise. Local decomposability instead allows
queries over any locally-known variables or constraints.
Definition 1. An MaDTP is locally decomposable if, for
any agent i, any locally consistent assignment of values to
any subset of agent i’s known timepoint variables can be
extended to a joint solution.

Local decomposability enables an agent i to maintain
minimality and full decomposability over its locally known
timepoint variables, V i =

{
V i
L ∪ V i

X

}
, but does not require

that it maintain any information over unknown timepoints,
{v|v ∈ V j 6=i

L , v /∈ V i
X}. Thus agent B can support any query

over its local activities and queries involving external vari-
ables (e.g., “How long before the truck arrives here from
location A?”), but not queries regarding A or C’s local man-
ufacturing activities. A challenge of local decomposability
that we explore next is that care must be taken to ensure that
local constraints are globally minimal — that locally feasible
variable assignments will lead to joint solutions.

4.2 Influence Space
A key insight of our approach is that not all local labelings
will lead to STNs that qualitatively change how an agent’s
problem will impact other agents. For example, regardless
of what other activities the scheduling agent at location A is
responsible for scheduling, coordinating with other agents
only requires communicating the set of feasible times that
TAST and TAET can occur. Thus, instead of enumerating all
joint labelings, an agent i can instead focus on enumerating
labelings that lead to distinct STNs over its interface time-
point variables, V i

I = {V i
L ∩ VX}, those variables that are

local to agent i, but involved in one of agent i’s external
constraints, CiX . We call this smaller space of labelings agent
i’s local influence space, motivated by the work of Witwicki
and Durfee (2010). We represent agent i’s influence space
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as a set SiI of minimal, decomposable STNs expressed over
agent i’s interface variables, V i

I . An alternative view of an
influence space is a set of constraints that summarize how an
agent’s local constraints impact other agents, and vice-versa.

The upside is that all coordination, including all commu-
nication and jointly represented aspects of the problem, is
limited to these smaller influence spaces. The joint solution
space, then, is represented in a distributed fashion as a cross-
product of local solution spaces. This distributed represen-
tation allows agents to better protect their strategic interests
such as privacy, autonomy, etc., with easier to maintain local
solution spaces. For example, an agent scheduling m manu-
facturing activities can primarily spend its time managing the
m! possible orderings and, at the extreme, may only have to
coordinate over the bounds of the single time-window during
which a delivery can occur. The main disadvantage of local
decomposability is that arbitrary queries cannot be answered,
but as previously argued, typical ones can. An additional
disadvantage is that communication between agents (e.g., to
maintain minimality) becomes slightly more complicated as
it must be expressed in terms of influence space constraints
(constraints among influence variables), rather than directly
communicating assignments.

4.3 MaDTP-LD Algorithm
Our MaDTP local decomposability (MaDTP-LD) algorithm
is presented as Algorithm 1. The algorithm uses a findSolu-
tion function, which allows any solution algorithm (e.g., (Ster-
giou and Koubarakis 2000; Tsamardinos and Pollack 2003;
Dutertre and Moura 2006)) to be used for finding decompos-
able STNs corresponding to feasible labelings. Each agent
i uses this function to independently populate its solution
space representation as a set, Si, of minimal, decomposable
STNs, Si. Of course, before agents can compute their lo-
cally decomposable STNs in a globally-consistent manner,
they must first coordinate, which is done by calculating and
exchanging their influence spaces. An extractSubNetwork
function assists in this process by taking an already decom-
posable STN instance and extracting only the decomposable
subnetwork associated with the interface variables and all
constraints between them.

The algorithm begins with each agent i initializing its set
of interface variables V i

I (line 1) and both its local solution
space Si and its influence space SiI (line 2). Each agent
then independently calculates its influence space by finding
a minimal, decomposable STN labeling (line 3), extracting
the subnetwork formed by its interface variables, V i

I (line 4),
incorporating this subnetwork in its influence space Si (line
5), and then adding this subnetwork as a no-good (line 5)
so that the loop will terminate once all consistent labelings
have been enumerated. Notice, the process of computing the
influence space does not grow an agent’s set of interface
variables. So if only one of an agent’s many timepoints is
involved in an external constraint, each extracted subnetwork
will contain just the locally-consistent time window for that
variable. In this case, the agent will only need to communicate
this variable’s domain of locally-consistent time windows.

Generally, the influence space acts as a set of constraints

over an agent’s interface variables that implicitly summarizes
an agent’s many local constraints without revealing them,
thus avoiding the de facto centralization required by full de-
composability. Agent i communicates this set of constraints,
as formed by SiI , along with its external constraints, CiX ,
to all other agents (line 8), and incorporates other agents’
interface constraints locally (line 9). Note, this exchange may
grow the set of external variables that agent i is aware of,
V i
X , but guarantees the subsequent computations will be con-

sistent with the constraints implied by other agents. While
it is possible that agents could be more judicious in the in-
formation they exchange (e.g., agent i could send only the
constraints that neighboring agent j is already aware of), this
would represent a further approximation that sacrifices agents’
support of typical queries over externally known variables.
Finally, each agent concurrently computes its local solution
space, Si, by finding and incorporating all local minimal,
decomposable STNs into its solution space, adding each as a
no-good, until all consistent labelings have been enumerated
(lines 11-13). The algorithm terminates by returning agent
i’s locally decomposable representation, Si (line 14).

Algorithm 1: MaDTP Local Decomposability

Input: Di =
〈
V i =

{
V i
L ∪ V i

X

}
, Ci =

{
CiL ∪ CiX

}〉
.

Output: A locally decomposable temporal network.
1 V i

I ← {v ∈ V i
L ∩ VX};

2 Si ← {}; SiI ← {};
3 while STN Si ←Di.findSolution() do
4 SiI ← Si.extractSubNetwork(V i

I );
5 SiI ← SiI ∪ {SiI};
6 Di.addNoGood(SiI);
7 foreach Agent j 6= i do
8 SEND(Agent j,SiI ∪ CiX );
9 CiX ← CiX∪ RECEIVE(Agent j);

10 Di.clearNoGoods();
11 while STN Si ←Di.findSolution() do
12 Si ← Si ∪ Si;
13 Di.addNoGood(Si);
14 return Si

Theorem 3. The MaDTP-LD algorithm calculates local de-
composability.

Proof Sketch. By way of contradiction, assume that there
exists some locally consistent assignment of values, aβ , to a
subset of variables, Vβ ⊆ V i, for some agent i such that aβ is
not part of any joint solution. Since aβ is locally consistent, it
must have appeared as a solution to at least one of the feasible
local component STNs, Siβ , generated by agent i in line 11. If
aβ is consistent with a local component STN generated in line
11, it must also be simultaneously consistent with at least one
constraint network, SjIβ , for each agent j 6= i (as collected in

line 9). For each agent j 6= i, SjIβ is generated only if there

is a corresponding feasible STN label Sjβ from which it was
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Figure 2: (a) Local solution space vs. Influence Space (b) Full vs. Local Decomposability (c) Scalability of Local Decomposability

extracted (lines 3-4). Hence, the MaSTP formed by the union,⋃
i Siβ , with which aβ is consistent, simultaneously satisfies

all local CiL and external CiX constraints for all agents i.
But this, by definition, is a joint solution, which violates our
assumption. This implies that the MaDTP-LD algorithm does
indeed calculate local decomposability.

Theorem 4. The MaDTP-LD algorithm calculates minimal
constraints.

Proof Sketch. Note, by Theorem 3, all values that appear in
any interval that agent i calculated for any of its known con-
straints, c ∈ Ci, are part of at least one valid solution. By
contradiction, assume that there exists some assignment aβ of
a subset of known variables Vβ ⊆ V i for some agent i such
that a is part of a valid joint solution, but is not represented in
the intervals that agent i calculated for its known constraints,
Ci. Since line 11 results in only globally valid solutions (The-
orem 3), agent i must never generate an STN Si containing
aβ . However, this is a contradiction, since line 11 is executed
until all local, unique STN solutions are generated. There-
fore, the MaDTP algorithm captures the exact set of feasible
values within the intervals of each known constraint.

Together, these two theorems prove that Algorithm 1 cal-
culates a distributed joint solution space representation that
is both sound (Theorem 3) and complete (Theorem 4). Note
each agent i, in the worst case, will concurrently generate
O(k|Ci|) unique labelings. This compares favorably to previ-
ous, centralized approaches (Tsamardinos and Pollack 2003;
Shah, Conrad, and Williams 2009), which centrally generate
O(k|C|) global labelings. While the exact runtime of both
our approach and previous approaches depend on the per-
formance of the solution algorithm used, only generating
O(k|Ci|) labelings instead of O(k|C|), which, as the number
of agents grows, implies |C| >> |Ci|, clearly represents a
potentially exponential runtime savings. Similarly, the space
(and analogously bandwidth) required of each agent to lo-
cally represent these local, fully-connected, STN labelings,
O(|V i|2 ·k|Ci|), represents another potentially exponential re-
duction over previous approaches’ worst case,O(|V |2 ·k|C|).
Of course, these exponential savings depend on the structure
of the MaDTP. Our hypothesis, evaluated next, is that the
relative performance of our algorithm will be at its best for
loosely-coupled, evenly-distributed problems.

4.4 Empirical Evaluation
As described by Tsamardinos and Pollack (2003), the canon-
ical random DTP generator for evaluating DTP algorithms
(Stergiou and Koubarakis 2000) instantiates DTP instances
using the parameters 〈k,N,m,L〉, where k is the number of
disjuncts per constraint, N is the number of timepoint vari-
ables, m is the number of disjunctive temporal constraints,
and L is a positive integer that specifies a range of values,
[−L,L], from which bounds over disjuncts are chosen with
uniform probability, vj − vi ≤ bij ∈ [−L,L]. We adapt
this generator to be multiagent by adding two parameters:
a, the number of agents, for each of which we generate a
local DTP using the above specified random generator, and
p, the proportion of constraints and timepoints that are exter-
nal, e.g., |CX | = p ·m · a. In our experiments, we vary a,
N , and p, and our default parameter settings are k = 2 and
L = 100 (Tsamardinos and Pollack 2003). Two disjuncts
per constraint naturally captures the kinds of constraints that
typically appear in most scheduling problems (e.g., those in
the right two columns of Table 1). We set m so that the ratio
of constraints to timepoints is 4, mN = 4.

For all parameter settings, we average over 100 randomly
generated test cases. We use the state-of-the-art SMT solver
YICES (Dutertre and Moura 2006) as the baseline implemen-
tation of findSolution() in both our distributed MaDTP-LD
algorithm and its centralized variant, which executes MaDTP-
LD on a centralized, single-agent version of the problem. We
record the maximum processing time across agents (i.e., the
time the last agent completes execution) and the number of
unique, decomposable STNs.

Our first experiment tests our hypothesis that the size of
the influence space is smaller than the size of the correspond-
ing local solution space. The calculation and relative size of
the influence space vs. local solution space is specific to indi-
vidual agents and is independent of the external constraints
involved. As such, comparing the influence and local solu-
tion space sizes is done most straightforwardly and simply
using a single agent by treating a portion of its variables as if
they were interface variables (but without needing to explic-
itly add external constraints). Here, p determines the ratio of
|V i
I |to |V i

L|, where V i
I = ∅ when p = 0 and V i

I = V i
L when

p = 1. Figure 2 (a) shows that, when there are relatively
few local variables in the interface (as dictated by parameter
p), the influence space contains orders-of-magnitude fewer
STNs and takes many orders-of-magnitude less time to find.
However, when the interface contains all variables (p = 1.0),
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there is no advantage gained, which is to be expected since
the local solution and influence spaces would be the same.

Our second experiment, shown in Figure 2 (b), tests how
much speedup two agents using our MaDTP-LD algorithm
achieve over a centralized approach calculating full decom-
posability. There are two contributing factors for why we
would expect MaDTP-LD to outperform its centralized, full
decomposability counter-part — (1) computational savings
due to the approximation and (2) concurrency gained from
load balancing. The second line (Full / Approx.) captures the
gains made by the approximation alone by centrally calcu-
lating full decomposability and comparing to centrally calcu-
lating the local decomposability approximation. This demon-
strates that, on average, 67% of the total speedup (Full/Local)
is due to the savings generated from the approximation, while
concurrency contributes the remaining 33% of the speedup.
Unsurprisingly, it takes less time and fewer STNs to find
local decomposability when some variables are not located in
the interface (p = 0.0 . . . 0.75), leading to up to 109.8 times
speedup (and taking up to 21.3 fewer seconds) per problem
instance in expectation. However, note that when p = 1.0,
local decomposability is actually less efficient, taking 20.3
more seconds per problem instance in expectation. This is
because there is overhead in first attempting to enumerate
the local influence space, and when p = 1.0, many of the
local solutions lead to unique global solutions. Finally, there
is a decrease in speed-up from p = 0.25 to p = 0.0. This is
because even the centralized approach can benefit from ex-
ploiting completely disjoint problem structure. Overall, local
decomposability leads to significant speedup over calculating
full decomposability, both due to the approximation being
employed and the concurrency that it allows.

Finally, while the amount of relative speedup over the cen-
tralized approach is important, so is how well our MaDTP-
LD algorithm scales. The results of our third experiment,
shown in Figure 2 (c) show that when problems are com-
pletely disjoint, our approach scales well, as one would ex-
pect. However, even for relatively small amounts of coupling
(p = 0.33), the effort and number of STNs that must be
explored still grows exponentially (though at a significantly
reduced rate due to a smaller base). These results indicate
that applications that cannot afford substantial precompilation
time will require exploiting additional local and interaction
structures or employing additional forms of approximation to
scale to larger problems containing more interacting agents.

5 Discussion
In this paper, we introduced the Multiagent Disjunctive Tem-
poral Problem, a general constraint-based scheduling formu-
lation that can capture the interactions of multiple agents
in a distributed fashion. We demonstrated how the concepts
of minimality and decomposability naturally extend to the
MaDTP formulation, but that decomposability counters the
computational and strategic objectives of an agent. We also
contributed the idea of local decomposability, which elimi-
nates significant computational overhead of centrally com-
puting joint schedules, thus promoting agents’ strategic in-
terests while still supporting typical queries. We introduced
an algorithm that exploits loose-coupling between agents

and demonstrated significant speedup over a centralized al-
gorithm that calculates full decomposability. In the future,
we hope to follow the lead of Shah and Williams (2008) and
exploit additional structure within DTPs to calculate more
compact and efficient solution space representations of the
MaDTP. We also intend to explore the trade-off between fur-
ther approximation and efficiently handling (even atypical)
queries. In this paper, we introduced an approach that sacri-
ficed decomposability in favor of local decomposability so
as to protect minimality. We would like to explore an alterna-
tive approach that instead sacrifices minimality (and thus the
completeness of the joint solution space), in favor of a ‘local
minimality’ that protects decomposability (Hunsberger 2002;
Boerkoel and Durfee 2011).
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